

A Value-Added Predictive Defect Type Distribution Model
based on Project Characteristics

Youngki Hong, Jongmoon Baik, In-Young Ko, Ho-Jin Choi
School of Engineering

Information and Communications University
119 Munji-ro, Yuseong-Gu, Daejeon

Republic of Korea
{young}@SKCC.COM , {jbaik, iko, hjchoi}@icu.ac.kr

Abstract

In software project management, there are three

major factors to predict and control; size, effort, and
quality. Much software engineering work has focused on
these. When it comes to software quality, there are
various possible quality characteristics of software, but in
practice, quality management frequently revolves around
defects, and delivered defect density has become the
current de facto industry standard. Thus, research related
to software quality has been focused on modeling residual
defects in software in order to estimate software
reliability. Currently, software engineering literature still
does not have a complete defect prediction for a software
product although much work has been performed to
predict software quality.

On the other side, the number of defects alone
cannot be sufficient information to provide the basis for
planning quality assurance activities and assessing them
during execution. That is, for project management to be
improved, we need to predict other possible information
about software quality such as in-process defects, their
types, and so on. In this paper, we propose a new
approach for predicting the distribution of defects and
their types based on project characteristics in the early
phase. For this approach, the model for prediction was
established using the curve-fitting method and regression
analysis. The maximum likelihood estimation (MLE) was
used in fitting the Weibull probability density function to
the actual defect data, and regression analysis was used
in identifying the relationship between the project
characteristics and the Weibull parameters. The research
model was validated by cross-validation.

KEY WORDS
In-process Defect Prediction, Defect Type Distribution,
Weibull Function, Maximum Likelihood Estimation,
Software Reliability

1. Introduction

For producing reliable software products and
managing projects visibly, one of the most important
objectives of the software engineering community has
been to develop useful models that can explain the
software development life-cycle and accurately predict
the cost, schedule and quality of developing a software
product [1]. To represent quality of products, there are
various possible quality characteristics of software, and
there is even an international standard for this. In practice,
quality management revolves around defects, and
delivered defect density, a number of defects per unit size
in the delivered software, has become the current de facto
industry standard [2][3]. Therefore, the prediction of
software defects, i.e., deviations from specifications or
expectations, has been an important research topic in the
field of software engineering. So far, many efforts have
been concentrated specifically in predicting the number of
defects in the system, estimating the reliability of the
systems as statistical functions to time-to-failure, and
understanding the importance of design and testing
processes on defect counts [4]. However, only the number
of defects cannot be sufficient information to provide
basis for planning quality assurance activities and
assessing them during execution. That is, for project
management to be improved, we need to predict other
possible information of software quality such as in-
process defects, their types and so on.

In this paper, we address the problems mentioned
above by proposing a defect type distribution prediction
with project characteristics information. This approach
can support to plan suitable quality assurance activities
and prevent possible defects. It can also help us to reduce
the efforts of performing reworks and the cost of
producing high quality software.

The rest of paper is organized as follows. In section 2,
some related works are described. In section 3, our
modeling approach is described. In section 4, the data is
presented to use in constructing the proposed model. In
section 5, the process of constructing the model and the
defect type prediction model are presented. Section 6

Seventh IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-3131-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICIS.2008.36

469

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:44:05 UTC from IEEE Xplore. Restrictions apply.

presents the validation of our proposed approach. Lastly,
the conclusion and future research directions are drawn.

2. Related Works

Many researches proposed several defect prediction
models such as Rayleigh model [5][6], the constructive
quality model (COQUALMO) [1][7], the empirical phase
based defect prediction model [3][5], and the Bayesian
Belief Network based model [8][9], and so on. We briefly
discuss major methods to use in predicting defects.

The Rayleigh model assumes that detecting defects in
the different development phases will follow a Rayleigh
distribution function which is a special case of Weibull
distribution function. It has been empirically well
established that software projects follow a lifecycle
pattern described by the Rayleigh density curve. Using
this property, it models the total defect distribution of the
entire development phases [6]. To predict defects, it is
required to estimate a parameter using the historical time
at which the curve reaches its peak. The area below the
curve up to the peak is about 40% of the total area [5].
After the parameter is estimated, the shape of the entire
curve can be determined, and project managers can
predict total defect distribution of the current project to
manage.

The COQUALMO [1] is an extension of the existing
COCOMO II model to predict the number of defects in
the different development phases [7][10]. This model has
two sub-models which are analogous to the ‘tank and
pipe’ model: the Defect Introduction (DI) and Defect
Removal (DR) models. The DI model’s inputs include
source lines of code and/or function points as the sizing
parameter, adjusted for both reuse and breakage and a set
of 21 multiplicative DI-drivers divided into four
categories; platform, product, personnel and project.
These 21 DI-drivers are a subset of the 22 cost parameters
required as input for COCOMO II. Using COCOMO II
drivers not only makes it relatively straightforward to
integrate COQUALMO with COCOMO II but also
simplifies the data collection activity which has already
been set up for COCOMO II [1].

The empirical phase-based defect prediction model
supports phase-by-phase prediction and tracking of the
number of defects likely to be encountered during
development. It is an extension of the test defect density
metric. It means that the model takes a set of defect
injection rates and defect removal rates of each
development phase as input, and then models the defect
removal pattern. Supported by various tools, this
information assists project managers in accurately
planning projects and in assessing project progress against
expected results at interim points [5].

The Bayesian Belief Networks (BBN) is used to deal
with causal relationships among variables that allow
uncertainty for some variables [8]. There are positive

forward-looking approaches that model the complexities
of software development using new probabilistic
techniques. Using BBN, we are able to express complex
interrelations within the model at a level of uncertainty
commensurate with the problem in defect prediction [9].
It is possible to represent expert beliefs about the
dependencies between different variables and propagate
consistently the impact of evidence on the probabilities of
uncertain outcomes, such as ‘future system reliability.’
Actually BBN reflects expert opinions in each individual
node. In other words, BBN models the subjectivity and
uncertainty that is pervasive in software development.

3. Research Approach

3.1. Overview of the Proposed Model

As mentioned earlier, the researches of software defect

prediction have focused on the number of defects in a
software system with code metrics, inspection data, and
process-quality data. Our concern is that such information
cannot be sufficient for project planning and management.

Our research is aimed to predict the distribution of in-
process defects, their types to be detected in the software
project. The Figure 1 shows the overall view of the
predictive defect distribution model.

Phase-Based
Defect Distribution

Predictor
Size Data

Project’s
Characteristics

Predictive
distribution by
types of defect

Defect
Density Data

0%

5%

10%

15%

20%

25%

30%

35%

40%

RA Des Cod Test
Figure 1. Overview of the proposed model

3.2. Approach

The modeling approach outlines construction of the

proposed defect type distribution prediction model shown
in Figure 2. There are 7 steps in the modeling approach:
1) analysis of literature, 2) behavioral analysis, 3) data
gathering, 4) statistical modeling, 5) regression analysis,
6) model validation, and 7) gathering of more data for
refining the model in the future.

470

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:44:05 UTC from IEEE Xplore. Restrictions apply.

Create Prediction Model

Defect Data
Gathering

Model Validation
(Cross Validation)

Gather More Data

Regression Analysis

Statistical Modeling
(Weibull func.)

• Weibull distribution parameters
for total defect and defect types

• Relation between input and
total defect distribution

• Relation between input
and defect type distribution

(Refine model)

Analyzing Existing
Literature

Behavioral Analysis

Figure 2. Modeling approach

Step 1) Analyzing existing literature : The first step in

developing a software estimation/prediction model is to
determine the factors (or predictor variables) that affect
the software attribute being estimated (i.e. the response
variable). This can be done by reviewing existing
literature and analyzing the influence of parameters on the
response variable [11].

Step 2) Behavioral analysis : Once the parameters have
been determined, a behavioral analysis should be carried
out to understand the effects of each of the parameters on
the response variable. This can show the behavioral
effects of higher vs. lower levels of each factor on project
quality levels [11].

Step 3) Defect data gathering : After a thorough study
of the results of the behavioral analysis is done, the
characteristics of the projects and defect data have to be
gathered. At this time, the defect data should include
defects at all phases of the development cycle. Also, the
more detailed the phases for differentiating detected
defects, the more accurate the output we will obtain. We
use the existing project characteristics and the defect data
in the organization.

Step 4) Statistical modeling : Using the actual project
data, curve fitting is performed to extract the parameters
of the Weibull distribution function for each project.
These values will be input data for regression analysis.

Step 5) Regression analysis : In regression analysis, we
identify the relationship between historical project
characteristics and the parameters of defect distribution
from the statistical modeling.

Step 6) Model validation : After statistical modeling
and regression analysis, we obtain various coefficients to
be able to predict output. To validate the results of the
model, we perform the cross-validation because we have
little project data to do the test-set validation.

Step 7) Gathering of more data for refining the model :
We can continue to gather data and refine the model to be
more reliable.

3.3. Weibull Distribution Function

The Weibull distribution is defined by the following
probability density function.

Weibull PDF :
α

βα
αβ

αβα








−

− ⋅⋅







=

x

exxf)1(),,(

The purpose of using the Weibull function is to

characterize the failure distribution and to make
inferences about the failure mode. It can be used with
relatively small sample sizes. A simple, flexible method
for modeling continuous event times is to assume they
follow a Weibull distribution with shape parameter, α,
and scale parameter, ß, which are positive numbers.

The Weibull function can be fitted to the actual data by
maximum likelihood that is widely used in engineering
applications. The parameter estimates can be used to
identify other characteristics of the distribution [12].

3.4. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a popular

statistical method used to calculate the best way of fitting
a mathematical model to some data. Modeling real world
data by estimating maximum likelihood offers a way of
tuning the free parameters of the model to provide an
optimum fit [13].

Commonly, one assumes that the data drawn from a
particular distribution are independent, identically
distributed with unknown parameters. This considerably
simplifies the problem because the likelihood can then be
written as a product of n univariate probability densities:

∏
=

==
n

i
ini xfxfxfxfL

1
21)|()|()...|()|()(θθθθθ θθθθ

and since maxima are unaffected by monotone
transformations, one can take the logarithm of this
expression to turn it into a sum:

∑
=

=
n

i
ixfL

1
)|(log)(ln θθ θ

In consequence, according to above derived equations,

we can select parameters to make the value 0 of ln L(θ).

4. Data Description

To construct a defect type distribution model, the

required data are the characteristics of the projects and
their defect data detected in the software development life
cycle.

4.1 Defect Data

In addition to project characteristics, we also used

defect data obtained at all phases in the development life
cycle (requirement analysis, design, coding, and testing)
from the 18 software projects. The defect data were

471

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:44:05 UTC from IEEE Xplore. Restrictions apply.

acquired from requirement review, design review, code
inspection, and testing by project members and testers.

The gathered defect data were recorded according to
the organizational standard defect types as project
members detected them during the phases of the projects.
There are five types of defects in the gathered data:
consistency, function, standard, performance, and
miscellaneous. Table 1 shows brief explanations of defect
types.

Table 1. Types of defects
Type of defect Explanation
Consistency

(C)
Little consistency between the previous
artifacts and the current artifacts

Function
(F)

Defects affect the functionality due to
incorrect functional explanation, wrong
algorithm, data structure, etc.

Standard
(S)

Little observance of the rules such as
customer’s standard, project standard
methodology, coding rules, etc.

Performance
(P)

Defects impact the performance due to
incorrect design, inefficient algorithm, data
structure, etc.

Miscellaneous
(E) Defects not categorized by above types

The defect type distribution per development phase

can be modeled according to the Weibull distribution
because they follow the characteristics of the Weibull
distribution (convex distribution form and monotonous
decrement after a peak value) shown in Figure 3.

RA

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

C S F P E

Des

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

S C F P E
Code

0%

5%

10%

15%

20%

25%

30%

35%

40%

P F S C E

Test

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

C F S P E
Figure 3. Average defect type distribution in each phase

4.2 Project Characteristics

For this model construction, we gathered data from 18

completed software development projects which were
performed in public business sector. There can be lots of
quantitative and qualitative characteristics for
differentiating software projects in each organization [5]
[14]. In our case, the 11 factors of project characteristics
are included in three categories: project basic information,
human resource information and development
information. They are the existed information for
differentiating projects in the organization. The factors
and their brief explanations in each category are as
following Table 2.

Table 2. Project characteristics for the model
Category/Charac. Explanation

Project basic information
 Project size Value of function point to be developed

in the project
 Project duration Total months of the project duration
 Development

solution
Type of solution (product) to be
developed in the project

 Industry area Industry area that the system is applied in
 Development

methodology
Type of development methodology used
in the project

 Defect density Total defect density per each project
Human resource information
 # of members Total number of project members
 Project member

ratio
Ratio between our own members and
total number of project members

Productivity

Project productivity which is function
points divided by number of person
months

Development information
 Development

language
Type of development language used in
the project

 DBMS type Type of DBMS used in the project

5. Model Construction

We construct the proposed model with historical

project information and defect data using statistical
modeling and regression analysis. In the statistical
modeling, we use the maximum likelihood estimation
technique for fitting the Weibull distribution curve to the
historical defect data. In the regression analysis, we
determine the coefficients about the relationship between
project characteristics and the Weibull parameters of
defect distribution.

5.1. Statistical Modeling

To perform the statistical modeling is to estimate the

Weibull distribution parameters from actual data. Besides,
we have to perform statistical modeling from the entire
defect distribution per project to each defect type
distribution per development phase.

First, for performing estimation of the entire defect
distribution per project, we need to arrange the number of
defects by all phases of software development life cycle
(Requirement analysis, Design, Coding, and Test). The
defects in entire phases can be modeled according to the
Weibull distribution because the distribution of defects
follows the characteristics of the Weibull distribution.
Then, the estimation of the parameters per each project
can be performed using the maximum likelihood
estimation (MLE). The Figure 4 shows the overview of
estimation of the Weibull parameters for the entire defect
distribution per each project.

472

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:44:05 UTC from IEEE Xplore. Restrictions apply.

…

Curve

…………………

dMR

d2R

d1R

RA

dMT

d2T

d1T

Test

βMAαMAdMCdMDPrj M

β2Aα2Ad2Cd2DPrj 2

β1Aα1Ad1Cd1DPrj 1

βAαACodDesPrj #

…

Curve

…………………

dMR

d2R

d1R

RA

dMT

d2T

d1T

Test

βMAαMAdMCdMDPrj M

β2Aα2Ad2Cd2DPrj 2

β1Aα1Ad1Cd1DPrj 1

βAαACodDesPrj #

RA Des Cod Test

RA Des Cod Test

RA Des Cod Test
Figure 4. Parameter estimation of entire defect dist.

After that, we perform an estimation of each defect

type distribution per development phase. For doing so, we
arrange defect data by defect types in each phase per each
project. Through the statistical modeling, we can obtain
10 Weibull parameters for each project: αA, βA, αR, βR, αD,
βD, αC, βC, αT, βT. This set of parameters is used to
determine the relationship with the project characteristics.

5.2. Regression Analysis

Through performing regression analysis, we can

identify the relationship between the project
characteristics and the 10 parameters about 5 Weibull
distributions. Thus, we can obtain the coefficients to use
predicting defect distribution for new projects. The Figure
5 shows the overview of regression analysis between
project characteristics and the parameters of Weibull
distributions.

ChM3

…

Ch33

Ch23

Ch13

Ch 3

Ch3N…Ch32Ch31Prj 3

ChNM…ChM2ChM1Prj M

…

…

…

…

…………

Ch2NCh22Ch21Prj 2

Ch1NCh12Ch11Prj 1

Ch NCh 2Ch 1Prj #

ChM3

…

Ch33

Ch23

Ch13

Ch 3

Ch3N…Ch32Ch31Prj 3

ChNM…ChM2ChM1Prj M

…

…

…

…

…………

Ch2NCh22Ch21Prj 2

Ch1NCh12Ch11Prj 1

Ch NCh 2Ch 1Prj #

CαND

…

Cα2D

Cα1D

αD

CβNR

…

Cβ2R

Cβ1R

βR

CαNR

…

Cα2R

Cα1R

αR

CαNC

…

Cα2C

Cα1C

αC

CβND

…

Cβ2D

Cβ1D

βD

CβNC

…

Cβ2C

Cβ1C

βC βTαTβAαACoeff’s

CβNTCαNTCβNACαNACh N

……………

Cβ2TCα2TCβ2ACα2ACh 2

Cβ1TCα1TCβ1ACα1ACh 1

CαND

…

Cα2D

Cα1D

αD

CβNR

…

Cβ2R

Cβ1R

βR

CαNR

…

Cα2R

Cα1R

αR

CαNC

…

Cα2C

Cα1C

αC

CβND

…

Cβ2D

Cβ1D

βD

CβNC

…

Cβ2C

Cβ1C

βC βTαTβAαACoeff’s

CβNTCαNTCβNACαNACh N

……………

Cβ2TCα2TCβ2ACα2ACh 2

Cβ1TCα1TCβ1ACα1ACh 1

Regression Analysis

αMD

…

α3D

α2D

α1D

αD

βMR

…

β3R

β2R

β1R

βR

αMR

…

α3R

α2R

α1R

αR

αMC

…

α3C

α2C

α1C

αC

βMD

…

β3D

β2D

β1D

βD

βMC

…

β3C

β2C

β1C

βC βTαTβAαAPrj #

βMTαMTβMAαMAPrj M

……………

β3Tα3Tβ3Aα3APrj 3

β2Tα2Tβ2Aα2APrj 2

β1Tα1Tβ1Aα1APrj 1

αMD

…

α3D

α2D

α1D

αD

βMR

…

β3R

β2R

β1R

βR

αMR

…

α3R

α2R

α1R

αR

αMC

…

α3C

α2C

α1C

αC

βMD

…

β3D

β2D

β1D

βD

βMC

…

β3C

β2C

β1C

βC βTαTβAαAPrj #

βMTαMTβMAαMAPrj M

……………

β3Tα3Tβ3Aα3APrj 3

β2Tα2Tβ2Aα2APrj 2

β1Tα1Tβ1Aα1APrj 1

Figure 5. Regression analysis for parameter prediction

5.3. Proposed Model

After modeling, now we can construct a predictive

defect type distribution model. The constructed model is
formed as a discrete Weibull distribution function as
bellow equation, where K is total defect density, i is phase
sequence, j is type of defect, α and β are shape parameter
and scale parameter for defect type distribution of each
phase.














⋅⋅⋅














⋅⋅⋅=









−

−







−

−

i

ii

i

A

AA

A

j

i

i

i

A

A ejeiK

αα

βα
α

βα
α β

α
β
α)1()1(j) P(i,

6. Validation

In this section, we describe the validation method and
the result of the proposed approach. For validating results,
we perform cross-validation using the data which we used
to develop the model because of the lack of samples. Also,
we analyze the magnitude of relative error (MRE) and the
PRED(30) between the actual values and the predicted
values from the proposed model.

6.1. Evaluation Criteria

A good software estimator generates predictions
“close to” actual known data. PRED(X) is one such
measure of “closeness”, which is computed from the
magnitude of relative error (MRE) which is the relative
size of the difference between the actual and estimated
value. PRED(X) reports the average percentage of
estimates that were within X% of the actual values. For
example, PRED(30) = 64% means that 64% of the
estimates are within 30% of the actual [7].

6.2 Results of Total Defect Distributions

We show the MMRE between predicted defect

distributions and actual defect distributions to compare
prediction accuracy in Table 3. The error values are
somewhat fluctuated, but the proposed model using 18
projects yields PRED(30) of 72% in requirement analysis
phase, PRED(30) of 83% in design phase, PRED(30) of
94% in coding phase and PRED(30) of 56% in testing
phase. Thus, the proposed model yields PRED(30) of
72% for all phases on average.

Table 3. MMRE and PRED(30) by phases

Phases RA
MRE

Des
MRE

Cod
MRE

Test
MRE

MMRE 27% 20% 12% 48%
PRED(30) 72% 83% 94% 56%

6.3. Results of Defect Type Distributions

The error values fluctuate somewhat, but the proposed

model yields a PRED(30) from 50% to 94% in the
requirement analysis phase, a PRED(30) from 56% to
94% in the design phase, a PRED(30) from 44% to 97%
in the coding phase, and a PRED(30) from 33% to 94% in
the testing phase. Thus, the proposed model yields an
overall PRED(30) of 75% on average for all phases and
all defect types.

Table 4. Average PRED(30) by defect types and phases

Defect type RA Design Cod Test Ave.
Function 44% 78% 94% 89% 76%

Performance 72% 56% 97% 72% 75%
Standard 67% 56% 67% 94% 71%

Consistency 50% 78% 50% 33% 53%
Misc. 94% 94% 44% 89% 80%

473

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:44:05 UTC from IEEE Xplore. Restrictions apply.

The Figure 6 shows an example of the distributions of

actual defect data, estimated data by MLE, and predicted
data by the proposed model for a project in order to
compare the results.

P01_Actual

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R D C T

P01_Estimated

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R D C T

P01_Predicted

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R D C T
Figure 6. Actual, estimated, and predicted defect type dist.

7. Conclusion and Future Works

We discussed a new approach for predicting the
distribution of defects and their types based on project
characteristics. For this approach, the maximum
likelihood estimation was used in fitting the Weibull
probability density function to the actual defect data, and
the regression analysis was used to identify the
relationship between the project characteristics and the
Weibull parameters. In the prediction, the distribution of
defects and their types for different phases in the project
was estimated based on past projects data. We predicted
the entire distribution of defects by all phases, and then
we predicted the distribution of defect types for each
phase of project. To validate the results of the proposed
model, we used the magnitude of relative error between
the actual values and the predicted values from the
proposed model.

From these experiments and the results, we can use
this proposed model as a defect prediction model for
project planning and management at the early phase. The
defect prediction with types of defects can aid in phase-
by-phase forecasting and monitoring of the trend of
defects likely to be encountered during software
development. Thus, this information will assist project
managers in reasonably planning projects and in assessing
project progress against expected results at interim points.
For this, historical (application-/project-specific) data
should absolutely be accumulated in organizations to
predict defect levels.

However, like most performance metrics in software, it
can provide large variations. To make accurate and stable
predictions of defects found in complex and various
software projects, we need a rich set of process factors as
input factors of the model. Thus, we need to try to apply
the DI-drivers of COQUALMO as input factors to the
proposed model. Especially, we have to concentrate on
the factor of human resources such as analyst’s capability,
programmer’s capability, experience about similar
applications, experience about platform, experience of

development languages and supporting tools, personnel
continuity, and so on.

Acknowledgment

This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the
ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information
Technology Advancement)" (IITA-2008-(C1090-0801-
0032))".

References

[1] Chulani S., "COQUALMO (COnstructive QUALity
MOdel) a software defect density prediction model,"
Proceedings of the ESCOM SCOPE’99, 297-306, 1999.
[2] Qinbao Song, Martin Shepperd, "Software Defect
Association Mining and Defect Correction Effort
Prediction," IEEE Transactions on Software Engineering,
vol. 32, no. 2, pp. 69-82, Feb., 2006.
[3] P. Jalote, S. Raghavan, and S. Ramakrishna,
"Quantitative Quality Management through Defect
Prediction and Statistical Process Control" Proc. Second
World Quality Congress for Software, Sept. 2000.
[4] Ch. Ali Asad, Muhammad Irfan Ullah, "An Approach
for Software Reliability Model Selection," COMPSAC
2004, 534-539, 2004.
[5] Stephen H. Kan, "Metrics and Models in Software
Quality Engineering," 2nd ed., Addison-Wesley, 2002.
[6] Samuel King, “Progressive Software Reliability
Modeling”, ISSRE, 1999.
[7] Chulani S., “Bayesian Analysis of Software Cost and
Quality Models”, University of Southern California, 1999.
[8] S. Amasaki, Y. Takagi, O. Mizuno, Tohru Kikuno,
“A Bayesian Belief Network for Assessing the Likelihood
of Fault Content”, ISSRE, 2003.
[9] Fenton, N. E. and Neil, M. "A Critique of Software
Defect Prediction Models," IEEE Transactions on
Software Engineering, 25(5), 675-689, 1999.
[10] Hans S., "Design of a Methodology to Support
Software Release Decisions", Univ. of Groningen, 2005.
[11] Jongmoon Baik, “The Effects of Case Tools On
Software Development Effort”, PhD Thesis, University of
Southern California, 2000.
[12] Potts, W., “Survival Data Mining Predictive Hazard
Modeling for Customer History Data”, SAS Institute,
2003.
[13] Maximum likelihood estimation, Wikipedia http://
en.wikipedia.org/wiki/Maximum_likelihood_estimation
[14] Fenton N. E, Neil M, Marsh W, “Project Data
Incorporating Qualitative Factors for Improved Software
Defect Prediction”, ICSE, PROMISE workshop, 2007.

474

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:44:05 UTC from IEEE Xplore. Restrictions apply.

