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Abstract 

 
In software project management, there are three 

major factors to predict and control; size, effort, and 
quality. Much software engineering work has focused on 
these. When it comes to software quality, there are 
various possible quality characteristics of software, but in 
practice, quality management frequently revolves around 
defects, and delivered defect density has become the 
current de facto industry standard. Thus, research related 
to software quality has been focused on modeling residual 
defects in software in order to estimate software 
reliability. Currently, software engineering literature still 
does not have a complete defect prediction for a software 
product although much work has been performed to 
predict software quality. 

On the other side, the number of defects alone 
cannot be sufficient information to provide the basis for 
planning quality assurance activities and assessing them 
during execution. That is, for project management to be 
improved, we need to predict other possible information 
about software quality such as in-process defects, their 
types, and so on. In this paper, we propose a new 
approach for predicting the distribution of defects and 
their types based on project characteristics in the early 
phase. For this approach, the model for prediction was 
established using the curve-fitting method and regression 
analysis. The maximum likelihood estimation (MLE) was 
used in fitting the Weibull probability density function to 
the actual defect data, and regression analysis was used 
in identifying the relationship between the project 
characteristics and the Weibull parameters. The research 
model was validated by cross-validation. 
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1. Introduction 
 

For producing reliable software products and 
managing projects visibly, one of the most important 
objectives of the software engineering community has 
been to develop useful models that can explain the 
software development life-cycle and accurately predict 
the cost, schedule and quality of developing a software 
product [1]. To represent quality of products, there are 
various possible quality characteristics of software, and 
there is even an international standard for this. In practice, 
quality management revolves around defects, and 
delivered defect density, a number of defects per unit size 
in the delivered software, has become the current de facto 
industry standard [2][3]. Therefore, the prediction of 
software defects, i.e., deviations from specifications or 
expectations, has been an important research topic in the 
field of software engineering. So far, many efforts have 
been concentrated specifically in predicting the number of 
defects in the system, estimating the reliability of the 
systems as statistical functions to time-to-failure, and 
understanding the importance of design and testing 
processes on defect counts [4]. However, only the number 
of defects cannot be sufficient information to provide 
basis for planning quality assurance activities and 
assessing them during execution. That is, for project 
management to be improved, we need to predict other 
possible information of software quality such as in-
process defects, their types and so on. 

In this paper, we address the problems mentioned 
above by proposing a defect type distribution prediction 
with project characteristics information. This approach 
can support to plan suitable quality assurance activities 
and prevent possible defects. It can also help us to reduce 
the efforts of performing reworks and the cost of 
producing high quality software. 

The rest of paper is organized as follows. In section 2, 
some related works are described. In section 3, our 
modeling approach is described. In section 4, the data is 
presented to use in constructing the proposed model. In 
section 5, the process of constructing the model and the 
defect type prediction model are presented. Section 6 
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presents the validation of our proposed approach. Lastly, 
the conclusion and future research directions are drawn.  
 
2. Related Works 
 

Many researches proposed several defect prediction 
models such as Rayleigh model [5][6], the constructive 
quality model (COQUALMO) [1][7], the empirical phase 
based defect prediction model [3][5], and the Bayesian 
Belief Network based model [8][9], and so on. We briefly 
discuss major methods to use in predicting defects. 

The Rayleigh model assumes that detecting defects in 
the different development phases will follow a Rayleigh 
distribution function which is a special case of Weibull 
distribution function. It has been empirically well 
established that software projects follow a lifecycle 
pattern described by the Rayleigh density curve. Using 
this property, it models the total defect distribution of the 
entire development phases [6]. To predict defects, it is 
required to estimate a parameter using the historical time 
at which the curve reaches its peak. The area below the 
curve up to the peak is about 40% of the total area [5]. 
After the parameter is estimated, the shape of the entire 
curve can be determined, and project managers can 
predict total defect distribution of the current project to 
manage. 

The COQUALMO [1] is an extension of the existing 
COCOMO II model to predict the number of defects in 
the different development phases [7][10]. This model has 
two sub-models which are analogous to the ‘tank and 
pipe’ model: the Defect Introduction (DI) and Defect 
Removal (DR) models. The DI model’s inputs include 
source lines of code and/or function points as the sizing 
parameter, adjusted for both reuse and breakage and a set 
of 21 multiplicative DI-drivers divided into four 
categories; platform, product, personnel and project. 
These 21 DI-drivers are a subset of the 22 cost parameters 
required as input for COCOMO II. Using COCOMO II 
drivers not only makes it relatively straightforward to 
integrate COQUALMO with COCOMO II but also 
simplifies the data collection activity which has already 
been set up for COCOMO II [1]. 

The empirical phase-based defect prediction model 
supports phase-by-phase prediction and tracking of the 
number of defects likely to be encountered during 
development. It is an extension of the test defect density 
metric. It means that the model takes a set of defect 
injection rates and defect removal rates of each 
development phase as input, and then models the defect 
removal pattern. Supported by various tools, this 
information assists project managers in accurately 
planning projects and in assessing project progress against 
expected results at interim points [5]. 

The Bayesian Belief Networks (BBN) is used to deal 
with causal relationships among variables that allow 
uncertainty for some variables [8]. There are positive 

forward-looking approaches that model the complexities 
of software development using new probabilistic 
techniques. Using BBN, we are able to express complex 
interrelations within the model at a level of uncertainty 
commensurate with the problem in defect prediction [9]. 
It is possible to represent expert beliefs about the 
dependencies between different variables and propagate 
consistently the impact of evidence on the probabilities of 
uncertain outcomes, such as ‘future system reliability.’ 
Actually BBN reflects expert opinions in each individual 
node. In other words, BBN models the subjectivity and 
uncertainty that is pervasive in software development. 
 
3. Research Approach 
 
3.1. Overview of the Proposed Model 

 
As mentioned earlier, the researches of software defect 

prediction have focused on the number of defects in a 
software system with code metrics, inspection data, and 
process-quality data. Our concern is that such information 
cannot be sufficient for project planning and management. 

Our research is aimed to predict the distribution of in-
process defects, their types to be detected in the software 
project. The Figure 1 shows the overall view of the 
predictive defect distribution model. 
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Figure 1. Overview of the proposed model 

 
3.2. Approach 

 
The modeling approach outlines construction of the 

proposed defect type distribution prediction model shown 
in Figure 2. There are 7 steps in the modeling approach: 
1) analysis of literature, 2) behavioral analysis, 3) data 
gathering, 4) statistical modeling, 5) regression analysis, 
6) model validation, and 7) gathering of more data for 
refining the model in the future. 
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Figure 2. Modeling approach 

 
Step 1) Analyzing existing literature : The first step in 

developing a software estimation/prediction model is to 
determine the factors (or predictor variables) that affect 
the software attribute being estimated (i.e. the response 
variable). This can be done by reviewing existing 
literature and analyzing the influence of parameters on the 
response variable [11]. 

Step 2) Behavioral analysis : Once the parameters have 
been determined, a behavioral analysis should be carried 
out to understand the effects of each of the parameters on 
the response variable. This can show the behavioral 
effects of higher vs. lower levels of each factor on project 
quality levels [11]. 

Step 3) Defect data gathering : After a thorough study 
of the results of the behavioral analysis is done, the 
characteristics of the projects and defect data have to be 
gathered. At this time, the defect data should include 
defects at all phases of the development cycle. Also, the 
more detailed the phases for differentiating detected 
defects, the more accurate the output we will obtain. We 
use the existing project characteristics and the defect data 
in the organization. 

Step 4) Statistical modeling : Using the actual project 
data, curve fitting is performed to extract the parameters 
of the Weibull distribution function for each project. 
These values will be input data for regression analysis. 

Step 5) Regression analysis : In regression analysis, we 
identify the relationship between historical project 
characteristics and the parameters of defect distribution 
from the statistical modeling. 

Step 6) Model validation : After statistical modeling 
and regression analysis, we obtain various coefficients to 
be able to predict output. To validate the results of the 
model, we perform the cross-validation because we have 
little project data to do the test-set validation.  

Step 7) Gathering of more data for refining the model : 
We can continue to gather data and refine the model to be 
more reliable. 

 
3.3. Weibull Distribution Function 

The Weibull distribution is defined by the following 
probability density function. 

Weibull PDF : 
α
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The purpose of using the Weibull function is to 

characterize the failure distribution and to make 
inferences about the failure mode. It can be used with 
relatively small sample sizes. A simple, flexible method 
for modeling continuous event times is to assume they 
follow a Weibull distribution with shape parameter, α, 
and scale parameter, ß, which are positive numbers. 

The Weibull function can be fitted to the actual data by 
maximum likelihood that is widely used in engineering 
applications. The parameter estimates can be used to 
identify other characteristics of the distribution [12]. 

 
3.4. Maximum Likelihood Estimation 

 
Maximum likelihood estimation (MLE) is a popular 

statistical method used to calculate the best way of fitting 
a mathematical model to some data. Modeling real world 
data by estimating maximum likelihood offers a way of 
tuning the free parameters of the model to provide an 
optimum fit [13]. 

Commonly, one assumes that the data drawn from a 
particular distribution are independent, identically 
distributed with unknown parameters. This considerably 
simplifies the problem because the likelihood can then be 
written as a product of n univariate probability densities: 

∏
=

==
n

i
ini xfxfxfxfL

1
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and since maxima are unaffected by monotone 
transformations, one can take the logarithm of this 
expression to turn it into a sum: 

∑
=

=
n

i
ixfL

1
)|(log)(ln θθ θ

 
In consequence, according to above derived equations, 

we can select parameters to make the value 0 of ln L(θ). 
 

4. Data Description 
 
To construct a defect type distribution model, the 

required data are the characteristics of the projects and 
their defect data detected in the software development life 
cycle. 

 
4.1 Defect Data 

 
In addition to project characteristics, we also used 

defect data obtained at all phases in the development life 
cycle (requirement analysis, design, coding, and testing) 
from the 18 software projects. The defect data were 
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acquired from requirement review, design review, code 
inspection, and testing by project members and testers. 

The gathered defect data were recorded according to 
the organizational standard defect types as project 
members detected them during the phases of the projects. 
There are five types of defects in the gathered data: 
consistency, function, standard, performance, and 
miscellaneous. Table 1 shows brief explanations of defect 
types. 

Table 1. Types of defects 
Type of defect Explanation 
Consistency 

(C) 
Little consistency between the previous 
artifacts and the current artifacts 

Function 
(F) 

Defects affect the functionality due to 
incorrect functional explanation, wrong 
algorithm, data structure, etc. 

Standard 
(S) 

Little observance of the rules such as 
customer’s standard, project standard 
methodology, coding rules, etc. 

Performance 
(P) 

Defects impact the performance due to 
incorrect design, inefficient algorithm, data 
structure, etc. 

Miscellaneous 
(E) Defects not categorized by above types 

 
The defect type distribution per development phase 

can be modeled according to the Weibull distribution 
because they follow the characteristics of the Weibull 
distribution (convex distribution form and monotonous 
decrement after a peak value) shown in Figure 3. 
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Figure 3. Average defect type distribution in each phase 

 
4.2 Project Characteristics 

 
For this model construction, we gathered data from 18 

completed software development projects which were 
performed in public business sector. There can be lots of 
quantitative and qualitative characteristics for 
differentiating software projects in each organization [5] 
[14]. In our case, the 11 factors of project characteristics 
are included in three categories: project basic information, 
human resource information and development 
information. They are the existed information for 
differentiating projects in the organization. The factors 
and their brief explanations in each category are as 
following Table 2. 

 

Table 2. Project characteristics for the model 
Category/Charac. Explanation 

Project basic information 
 Project size Value of function point to be developed 

in the project 
 Project duration Total months of the project duration 
 Development 

solution 
Type of solution (product) to be 
developed in the project 

 Industry area Industry area that the system is applied in 
 Development 

methodology 
Type of development methodology used 
in the project 

 Defect density Total defect density per each project 
Human resource information 
 # of members Total number of project members 
 Project member 

ratio 
Ratio between our own members and 
total number of project members 

 
Productivity 

Project productivity which is function 
points divided by number of person 
months 

Development information 
 Development 

language 
Type of development language used in 
the project 

 DBMS type Type of DBMS used in the project 
 

5. Model Construction 
 
We construct the proposed model with historical 

project information and defect data using statistical 
modeling and regression analysis. In the statistical 
modeling, we use the maximum likelihood estimation 
technique for fitting the Weibull distribution curve to the 
historical defect data. In the regression analysis, we 
determine the coefficients about the relationship between 
project characteristics and the Weibull parameters of 
defect distribution. 

 
5.1. Statistical Modeling 

 
To perform the statistical modeling is to estimate the 

Weibull distribution parameters from actual data. Besides, 
we have to perform statistical modeling from the entire 
defect distribution per project to each defect type 
distribution per development phase. 

First, for performing estimation of the entire defect 
distribution per project, we need to arrange the number of 
defects by all phases of software development life cycle 
(Requirement analysis, Design, Coding, and Test). The 
defects in entire phases can be modeled according to the 
Weibull distribution because the distribution of defects 
follows the characteristics of the Weibull distribution. 
Then, the estimation of the parameters per each project 
can be performed using the maximum likelihood 
estimation (MLE). The Figure 4 shows the overview of 
estimation of the Weibull parameters for the entire defect 
distribution per each project. 
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Figure 4. Parameter estimation of entire defect dist. 

 
After that, we perform an estimation of each defect 

type distribution per development phase. For doing so, we 
arrange defect data by defect types in each phase per each 
project. Through the statistical modeling, we can obtain 
10 Weibull parameters for each project: αA, βA, αR, βR, αD, 
βD, αC, βC, αT, βT. This set of parameters is used to 
determine the relationship with the project characteristics. 

 
5.2. Regression Analysis  

 
Through performing regression analysis, we can 

identify the relationship between the project 
characteristics and the 10 parameters about 5 Weibull 
distributions. Thus, we can obtain the coefficients to use 
predicting defect distribution for new projects. The Figure 
5 shows the overview of regression analysis between 
project characteristics and the parameters of Weibull 
distributions. 
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Figure 5. Regression analysis for parameter prediction 

 
5.3. Proposed Model 

 
After modeling, now we can construct a predictive 

defect type distribution model. The constructed model is 
formed as a discrete Weibull distribution function as 
bellow equation, where K is total defect density, i is phase 
sequence, j is type of defect, α and β are shape parameter 
and scale parameter for defect type distribution of each 
phase. 
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6. Validation 

 

In this section, we describe the validation method and 
the result of the proposed approach. For validating results, 
we perform cross-validation using the data which we used 
to develop the model because of the lack of samples. Also, 
we analyze the magnitude of relative error (MRE) and the 
PRED(30) between the actual values and the predicted 
values from the proposed model. 

 
6.1. Evaluation Criteria 
 

A good software estimator generates predictions 
“close to” actual known data. PRED(X) is one such 
measure of “closeness”, which is computed from the 
magnitude of relative error (MRE) which is the relative 
size of the difference between the actual and estimated 
value. PRED(X) reports the average percentage of 
estimates that were within X% of the actual values. For 
example, PRED(30) = 64% means that 64% of the 
estimates are within 30% of the actual [7].  

 
6.2 Results of Total Defect Distributions 

 
We show the MMRE between predicted defect 

distributions and actual defect distributions to compare 
prediction accuracy in Table 3. The error values are 
somewhat fluctuated, but the proposed model using 18 
projects yields PRED(30) of 72% in requirement analysis 
phase, PRED(30) of 83% in design phase, PRED(30) of 
94% in coding phase and PRED(30) of 56% in testing 
phase. Thus, the proposed model yields PRED(30) of 
72% for all phases on average. 

 
Table 3. MMRE and PRED(30) by phases 

Phases RA 
MRE 

Des 
MRE 

Cod 
MRE 

Test 
MRE 

MMRE 27% 20% 12% 48% 
PRED(30) 72% 83% 94% 56% 

 
6.3. Results of Defect Type Distributions 

 
The error values fluctuate somewhat, but the proposed 

model yields a PRED(30) from 50% to 94% in the 
requirement analysis phase, a PRED(30) from 56% to 
94% in the design phase, a PRED(30) from 44% to 97% 
in the coding phase, and a PRED(30) from 33% to 94% in 
the testing phase. Thus, the proposed model yields an 
overall PRED(30) of 75% on average for all phases and 
all defect types. 

 
Table 4. Average PRED(30) by defect types and phases 

Defect type RA Design Cod Test Ave. 
Function 44% 78% 94% 89% 76% 

Performance 72% 56% 97% 72% 75% 
Standard 67% 56% 67% 94% 71% 

Consistency 50% 78% 50% 33% 53% 
Misc. 94% 94% 44% 89% 80% 
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The Figure 6 shows an example of the distributions of 

actual defect data, estimated data by MLE, and predicted 
data by the proposed model for a project in order to 
compare the results. 
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Figure 6. Actual, estimated, and predicted defect type dist. 

 
7. Conclusion and Future Works 
 

We discussed a new approach for predicting the 
distribution of defects and their types based on project 
characteristics. For this approach, the maximum 
likelihood estimation was used in fitting the Weibull 
probability density function to the actual defect data, and 
the regression analysis was used to identify the 
relationship between the project characteristics and the 
Weibull parameters. In the prediction, the distribution of 
defects and their types for different phases in the project 
was estimated based on past projects data. We predicted 
the entire distribution of defects by all phases, and then 
we predicted the distribution of defect types for each 
phase of project. To validate the results of the proposed 
model, we used the magnitude of relative error between 
the actual values and the predicted values from the 
proposed model. 

From these experiments and the results, we can use 
this proposed model as a defect prediction model for 
project planning and management at the early phase. The 
defect prediction with types of defects can aid in phase-
by-phase forecasting and monitoring of the trend of 
defects likely to be encountered during software 
development. Thus, this information will assist project 
managers in reasonably planning projects and in assessing 
project progress against expected results at interim points. 
For this, historical (application-/project-specific) data 
should absolutely be accumulated in organizations to 
predict defect levels. 

However, like most performance metrics in software, it 
can provide large variations. To make accurate and stable 
predictions of defects found in complex and various 
software projects, we need a rich set of process factors as 
input factors of the model. Thus, we need to try to apply 
the DI-drivers of COQUALMO as input factors to the 
proposed model. Especially, we have to concentrate on 
the factor of human resources such as analyst’s capability, 
programmer’s capability, experience about similar 
applications, experience about platform, experience of 

development languages and supporting tools, personnel 
continuity, and so on. 
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