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Abstract. We propose a two-stage real-time tracking algorithm for an
active camera system having pan-tilt-zoom functions. The algorithm is
based on the assumption that a human head has an elliptical shape and
that its model color histogram has been acquired in advance. The algo-
rithm consists of two stages, a color-based convergence stage for fast
and reliable tracking and a refinement stage for accurate tracking based
on multimodal information. In the first color convergence stage, we
roughly estimate the target position by using the mean-shift method
based on the histogram similarity between the model and a candidate
ellipse. To better predict the initial position for the mean shift, the global
motion is compensated; to enhance reliability of the mean shift, the
model histogram is appropriately updated by referring to the target his-
togram in the previous frame. In the subsequent refinement stage, we
refine the position and size of the ellipse obtained at the first stage by
using multimodal information such as color, shape, and quasi-spatial in-
formation. In particular, to quantify the quasi-spatial information, we use
a spatial color histogram obtained by properly dividing the ellipse into
two regions. Extensive experiments verify that the proposed algorithm
robustly tracks the head, even when the subject moves quickly, the head
size changes drastically, or the background has many clusters and/or
distracting colors. Also, the proposed algorithm can perform real-time
tracking with a processing speed of about 10 fps on a standard PC.
© 2006 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2354452�
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1 Introduction

Real-time person tracking has many application areas such
as security systems, video conferences, human-computer
interaction �HCI�, virtual reality, etc. Head tracking is use-
ful for tracking a person, because head color does not vary
much among people and the shape is relatively rigid rela-
tive to other parts of the body. Also, head tracking can be
used as the initial phase for the identification of a person,
facial expression recognition, etc. This work deals with
head tracking as an application for a real-time active cam-
era system. The adopted active camera is assumed to have
pan-tilt-zoom functions to cover a large viewing area.
Hence, to control pan-tilt-zoom operation reliably, we need
robust and accurate tracking of the head target.

In previous works, three types of information, namely,
motion, shape, and/or color, have mainly been used for tar-
get tracking. In the methods using motion information,1–5 a
target is extracted by discriminating its motion from the
background. These methods assume that the target always
moves and background objects are stationary. However, in
an active camera system, since the camera’s pan-tilt-zoom
operations introduce global motion of translation and scal-
ing, accurate estimation of the global motion vectors is re-
quired for reliable tracking. However, accurate motion es-
p0091-3286/2006/$22.00 © 2006 SPIE
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imation is a difficult and time-consuming task. Meanwhile,
method using shape information6 first constructs several

epresentative shape models from many sample datasets of
he subject’s outline. It then predicts a current outline from
he previous ones by using a Kalman filter and attempts to
efine the predicted outline based on the models by using
he predicted outline and the edge information at the cur-
ent frame. However, this method is not reliable for com-
licated backgrounds, because the background region may
nclude distracting strong edges. Birchfield has combined
oth color and shape information to improve the accuracy
f head tracking.7 The shape of the head is defined as an
llipse. The target similarity is examined by using a
eighted sum of the color histogram similarity inside the

llipse and the shape similarity based on gradients on the
llipse boundary. The algorithm provides better perfor-
ance than those using either shape or color information

nly. However, it may not be adequate for high perfor-
ance real-time tracking, since a full search is performed
ithin a wide area for finding the position and scale that
aximizes the combined similarity function.
Comaniciu has proposed fast tracking algorithms using

olor information only.8,9 The algorithms use the Bhatta-
haryya coefficient10 as a similarity measure between two
olor distributions, and adopt the mean shift11 as a fast
ptimization method to maximize the similarity. To im-

rove the accuracy of mean-shift-based tracking, Zhang
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Jeong et al.: Two-stage real-time head tracking by an active camera…
and Freedman utilized background mismatching as well as
foreground matching with a model color histogram.12 How-
ever, the color histogram adopted in the algorithm repre-
sents the global distribution of colors rather than the local
�or spatial� distribution. Hence, tracking can be unreliable
when distracting colors are included in the nearby back-
ground region. Also, the scale change of the target cannot
be estimated accurately, because it uses color information
only. Note that the existing color-based algorithms use only
the initially obtained color histogram of the model, which
may not faithfully reflect the color distribution change due
to the view-point transition.7–9,12 However, a direct tempo-
ral update of the model or the use of information in previ-
ous frames can cause error propagation, if the previous
frame includes unwanted outliers.

In this work, we propose a real-time head tracking algo-
rithm, which consists of two stages, a color-based conver-
gence stage for fast and reliable tracking and a refinement
stage for accurate tracking based on multimodal informa-
tion. In Sec. 2, we describe the proposed algorithm in de-
tail. Experimental results are shown in Sec. 3, and we con-
clude this work in Sec. 4.

2 Proposed Algorithm
The proposed algorithm assumes that a head can be mod-
eled as an ellipse and the ratio of its major and minor axes
is constant. At the first frame, a user determines the initial
position and scale of the ellipse manually or semiautomati-
cally. The optimal ellipse is then automatically tracked in
the following frames by using the results of the previous
frame. The proposed two-stage algorithm is presented in
Fig. 1. The first color-based convergence stage consists of
two steps. Namely, we first predict an initial position for the
mean shift by compensating the global motion, and then

Fig. 1 Flowchart of the proposed real-time tracking algorithm.
roughly search the target position by examining the best
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atch in terms of color. To ensure fast convergence, the
ean shift is adopted as an optimization method. To en-

ance reliability of the mean shift, we combine the model
istogram and the histogram of the previous target ellipse
n a robust manner. In the refinement stage, we refine the
osition and find the scale of the target. To enhance the
efinement accuracy, we consider multiple modalities such
s color, shape, and quasi-spatial information, and suggest a
imilarity measure combining them. In particular, we define

spatial color histogram characterizing the quasi-spatial
olor information, and we devise a reliable measure to
uantify shape similarity. This tracking procedure is fin-
shed if a user interrupts it or the target is out of screen. The
wo steps in the color-based convergence stage and the re-
nement stage are described in detail in the following.

.1 Prediction Step in the Color-Based
Convergence Stage

n the color-based convergence stage, we use the mean-
hift method to search the optimal position maximizing the
olor similarity measure. Even though it has been demon-
trated that the mean-shift converges,13 the convergence to
he true target is not guaranteed. Hence, we define the “re-
ion of convergence” �ROC� such that an initial position
nside the region may guarantee the convergence to the true
osition for the mean shift. Since the ROC consists of the
enters of all candidate ellipses that overlap with the target,
t becomes an elliptical shape whose radius is twice larger
han that of the target ellipse, and the center position is the
ame as that of the target. Figure 2 illustrates an example of
OC. In contrast with the candidate ellipse �or initial posi-

ion� A, ellipse B cannot be ensured to converge to the
arget, because its center is outside the ROC.

When an active camera is used for tracking, the center of
he estimated ellipse is frequently outside the ROC. This is
ue to the large global motion on the image domain that is
nduced by the change of camera movement. Hence, we
odel the global motion and compensate it so that the ini-

ial position may locate inside the ROC. Since a pan-tilt
amera with a fixed axis produces rotational motion only,
he corresponding motion field on the consecutive frames
an be described using the 2-D parametric model,14 i.e.,

= − f�Y + �xx +
�Xxy −

�Y x2, �1�

ig. 2 The region of convergence �ROC�, which is represented as a
ray ellipse. Convergence to the target is ensured if the tracking
esult of the previous frame is inside the ROC. Otherwise, the con-
ergence is not guaranteed.
f f
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v = f�X + �yy +
�X

f
y2 −

�Y

f
xy , �2�

where f , �X, �Y, and � are the focal length, tilting angle
difference, panning angle difference, and zooming factor,
respectively. Since this global motion model is used for the
rough estimation of the center of the ellipse, we may sim-
plify the model to the following four parameter model by
assuming that points �x ,y� locate near the image center.

u = �x + �xx , �3�

v = �y + �yy , �4�

where �x and �y denote horizontal and vertical translations,
respectively. To estimate the parameters in real time, we
propose a projection-based motion estimation scheme. In
this scheme, we first project the intensity values of pixels
along the vertical and horizontal directions and obtain two
sets of projection data for a frame, i.e.,

Pi
X�m� = �

n=1

Nh

Ii�m,n� , �5�

Pi
Y�n� = �

m=1

Nw

Ii�m,n� , �6�

where Ii�m ,n� is the i’th frame of Nw�Nh pixels. We sub-
sequently extract two segments of a fixed length from each
projection data of the previous frame, and then find their
best matches in the corresponding projection data of the
current frame. For reliable matching, two nonoverlapped
segments having the largest variances are selected in the
projection data, excluding a projected region of the target
ellipse. If X1 and X2 �Y1 and Y2� denote the centers of two
segments in dataset Pi

X �Pi
Y�, the corresponding motion vec-

tors MVx1 and MVx2 �MVy1 and MVy2� can be searched
through 1-D matching of the segments to the projection
data Pi−1

X �Pi−1
Y �. Then, the motion parameters can be de-

scribed as

�x =
X1MVx2 − X2MVx1

X1 − X2
, �7�

�y =
Y1MVy2 − Y2MVy1

Y1 − Y2
, �8�

�x = 1 +
MVx1 − MVx2

X1 − X2
, �9�

�y = 1 +
MVy1 − MVy2

Y1 − Y2
. �10�

Using these motion parameters, the initial position for the
mean shift can be compensated as

t� = �x + �xtx, �11�
x c

Optical Engineering 097005-3

Downloaded from SPIE Digital Library on 17 Apr 2011
y� = �y + �yty , �12�

here �tx , ty� is the center of the target estimated in the
revious frame, and its initial value is determined by a user
t the beginning of tracking. Figures 3�a� and 3�b� show the
rojection data along the horizontal direction in frames 293
nd 294 of the Walking sequence before and after back-
round motion compensation, respectively. Figure 4 shows
compensation result in a frame.

.2 Searching Step in the Color-Based Convergence
Stage

.2.1 Color-based mean shift
tarting from the initial position obtained earlier, the mean
hift is performed to maximize the color similarity mea-
ure. We adopt the color histogram as the color feature of
he target. Generally, chrominance components have been
sed for the color histogram because they are less sensitive
o light changes. However, it is known that the luminance

ig. 3 Two projection data along the horizontal direction, �a� before
nd �b� after global motion compensation for two consecutive
rames of the Walking sequence. Dotted and solid lines in the
raphs denote the projection data of frames 293 and 294, respec-
ively. The values of � and � are 30.71 and 1.02, respectively.
omponent also has much information regarding an object.
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Given this, Birchifield introduced new color coordinates,
B−G, G−R, for chrominance and R+B+G for luminance,7

and generated a color histogram by allocating 8, 8, and
4 bins to them, respectively. We adopt this color histogram,
as it has proved to provide better performance than
others.15

For color-based searching, we obtain the model color
histogram in advance. We then search the parameters �po-
sition and scale� of the ellipse that maximize the similarity
between its color histogram and the model color histogram.
Mean shift is an iterative optimization method based on
nonparametric kernel density estimation.16 The objective
function in the mean-shift method has a specific form:

f̂ h,k�y� =
ck,d

Nhd�
i=1

N

�ik��y − xi

h
�2� , �13�

where k�·� denotes a convex and monotonic decreasing ker-
nel profile, ck,d is the normalization constant that makes

f̂ h,k�y� integrate to one, h is the bandwidth of the kernel, d
is the dimension of the sample, N is the number of pixels
that reside inside the confined kernel, y is a candidate po-
sition, xi is the position of the i’th sample, and �i is the
weighting factor at xi, respectively.

To adapt the color histogram similarity measure to the
function given in Eq. �13�, a color histogram is first repre-
sented as a weighted kernel profile. Namely, the probability
of the u’th bin in the weighted color histogram of y can be
given as

p̂u�y� = Ch�
i=1

N

k��y − xi

h
�2���b�xi� − u� , �14�

where ��·� is the Kronecker delta function, b�xi� is the bin
index of the color at xi, and Ch is a normalization constant,
respectively. Note here that we use the Epanechnikov ker-

9

Fig. 4 Initial position for mean shift that is adjusted by the back-
ground motion compensation in frame 294 of the Walking sequence.
Black and white ellipses represent the initial position obtained be-
fore and after background motion compensation, respectively. The
black ellipse resides outside the ROC, described by a dashed line.
nel as k�·� in this work. We then adopt the Bhattacharyya r
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oefficient10 as a similarity measure between the model his-
ogram q̂ and color histogram p̂, i.e.,

�p̂�y�,q̂� = �
u=1

M

�p̂u�y�q̂u�1/2, �15�

here q̂u represents the probability of the u’th bin in the
ernel-weighted model histogram q̂, and M is the number
f bins in the histogram. Note that since the Bhattacharyya
oefficient given in Eq. �15� has a value in the range of �0,
�, it makes the comparison easy. Substituting Eq. �14� into
q. �15� and applying the Taylor expansion, Eq. �15� can be

ewritten as8

�p̂�y�,q̂� 	
1

2�
u=1

M

�p̂u�y0�q̂u�1/2 +
1

2�
u=1

M

p̂u�y�
 q̂u

p̂u�y0�
�1/2

.

�16�

ince the first term in the right side of Eq. �16� is indepen-
ent of y, we can define the color histogram similarity
CHS� as follows.

HS � �
i=1

N

�ik��y − xi

h
�2� , �17�

here

i = �
u=1

M 
 q̂u

p̂u�y0�
�1/2

��b�xi� − u� . �18�

ote here that the CHS given in Eq. �17� is the same as that
n Eq. �13�, excluding the normalization constants. To de-
ermine the maximum value of CHS, Eq. �17� is applied to
he mean-shift method. The kernel then moves recursively
rom the current location y j to the next location y j+1 accord-
ng to the following equation.

j+1 =

�
i=1

N

�ixig��y j − xi

h
�2�

�
i=1

N

�ig��y j − xi

h
�2� j = 1,2, ¯ , �19�

here g�·�= –k��·�.17 Here, it is assumed that the derivative
f k�x� exists for all x� �0,��, except for a finite set of
oints.

.2.2 Color histogram update using adaptively
shrunken ellipse

ince the color distribution of a human head significantly
aries according to the change of view position during
racking, the model histogram should be updated to reflect
he temporal change. For this purpose, we may use the
olor information of the target ellipse in the previous frame.
owever, in conventional studies, the previous target histo-
ram is rarely used, because it may introduce error accu-
ulation due to the unwanted outlier in the previous target

llipse. Therefore, we consider how to effectively incorpo-

ate the histogram of the previous target region into the
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Jeong et al.: Two-stage real-time head tracking by an active camera…
mean-shift frame work. If the size of the target ellipse is
overestimated, the corresponding histogram may include
unwanted colors that do not appear in the model histogram.
Hence, to eliminate the unwanted color near the boundary,
we shrink the ellipse appropriately. If we assume that the
estimated and target ellipses are concentric, then

	� = r � 	 , �20�

where 	 and 	� are the length of the minor axes of the
estimated and shrunken ellipses of the previous frame, re-
spectively, and r is a shrinking ratio.

The ratio r can be adaptively obtained by comparing the
color histogram of the estimated ellipse with the model
color histogram. Let us first assume that the bins corre-
sponding to the colors in the band between the estimated
and shrunken ellipses are zero valued in the model color
histogram. If the color histogram of the shrunken �or target�
ellipse is the same as the model histogram, the similarity
�or the Bhattacharyya coefficient� between the two histo-
grams is maximized. In this case, a portion, which belongs
to the shrunken ellipse, of the histogram of the estimated
ellipse is a scaled version of the model histogram q̂. Hence,
the scale factor can be regarded as the sum of the probabili-
ties that belong to the histogram portion. Meanwhile, since
the histogram of the estimated ellipse is obtained after
weighting a convex kernel to the ellipse, the scale factor or
the sum of the probabilities can be also interpreted as the
integrated value of the kernel over the shrunken ellipse. If
we adopt the Epanechnikov kernel having a bandwidth of
	, namely,

KE�
� = 
 2

�	2�1 −

2

	2� 
 � 	

0 otherwise
� , �21�

as the kernel, its integration within a shrunken ellipse of 	�
becomes

�
�=0

	� �

=0

2�

KE�
�d
d
 = �	�

	
�2
2 − �	�

	
�2� = r2�2 − r2� .

�22�

Then, by using Eq. �15�, we can find that Bhattacharyya
coefficient B between the color histogram of the estimated
ellipse and the model color histogram has the following
condition.

B = �
u=1

M

�p̂uq̂u � �
u=1

M

��p̂uq̂u�p̂u=r2�2−r2�q̂u

= �
u=1

M

�r2�2 − r2�q̂uq̂u�1/2 = r�2 − r2��q̂,q̂� = r�2 − r2. �23�

Therefore,

2 1/2
r � �1 − �1 − B � . �24� d
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Based on Eq. �24�, we may select the lower bound �1
�1−B2�1/2 as the value of r for conservative estimation.
igure 5 shows an example of the shrunken ellipse obtained
y using this value.

If we regard the color histogram obtained from the
hrunken ellipse as the previous histogram, by using the
revious and model histograms, the color histogram simi-
arity defined in Eqs. �17� and �18� can be rewritten as

HS � �
i=1

N

�i
tk��y − xi

h
�2� , �25�

here

i
t = �

u=1

M ��
 q̂u

p̂u�y0�
�1/2

+ �1 − ��
 v̂u

p̂u�y0�
�1/2���b�xi� − u� .

�26�

ere, v̂u denotes the probability in the u’th bin of the pre-
ious histogram and � denotes a weighting factor, respec-
ively. Based on the CHS given in Eqs. �25� and �26�, the
ean-shift method moves the kernel recursively from the

urrent location y j to the next location y j+1 according to the
quation

j+1 =

�
i=1

N

�i
txi

�
i=1

N

�i
t

j = 0,1,2, . . . . �27�

.3 Refinement Stage
n the previous color-based convergence stage, we roughly
stimate the position of the current target ellipse. Now, in
he refinement stage, we attempt to determine its accurate
osition and scale. To enhance the accuracy in the refine-
ent, we introduce a reliable similarity measure by prop-

rly combining similarities of multimodal information such
s color, spatial domain, and shape.

.3.1 Spatial color histogram similarity
hile the color histogram represents the global distribution

f colors, it does not contain the information of the local

ig. 5 Ellipse size adjustment for proper color histogram extraction.
he white ellipse for the histogram extraction is determined by
hrinking the black ellipse of the tracking result. �a� Frame 51 of the
alking sequence and �b� frame 14 of the Clutter sequence.
istribution in the target. Thus, even though the color dis-
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Jeong et al.: Two-stage real-time head tracking by an active camera…
tribution is clearly distinguishable between the target and
the background in the spatial domain, the ellipse parameter
values estimated on the basis of the color histogram may
have errors if the background includes some colors similar
to those in the model color histogram. To alleviate this
problem, we introduce a simple but very effective spatial
color histogram instead of the global color histogram by
using the spatial dimension as well as the color dimension.
The spatial color histogram was originally proposed with
the goal of achieving more robust image retrieval.18 In that
work, the spatial color histogram was represented as the
color distribution density along the annular or angular sec-
tors �or bins�. However, increasing the number of bins to
obtain better spatial information may reduce the reliability
of the similarity measurement, because this significantly
decreases the number of samples in each bin, and the mea-
surement becomes sensitive to even a small temporal
change of the target appearance. Hence, to obtain a reliable
spatial color histogram in our tracking problem, we divide
the candidate ellipse into only two sectors, the hair and skin
regions, by assuming that the head can be represented with
the two dominant colors of the hair and skin. For simple
and fast implementation, we may approximate the bound-
ary between the two regions as a straight line, namely,

l�x,y� = ��m + �n���x2 − x1�x + �y2 − y1�y� − ��my2 + �ny1�

��y2 − y1� + ��mx2 + �nx1��x2 − x1� = 0, �28�

where �x1 ,y1� and �x2 ,y2� are the gravity centers of pixels
located in the hair and skin regions, respectively. m and n
denote the number of pixels corresponding to the hair color
and skin color, respectively. Note that in Fig. 6, the parti-
tioning line is perpendicular to the line �x1 ,y1��x2 ,y2�, and
the intersecting point of the two lines divides the line

�x1 ,y1��x2 ,y2� with a ratio of �m /�n.
The spatial color histogram can be represented in a form

similar to the color histogram defined in Eq. �14�. Namely,
the probability in the u’th bin of the spatial color histogram
is represented as

p̂u
s�y� = Ch�

i=1

N

k��y − xi

h
�2���bs�y − xi� − u� , �29�

Fig. 6 Partitioning a candidate ellipse into two regions to obtain
spatial color histograms.
where p
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s�y − xi� = �M + b�xi� l�xy−xi
,yy−xi

� � 0

b�xi� otherwise
� , �30�

nd xy−xi
and yy−xi

denote the x and y components of y
xi, respectively. Note in Eq. �30� that the spatial color
istogram is the concatenation of two color histograms ex-
racted from different regions. Hence, the number of bins is
wice that of the ordinary color histogram, or 2M. We can
ow define the spatial-color-histogram similarity,
CHS�y ,	�, as a Bhattacharyya coefficient, i.e.,

�p̂s�y�, v̂s� = �
u=1

2M

�p̂u
s�y�vu

s�1/2, �31�

here p̂u
s�y� and vu

s denote the probability of the u’th bin in
he spatial color histogram �p̂s� of the candidate ellipse at
osition y, and the probability of the u’th bin in the spatial
olor histogram �v̂s� of the previous ellipse, respectively.

Figure 7 demonstrates that the use of the spatial color
istogram can improve the tracking performance. In the
gure, we compare the two best matching ellipses obtained
y using the color histogram and the spatial color histo-
ram, respectively. For fair comparison, we manually ex-
ract the accurate ellipse from the previous frame, and use it
or both cases. A full search is commonly performed for the
ame white square range, as depicted in Figs. 7�a� and 7�b�,
o as to obtain the best matching position where the Bhat-
acharyya coefficient between the candidate histogram and
he previous histogram is maximized. Contrary to the result
n Fig. 7�b�, Fig. 7�a� demonstrates that the ellipse can be
istracted to the background region whose colors occupy a
onsiderable portion of the model color histogram. Figures
�c� and 7�d� depict the distribution of Bhattacharyya coef-
cients for both cases. When the spatial color histogram is
sed, the distribution curve in Fig. 7�d� becomes sharper
ear the optimal point; the target region is thereby fairly
eparated from the background, even though a significant
ortion of color components is common in both regions.

.3.2 Color histogram dissimilarity outside
ellipse

f both the histogram of the outerellipse region and the
odel histogram are similar, the current scale may not be

ptimal, and it should be enlarged to avoid underestimating
he ellipse size. Therefore, the dissimilarity outside the can-
idate ellipse is an important measure to find a more reli-
ble scale. We define this measure, which is called color
istogram dissimilarity outside of the ellipse �CHDO�, such
hat it may provide a negative value of the color similarity
etween the model histogram and the histogram of the out-
rellipse region. Here, the outerellipse region represents a
and between the candidate ellipse and its concentric el-
ipse having 1.4 times larger size. CHDO�y ,	� can be ex-

ressed as
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CHDO�y,	� � 1 − ��po�y,	�,q̂� = 1 − �
u=1

M

�pu
o�y,	�q̂u�1/2,

�32�

where pu
o�y ,	� denotes the probability of the u’th bin in the

outerellipse color histogram corresponding to a candidate
po�y ,	�, and is defined as

pu
o�y,	� = Co�

i=1

No

��b�xi� − u�d��y − xi�,	� , �33�

Fig. 7 �a� Tracking result by comparing color h
user-selected tracking blob in the previous fram
tograms. �c� and �d� Bhattacharyya coefficient v
respectively. Frame 38 of the Clutter sequence
where d
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��y − xi�,	� = �1 	 � �y − xi� � 1.4	

0 otherwise
� . �34�

o denotes the number of pixels in the range satisfying
��y−xi� ,	�=1, and Co is a normalizing constant.

.3.3 Shape similarity
n addition to the spatial and color information, we use a
hape feature in defining the similarity measure. A gradient
s adopted to quantify the shape similarity between the can-
idate ellipse and the actual head boundary in the current
rame. Birchfield quantified the shape similarity by sum-
ing gradient values on the ellipse boundary. However, this
ay not be desirable because the true boundary of a target

ms of a candidate in the current frame and a
Tracking result by comparing spatial color his-
on the search rage in the cases of �a� and �b�,

to obtain the data.
istogra
e. �b�
alues
oes not have a precisely elliptical shape. In this work, we
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select a pixel that is close to the boundary and has a sig-
nificantly large gradient value among those on the line seg-
ment perpendicular to the ellipse boundary. We then con-
sider this pixel as an edge point, even though it does not
locate exactly on the boundary. In this process, to avoid
selecting a pixel having a strong gradient in the background
as an edge point and to select a pixel even with a weak
gradient on the target boundary, we attempt to minimize the
effect of gradient magnitudes by binarizing them, and
mainly consider the gradient orientation. Based on this con-
sideration, the shape similarity �SS� measure of the candi-
date ellipse is defined at position y and scale 	 as

SS�y,	� = 
Nv�y,	�
N�

�2

·
1

N�

� �
i=1

N�

��g�pi�y,	�� · n�ei�y,	����
1 −
di�y,	�

drange + 1
� .

�35�

Here, N� is the number of samples on the ellipse boundary
and ei denotes the i’th sample. pi is the pixel closest to ei
among those located on the line perpendicular to the
boundary at ei and whose gradient value is larger than the
predefined threshold TH�. di is the Euclidean distance be-
tween pi and ei, n�ei�y ,	�� is the unit normal vector at ei,
and g�pi�y ,	�� is the unit gradient vector at pi. Note here
that g�pi�y ,	�� is set to zero if pi is not located within the
range of drange. Finally, Nv�y ,	� is the number of samples,
where the value of �g�pi�y ,	�� ·n�ei�y ,	��� is larger than
TH�.

2.3.4 Parameter optimization
By combining the three measures described before, namely,
the spatial color histogram similarity, color histogram dis-
similarity in outside of the ellipse, and shape similarity, we
introduce a reliable similarity measure RSM�y ,	� as fol-
lows.

RSM�y,	� = w1 · SCHS�y,	� + w2 · CHDO�y,	�

+ w3 · SS�y,	� , �36�

where w1, w2, and w3 denote the fixed weights and w1
+w2+w3=1. In this work, w1, w2, and w3 are empirically
determined as 0.375, 0.25, and 0.375 �or the ratio of
1.5:1.0:1.5�, respectively, and are applied to all the experi-
ments. Then, the parameters for the best matching ellipse
�yt ,	t� can be determined as

�yt,	t� = arg
�y,	��Rs

max�RSM�y,	�� , �37�

where Rs denotes the search range. Since the combined
similarity measure usually produces a number of local
maxima due to its complexity, the exhaustive search is
needed for determining the optimal parameters.

3 Experimental Results and Discussions
To examine the performance of the proposed algorithm, we
built an active camera system consisting of a pan-tilt unit

�SDP-1600, Samsung� and a speed dome camera. The cam- r
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ra has an autofocusing function and provides an analog
ignal output of National Television System Committee
NTSC� format. The analog video output is converted to a
igital signal by a frame grabber �DT3132, Data Transla-
ion� with a speed of 30 fps. We prepared three video se-
uences, Jumping, Walking, and Clutter sequences, having
frame resolution of 320�240 pixels. We use these se-

uences to verify the accuracy and robustness of the pro-
osed algorithm relative to the conventional mean-shift-
ased algorithm, which is a simple hybrid form of
omaniciu’s and Birchfield’s methods. For all test se-
uences, we use the same parameter values. In the pro-
osed algorithm, the parameter � in Eq. �26� is set to 0.2.
nd we use the same search ranges of 7�7 for position

nd 5 for scale in the refinement stages of both the conven-
ional and proposed algorithms. Specifying a target ellipse
t the beginning of tracking, we use the color histogram of
hat ellipse as a model histogram. Note here that the same
llipse is used at the beginning for the conventional and
roposed algorithms.

Figure 8 shows the tracking result for the Jumping se-
uence, in which the target moves quickly along the verti-
al direction and also turns around. Since its target color
istogram changes considerably, the model histogram ob-
ained at the beginning may not be sufficient to provide
ccurate tracking. In this sense, the figure demonstrates that
he proposed algorithm outperforms the conventional algo-
ithm by additionally using the previous color histogram in
he mean-shift procedure. We also notice that the conven-
ional algorithm cannot follow the change of the head color
istogram when the head rotates, while the proposed one
ollows the change faithfully, as clearly shown in the fourth
ow of Fig. 8�b�. Figure 9 shows the tracking results for the
alking sequence, in which the head scale changes drasti-

ally. In this case, exact scale estimation is required during
racking for the zoom control of an active camera. Due to
he advantage of fine scale refinement, the proposed algo-
ithm provides a better scale estimation than the conven-
ional one. In particular, unlike in the conventional algo-
ithm, the proposed one covers the whole region of a head
ven in the frames with noticeable variations of head size.
his is mainly because the ellipse searched in the color-
ased convergence stage is adjusted so as to increase the
HDO used in the refinement stage. In Fig. 10, we test the
lutter sequence, whose background has several colors

imilar to those in the model color histogram and includes
any strong edges. Since the proposed algorithm effec-

ively utilizes the quasi-spatial information and adopts the
hape-and-color-based refinement step, it provides better
erformance for this sequence.

Figure 11 compares the tracking errors of the conven-
ional method with those of the proposed method through-
ut each sequence. The graphs given in Figs. 11�a�–11�c�
re obtained from the three sequences, Jumping, Walking,
nd Clutter, respectively. Here, scale and position errors
onstitute the differences between the tracking results and
he manually defined results. And they are normalized by a
atio of the true scale to the reference scale to allow more
rror tolerance for a larger scale of the head. To obtain the
ata in the graphs, we heuristically set the reference scale
o 10 pixels. Note that Figs. 11�a�–11�c� correspond to the

esults shown in Figs. 8–10, respectively. In the graphs of
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the Jumping sequence in Fig. 11�a�, we notice that the pro-
posed method can consistently track the target even with
fast motion of the head, but the conventional method pro-
duces large errors in position and scale, because the method
is not sufficient to perceive the color histogram change of
the target. Figure 11�b� shows that in the Walking sequence,
the conventional method is unable to recover the face re-
gion outside the ellipse, and thereby produces noticeable
errors around the 80th frame. Also, the errors of the con-
ventional method become much larger than those of the
proposed method after approximately the 100th frame. This
is because the head becomes smaller starting from that
frame, but the conventional method fails to adapt to the
change of head scale. Figure 11�c� shows the tracking er-
rors for the Clutter sequence. We note in the graphs that the
proposed method can discriminate the target from the clut-
tered background more precisely than the conventional
method. In summary, the graphs in Fig. 11 demonstrate that

Fig. 8 Tracking results of the Jumping sequenc
the proposed method.

Fig. 9 Tracking results of the Walking sequence

the proposed method.

Optical Engineering 097005-9
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he proposed algorithm can provide a more accurate and
table tracking performance by reducing tracking errors and
heir variances.

All experiments are conducted on a PC with a Pentium 4
PU of 2.8 GHz, and it is verified that the proposed algo-

ithm performs real-time tracking with a processing speed
f 10 fps.

The proposed algorithm can be used in a semiautomatic
arget tracking system. Let us consider the case where an
perator monitors multiple screens of different active cam-
ras. If the operator finds a suspicious person in a screen,
he operator may specify a target ellipse by pausing on the
creen. Then, the ellipse will be automatically tracked by a
amera in the following frames and the corresponding
ideo can be recorded. In this way, a single operator can
andle several screens simultaneously.

In the case that multiple human heads coexist in the
ame image, the algorithm consistently tracks the initially

ned by using �a� a conventional method and �b�

ed by using �a� a conventional method and �b�
e obtai
obtain
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specified ellipse unless the ellipse overlaps with the other
head�s�, because the mean-shift-based algorithm makes the
ellipse converge to the nearest local maximum in the simi-
larity curve. Meanwhile, in the case of partial occlusion of
a target by a background object, the proposed algorithm
may also consistently track the target due to the following
reason. In the color convergence stage of the proposed al-
gorithm, the ellipse converges to the center of the nonoc-
cluded region of the target if the target color can be dis-
criminated from the color of the occluding background
object. Then, in the refinement stage, the converged ellipse
is refined to fit to the target boundary. Note here that since
the algorithm tries to match the boundary of the fitted el-
lipse to the original target boundary of elliptical shape
without considering the occluded boundary of the nonellip-
tical shape �see Sec. 2.3.3 for details.�, the refined ellipse
tends to represent the real target shape with no occlusion.

4 Conclusions
For reliable camera control in an active camera system,
accurate position and scale estimation of a target are nec-

Fig. 10 Tracking results of the Clutter sequence
the proposed method.
essary. In this work, we propose a robust and accurate head

Optical Engineering 097005-1
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racking algorithm suitable for a real-time active camera
ystem having pan, tilt, and zoom functions. To increase the
ikelihood of converging to the true target position, the al-
orithm compensates the global motion and reflects the
emporal change of the target color histogram. In addition,
he proposed algorithm utilizes various information such as
olor, shape, and quasi-spatial information so that it may
uccessfully distinguish the target from the background.
he proposed algorithm also focuses on real-time tracking.

t first rapidly estimates the initial target position by using a
olor-based mean shift, and subsequently refines the posi-
ion and scale. To reduce the processing time further, it uses
-D projection datasets in background motion estimation,
hich is verified to be appropriate for a pan-tilt-zoom cam-

ra system. Experimental results show that the proposed
lgorithm outperforms existing head tracking algorithms
or various sequences and provides real-time tracking in a
C platform.

ed by using �a� a conventional method and �b�
obtain
September 2006/Vol. 45�9�0
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Fig. 11 Normalized scale and position errors between true �manually determined� and estimated
tracking results for �a� the Jumping, �b� Walking, and �c� Clutter sequences. Dotted and solid lines in

the graphs denote the errors of the conventional and proposed methods, respectively. The unit is pixel.
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