
A Framework for Handling Dependencies among Web
Services Transactions

Seunglak Choi
KAIST

371-1 Guseong-Dong, Yuseong-Gu,
Daejeon, Korea

slchoi@dbserver.kaist.ac.kr

Jungsook Kim
ETRI

161 Gajeong-dong, Yuseong-gu,
Daejeon, Korea

jungsook96@etri.re.kr

Hyukjae Jang
KAIST

371-1 Guseong-Dong, Yuseong-Gu,
Daejeon, Korea

hjjang@nclab.kaist.ac.kr

Su Myeon Kim, Junehwa Song
KAIST

371-1 Guseong-Dong, Yuseong-Gu,
Daejeon, Korea

{smkim,junesong}@nclab.kaist.ac.kr

Hangkyu Kim
KAIST

371-1 Guseong-Dong, Yuseong-Gu,
Daejeon, Korea

hkkim@dbserver.kaist.ac.kr

Yunjoon Lee
KAIST

371-1 Guseong-Dong, Yuseong-Gu,
Daejeon, Korea

yjlee@cs.kaist.ac.kr

ABSTRACT
This paper proposes an effective Web services (WS) transaction
management framework to automatically manage inconsistencies
occurred by relaxing isolation of WS transactions.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Transaction
processing; H.3.4 [Information Storage and Retrieval]: Systems
and Software – Distributed systems; H.3.5 [Information Storage
and Retrieval]: Online Information Services – Web-based
services

General Terms
Management, Design, Reliability

Keywords
Web services, Transaction model, Transaction management
protocol, Isolation relaxation.

1. INTRODUCTION
Major IT organizations such as Amazon, Google, and e-Bay have
been migrating their business interfaces to service-oriented
architectures using Web Services (WS). For efficient processing,
WS transactions commonly relax isolation property rather than
preserve it by using traditional locking mechanisms such as the
two-phase commit (2PC). Web services transactions can release
locks on resources before their completions, and thus other
transactions may access those resources [1][2][3][5].

However, the relaxed isolation introduces an inconsistency
problem which can hinder the popular use of WS transactions.
Suppose that a sub-transaction STa of a WS transaction T1
completes while T1 is not completed. A new transaction T2 can use
those data since the locks on the data updated by the STa are
released. Now assume that T1 is failed. Then, the update of the

data should be cancelled, which is usually called compensation.
This situation causes an inconsistency problem; T2 should be
aborted since it is dependent upon the updated value of the data.
This problem can be serious in many situations such as financial
and business environments. However, existing WS transaction
models and managing systems do not address this inconsistency
problem.

In this paper, we first formulate the dependency between
transactions – named completion dependency – which could incur
the aforementioned inconsistency problem. Then, we propose a
new Web services Transaction Dependency management Protocol
(WTDP) as an extension to de-facto WS transaction standards.
Using WTDP, any changes affecting the status of the dependency
are continuously monitored and processed by a WS transaction
management system. Each organization is notified when all the
relevant dependencies are resolved. Finally, we prototype a WS
management system which supports WTDP.

2. Completion Dependency
A global transaction (corresponding to a WS transaction) is
composed of sub-transactions, where each sub-transaction is a
Web services locating at a site. Actual operations such as
database modification take place in the sub-transactions.

Definition 1 (Completion dependency): Let us assume that there
are two global transactions GTa and GTb. The completion
dependency GTb⇒GTa occurs if sub-transaction STj reads a value
updated by sub-transaction STi where STi∈GTa and STj∈ GTb.

In the above definition, we refer to GTa as a dominant global
transaction and GTb as a dependent global transaction. We also
refer to STi and STj as a dominant and a dependent sub-
transaction, respectively. A dominant global transaction
determines whether its dependent global transactions should be
successfully committed or not. For instance, GTb should be
aborted if GTa fails, because the update on the data referenced by
GTb has been cancelled.

A set of global transactions can be circularly connected by
completion dependencies. We refer to a set of global transactions

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1130

having circular connection of completion dependencies as a
universal transaction. This circular connection of completion
dependencies may cause a serious problem. For instance, there
could be a dead lock if global transactions of a universal
transaction decided to delay their commitments until all the
related global transactions are completed.

3. Web Services Transaction Dependency
Management Protocol
Web services Transaction Dependency management Protocol
(WTDP) is designed as an extension of the de-facto WS
transaction standards - WS-Transaction and WS-Coordination
protocols [3][4]. Technically, we add three services to
coordinators as shown in Figure 1.

Dependency
Service

InterCoordinator
Service

CircularDependency
Service

Activation
Service

Registration
Service

Protocol
Service

Coordinator

Figure 1 Services at a coordinator: gray-colored ones are the

services provided by WTDP.
Dependency service is used for participants of a WS transaction to
inform their coordinators of dependencies when they detect
dependencies. InterCoordinator service is used to exchange
dependency information among coordinators. For instance, the
completion status of global transactions such as abort or
commitment is delivered among coordinators using
InterCoordinator service. CircularDependency service is used to
determine whether there is a circular connection of completion
dependencies. Note that, CircularDependency service is also used
to resolve circular waiting in the universal transaction if all the
transactions are delaying their commitments for the completions
of other transactions. These services are defined as WSDL. Each
service uses one or more messages to communicate with the
services of other coordinators.

Dependency
Service

InterCoordinator
Service

CircularDependency
Service

Coordinator X

Participant

(1) DependencyInfo

(c) CheckReady

(d) NotReady

(4) Committed/Aborted

(2) DependencyInfoWithID

(a) CheckCycle

(b) NoCycle

Dependency
Service

InterCoordinator
Service

CircularDependency
Service

Coordinator Y

(3) DependencyInfoReceived

Dependency
Service

InterCoordinator
Service

CircularDependency
Service

Coordinator Z

dependency
D dependency

D'

Global Transaction Global TransactionGlobal Transaction
Figure 2. The message flow of WTDP. There are two

completion dependencies – D and D'. D is between global
transactions managed by coordinators X and Y. D' is between

global transactions of coordinators Y and Z.
Figure 2 shows WTDP messages and their flows. When a
completion dependency D is detected at a participant site, it
informs a dependent coordinator of D by sending a
DependencyInfo message (1). The dependent coordinator informs
its dominant coordinator by using a DependencyInfoWithID

message (2). The dominant coordinator acknowledges the
message by returning a DependencyInfoReceived message (3).
Now, the dominant coordinator sends Committed or Aborted
messages to the dependent coordinator according to the
completion status of the dominant transaction (4). The dependent
coordinator can handle its global transaction appropriately
according to the completion status of the dominant global
transaction.

Meanwhile, the dominant global transaction may additionally
have a completion dependency D' with another global transaction.
In this case, the dependency relations may become a cycle. To
determine whether a universal transaction is in the state of circular
waiting, the dominant coordinator of D sends a CheckCycle
message to the dominant coordinator of D' (a). The dominant
coordinator of D' returns NoCycle if no cycle is found (b). Note
that if a cycle exists, the CheckCycle message will finally be
returned to the sender. Detailed description of all the messages
and their flows are discussed in [6].

4. Prototype Implementation
To validate the proposed protocol, we implemented a prototype
system which supports WTDP. It consists of a coordinator module
and a participant module. All the WTDP services except a
CircularDependency service are implemented. The prototype also
supports most functions specified in the WS-
Coordination/Transaction. We develop the prototype on the Linux
operating system using Java. Both modules use Apache Tomcat
4.1.18 and Apache Axis 1.1 beta as a Web server and a SOAP
engine, respectively.

5. Conclusions
In this paper, we formulated a completion dependency and
proposed a Web services Transaction Dependency management
Protocol (WTDP). For the easy deployment of WTDP in existing
WS transaction management environments, WTDP is designed to
be compatible with WS-Coordination/Transaction. We prototyped
a WS transaction management system supporting WTDP.
Currently, we are planning to address the completion detection
issue at a participant site.

6. REFERENCES
[1] H. Garcia-Molina and K. Salem. SAGAS. In Proceedings of

ACM SIGMOD Conference, pages 249-259, 1987.
[2] G. Weikum and H. J. Schek. Concepts and Applications of

Multilevel Transactions and Open Nested Transactions. In A.
Elmagarmid (ed.): Database Transaction Models for
Advanced Applications, Morgan Kaufmann Publishers,
1992.

[3] IBM, Microsoft, and BEA. Web Services Coordination.
http://www-106.ibm.com/developerworks/library/ws-coor

[4] IBM, Microsoft, and BEA. Web Services Transaction.
http://www-106.ibm.com/developerworks/webservices
/library/ws-transpec.

[5] OASIS. Business Transaction Protocol. http://www.oasis-
open.org/committees/documents.php?wg_abbrev=business-
transaction

[6] S. M. Kim, S. Choi, H. Jang, H. Kim, J. Kim, and J. Song. A
Framework for Handling Dependencies among Web Services
Transactions. Technical Report CS-TR-2004-207, KAIST.

1131

