978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.238

22nd International Conference on Advanced Information Networking and Applications - Workshops

Communication Protocols and Message Formats for BLAST
Parallelization on Cluster Systems

Hong-Soog Kim
kimkk @icu.ac.kr

Woo-Hyuk Jang
torajim @icu.ac.kr

Dong-Soo Han
dshan@icu.ac.kr

Information and Communications University,
103-6 Munji-Dong, Yusong-Gu, Daejeon 305-714, Korea

December 28, 2007

Abstract

With the widespread use of BLAST, many parallel ver-
sions of BLAST on cluster systems are announced, but
little work has been done for the parallel execution in
the search for individual query sequence on BLAST on
cluster systems. Since we can improve not only through-
put but also response time, the techniques for parallel
execution of BLAST on cluster systems in the search
for individual query sequence deserve to be developed.
This paper develops communication protocols and mes-
sage formats to reduce the communication overheads for
the parallel execution of BLAST in the search for indi-
vidual query sequence on cluster systems. The developed
communication protocols and message formats are imple-
mented on a new version of BLAST on cluster systems.
The new version of BLAST is named Hyper-BLAST in
this paper. In this paper, we also measured the through-
put and response time of Hyper-BLAST on various cluster
systems. It turned out that considerable performance im-
provement of BLAST on cluster systems can be achieved
through parallel execution in the search for individual
query sequence on small or middle-sized cluster systems.
On 1-way 64-node system, Hyper-BLAST achieved scal-
able speedup up to 63 processors for 1000-5000 length
query size.

820

1 Introduction

BLAST (Basic Local Alignment Search Tool) [1, 2, 3]
is one of the most widely used similarity search tools
for computational biologist. It identifies statistically sig-
nificant matches between newly sequenced segments of
genetic material or proteins and databases of known nu-
cleotide or amino acid sequences.

For the parallel execution of BLAST for a query se-
quence on a cluster system, there are two issues we need
to address in large. The first one is how to divide the task
of searching a query sequence into subtasks and assign
the subtasks to the nodes of the cluster system. The sec-
ond one is how to reduce the communication overhead
incurred when collecting subtask’s search results from
each node into a master node. We address the first issue
by partitioning BLAST DB and assigning the partitioned
BLAST DB into the nodes of a cluster system. The sub-
task for each node only searches for the assigned BLAST
DB and returns its search results to the master node.

Dividing a task into subtasks and assigning the divided
subtasks into the nodes of a cluster system for parallel
execution certainly enhance the possibility of improving
the entire search performance. However this inevitably
incurs communication overheads between client nodes
and a master node. If the performance gains obtained

IEEE
computer
® psouety

by parallel execution cannot outweigh the inevitably in-
curred communication overheads we cannot expect dras-
tic performance improvement from the parallel execution
of BLAST. Thus minimizing the communication over-
heads is one of key issues in the parallel execution of
BLAST on cluster systems.

In this paper, we briefly explain a BLAST task as-
signment technique for cluster systems and then we fo-
cus on the second communication overhead reduction is-
sue. That is, the primary purpose of this paper is to de-
velop communication protocols and message formats to
reduce the communication overheads for the parallel ex-
ecution of BLAST in the search for individual query se-
quence on cluster systems. Communication protocols for
low level socket communications are developed and in-
memory structure of BLAST is analyzed for the design of
message formats.

The developed communication protocols and message
formats are implemented on a new version of BLAST on
cluster systems. The new version of BLAST is named
Hyper-BLAST in this paper. In this paper, we also mea-
sured throughput and response time of Hyper-BLAST. It
turned out that considerable performance improvement of
BLAST on cluster system can be achieved through paral-
lel execution of the search for individual query sequence
on small or middle-sized cluster systems.

The performance evaluations of Hyper-BLAST on 1-
way 8-node cluster system, 2-way 8-node cluster sys-
tem and 1-way 64-node system show that Hyper-BLAST
achieves scalable speedup up to 30-40 processors. On
1-way 8-node cluster system, maximum speedup 7.15 is
achieved. On 2-way 8-node system, 12.42 times max-
imum speedup is achieved. Finally, 30.64 maximum
speedup is achieved on 1-way 64-node cluster system.

The rest of the paper is organized as follows: In Sec-
tion 2, the highlight of the paper, presents communica-
tion protocols and message formats to reduce the com-
munication overheads between a master node and com-
putation nodes. In section 3, the performance evaluation
of the proposed parallelized BLAST (Hyper-BLAST) on
cluster systems are performed in terms of execution time
and speedup. We draw conclusions in section 4.

2 Communication Protocol and

Message Format

Hyper-BLAST invokes processes on remote node that
search similar sequence(s) for the given query sequence
within own partitioned sub-database. The local search re-
sults are delivered to the master node in the form of mes-
sages. This inevitably incur extra communication over-
heads. If the performance gain through parallel execution
cannot outweigh the extra communication overheads, we
cannot expect drastic performance improvement from the
parallel execution of BLAST on cluster systems. Thus
minimizing the communication overheads is one of key
issues in the parallel execution of BLAST on cluster sys-
tems.

For the building of communication protocols and mes-
sage formats among the master and computing nodes, we
need to understand in-memory data structure of BLAST
because more efficient form of the data and control mes-
sages are created based on in-memory data structure. In
this section, in-memory data structures for sequence sim-
ilarity search results and their message formats for com-
munications are discussed.

2.1 Communication Message Format for
Hyper-BLAST

The communication message used in Hyper-BLAST is de-
signed to minimize the communication between the mas-
ter node and slave nodes. For this purpose, the replicated
information in the in-memory data structure is removed
in the message and the whole information of SeqAligns
of the slave node is divided into related SegAligns mes-
sages in order to prevent the slave from sending useless
SeqAlign information.

There are two types of messages for communication.
One is used for sending SeqAlign data from the salve node
to the master node and receiving the acknowledgment for
the previously sent SeqAlign data from the master to the
slave node. Another is used for sending the statistical data
and its acknowledgment of the previous request.

821

2.1.1 Message Format for SeqAlign Data

The overall structure of message format for sending one
or more SeqAlign nodes consists of header section and one
or more HSP_SET records section. The header section
has three fields; LEN, CTRL and N field. The LEN
field indicate the length of the current message and this
field value is used for checking the length of message at
master node. Because the message can be fragmented into
one or more message segments due to network hardware
MTU (maximum transmission unit), the receiver (master
node) cannot read the whole message at once. The LEN
field is used for assembling the whole message from the
fragmented message segments.

The CTRL field is used for controlling of the mes-
sage transmission. For the message from the slave node
to the master node, the C'T' RL field indicates the type of
message (SeqAlign data or statistical data) as well as var-
ious information such as no search result indication and
last/non-last message indication. For the message from
the master node to the slave node, the CT RL field is used
for the acknowledgment. The message from the master
node to the slave node has header section only. For exam-
ple, when the SeqAlign data from the slave has larger E-
value than the least of the SeqAlign collected in the master
node, the next SeqAlign data from the same slave node is
useless. In that case, the CTRL filed is set by the value
indicating that no more data is needed from that slave and
the slave quit sending the SeqAlign data.

The N filed indicates the number of HSP_SET records
in the current message. One HSP_SET record keep a Se-
gAlign data for an alignment between the given query se-
quence and one specific subject sequence. The number
of HSP_SET record per message can be varied because
the size of the information for one alignment is varied
with the alignment results. In addition to, the group of
HSP_MULTI type SeqAling nodes should be sent within
single communication message because they should be
treated as one unit. The current maximum size for one
message is 4096 bytes but this value can be increased if
necessary.

A HSP_SET record section presents an alignment for
the query sequence and the specific subject sequence.
There are two types (HSP_.UNI and HSP_MULTI) of
HSP_SET record for different in-memory data structures.

In HSP_UNI and HSP_MULTI HSP_SET records, the

T AG field indicates the type of the current record. Since
all score related information and strand information of
one alignment is the same over its constituent segments,
the message format does not replicate those information
and reduces the size of the message. The N_SEG field at
the score section indicates the number of segments in the
alignment and location section contains the location in-
formation for the segments in the alignment. In location
section of the given alignment type, QQ-F ROM, Q_-TO,
S_FROM and S_TO field indicate the start position of
the segment in the query sequence, the end position of the
segment in the query sequence, the start position of the
segment in the subject sequence and the end position of
the segment in the subject sequence.

2.1.2 Message Format for Statistical Data

The statistical message record holds information to use in
the calculation of the statistical data for the final search
report. The message for the statistical data has fixed for-
mat. The message is composed of a header section and
a statistical record section. The header section has LEN
and CT RL field and the usage of these field is the same
as that of the message for SeqAlign data. The statistical
record section has twelve fields for various statistical data
during BLAST search in the slave node.

For statistical data, the master node simply adds value
received from the slave nodes into the current value of the
field. The message for statistical data is the last message
from the slave to master node. When the master node re-
ceives the statistical message from all slave nodes, it sends
the synchronization message to all salve nodes and then
master node and slave nodes restart the similarity search
for the next query sequence.

In this section, we explained how to implement the
scheme for parallelized BLAST on cluster systems, the
requirements for parallelization, communication protocol
for controlling the search activity, communication mes-
sage for collecting search results, etc. We tried to min-
imize the communication overhead by eliminating the
redundant information in the in-memory data structure,
keeping the auxiliary data structure for fast access to the
group of SegAligns and eliminating unnecessary message
transmission from the slave nodes. Next section presents
the performance evaluation of Hyper-BLAST on cluster
systems.

822

3 Performance Evaluation

This section presents performance evaluation results of
Hyper-BLAST on 2-way 8-node and 1-way 64-node clus-
ter systems. Execution time and speedup of Hyper-BLAST
are measured for the performance evaluation.

3.1 Performance on 1-way 64-node Cluster
System

We performed performance evaluation for Hyper-BLAST
on 1-way 64-node system to manifest the effectiveness of
our novel task assignment scheme to computation nodes
of cluster system. The maximum speedup, 30.64 is
achieved on 1-way 64-node cluster system with 63 pro-
CEssOors.

3.1.1 Execution Time Comparison

Figure 1 shows the execution time for query sequences
with length from 1000bp to 5000bp by 1000bp increment.

The execution time constantly decreases as the more
nodes are engaged in the search. But the performance
is dependent on the size of query sequence and the per-
formance gain is marginal when the number of nodes
reaches around 40. Therefore, the number of nodes used
for Hyper-BLAST must be determined considering query
sequence size.

512.0

256.0 §

5000bp -

128.0

2
CaSaa
= ng YO 4

LY TYYSON
3. 4. v
ees&%ﬁségggéA%ggﬁgsgﬁﬁAgﬁﬁg
- see o 8 8as
B A |
S Cogonogae Bkttt et

Fotogel Eoletoiol
SRR AN

Log scaled execution time (sec)

P T S T S S TS S S S S S S S R
2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Num of processors

2.0

Figure 1: Execution time comparison for large size query
sequences on 1-way 64-node cluster system.

3.1.2 Speedup Comparison

32.0 T

30.0
28.0 [

26.0 [
240 |

& 5": e i mee
220 | ﬁggagigggggg*xxx**ww KK AHT
oW

!
20.0 o SEXHIHHRHERIHHKR KN 36 XK X
g5 X

18.0 |

16.0

Speedup

14.0 |
12.0

10.0 [
1000bp —+—
1500bp
2000bp -+~ %-
2500bp
3000bp -
3500bp -
4000bp e
20 4500bp -4 -

5000bp - +-
ool ey PP
02 4 6 8101214161820 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Num. of processors

8.0

x

6.0 -
4.0

beomok

Figure 2: Speedup comparison for large size query se-
quences on 1-way 64-node cluster system.

Figure 2 is speedup comparisons on the 1-way 64-node
cluster system. Figure 2 compares speedups for query se-
quences with length from 1000bp to 5000bp by 1000bp
increment. The maximum speedup increases as the query
sequence size increases with higher DOP. This fact indi-
cates that speedup of Hyper-BLAST is scalable in terms
of query sequence size.

As expected, the speedup of Hyper-BLAST saturates
at some number of multiprocessors on cluster systems.
The cluster system with large number of nodes can be
efficiently used for BLAST if our approach for reducing
response time and PBS based batch processing for high
throughput are combined. In such a system, it is desir-
able that the computation nodes are grouped into compu-
tation node groups. The number of computation nodes in
a group is the number of nodes at which Hyper-BLAST
can achieve maximum speedup. The query sequences
are distributed across the computation node groups using
PBS based batch processing facility and then the similar-
ity search for a given query sequence on each computation
node group can be done with Hyper-BLAST.

823

3.2 Performance on 2-way 8-Node Cluster
System

3.2.1 Execution Time Comparison

Figure 3 is execution time comparison on 2-way 8-node
configuration. In all execution time comparison, the ex-
ecution time is plotted in log scale of base 2 in order to
amplify the minute changes at higher DOP.

Figure 3 is execution time comparison for query se-
quences of which length varies from 1000bp to 5000bp
by 1000bp increment.

From all experiments, we can observe that the larger
length of query sequence is, the more execution time the
similarity search requires. Also we can identify that exe-
cution time constantly decreases as DOP increases. The
execution is proportion to length of query sequence and
reverse proportion to DOP. One noticeable thing is con-
stant decrease in execution time in any query sequence
length.

256 T

128 &

5000bp -4~

Log scaled execution time (sec)

1 1 1 1 1 1
2 4 6 8 10 12 14 16
Num. of processors

Figure 3: Execution time comparison for large size query
sequences on 2-way 8-node cluster system.

3.2.2 Speedup Comparison

The 2-way 8-node cluster system can be configured in var-
ious ways with same number of processors. For example,
2-way 4-node configuration and 1-way 8-node configu-
ration that uses 8 processors in the system. The effects
of different node configuration with same number of pro-
cessors are examined. In most cases, the 1-way n-node

configurations give similar or higher speedup than the 2-
way n/2-node cluster configurations, where n is 2, 4, 6 or
8. This means that parallelization used in Hyper-BLAST
is superior than that used in NCBI BLAST and Hyper-
BLAST gives cost-effective parallelization.

In terms of cost, 2-way node configuration is cost-
effective than 1-way node configuration since dual pro-
cessor node can be built with an additional processors
while the cost of two 1-way nodes is two times that of
the single 1-way node. Hence the 2-way node cluster sys-
tem can be most cost-effective configuration for Hyper-
BLAST.

4 Conclusion

In this paper, we developed communication protocols and
message formats to reduce the extra communication over-
heads of the parallel execution for single query sequence
on BLAST on cluster systems. The developed communi-
cation protocols and message formats were implemented
in Hyper-BLAST and the performance of Hyper-BLAST
was measured. It turned out that considerable perfor-
mance improvement can be achieved by parallel execu-
tion in the search for single query sequence on BLAST
on cluster systems.

The approach of Hyper-BLAST, in which the search for
single query sequence is performed in parallel, is attrac-
tive because it can improve not only the throughput of
BLAST but also the response time of individual query se-
quence. However when we consider the performance im-
provement of Hyper-BLAST is saturated at around 30-40
nodes of cluster systems, the approach of Hyper-BLAST
should be adapted for the application of large-scale clus-
ter systems.

Currently, we are studying incorporating Hyper-
BLAST with PBS based batch processing facilities for
large-scale cluster systems. The study includes modeling
of speedup function of BLAST for the identification of
speedup saturation point and devising parallel batch pro-
cessing technique on the top of Hyper-BLAST for more
speedup and throughput.

824

5 Acknowledgement

This research was financially supported by the Minstry
of Commerce, Industry and Energy (MOCIE) and Korea
Industrial Technology Foundation (KOTEF) through the
Human Resource Training Project for Regional Innova-
tion.

References

[1] S.F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic Local Alignment Search Tool.
Journal of Molecular Biology, 215:403-410, 1990.

[2] S.F. Altschul and W. Gish. Local alignment statis-
tics. Methods in Enzymology, 266:460-480, 1996.

[3] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D.J. Lipman. Gapped
BLAST and PSI-BLAST: A new generation of pro-
tein database search programs. Nucleic Acids Re-
search, 25:3389-3402, 1997.

[4] G.J. Barton. Scanning protein sequence databanks
using a distributed processing workstation network.
Bioinformatics (formerly CABIOS), 7:85-88, 1991.

[5] R. D. Bjorson, A. H. Sherman, S. B. Weston,
N. Willard, and J. Wing. TurboBLAST: A parallel
implementation of BLAST based on the TurboHub
process integration architecture. Technical report,
TruboGenomics, Inc., 2002.

[6] R. C. Braun, K. T. Pedretti, T. L. Casavant, T. E.
Scheetz, C. L. Birkett, and C. A. Roberts. Par-
allelization of local BLAST service on worksta-

tion clusters. Future Generation Computer Systems,
17(6):745-754, April 2001.

[7] N. Camp, H. Cofer, and R. Gomperts.
Throughput BLAST.
Graphics, Inc., 1998.

High-
Technical report, Silicon

[8] E. H. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Ried.
Efficiency of shared-memory multiprocessors for a
genetic sequence similarity search algorithm. Tech-
nical report, Computer Science Dept., University of
Minnesota, 1997.

825

[9] R. Clifford and A. J. Mackey. Disperse: A simple
and efficient approach to parallel database search-
ing. Bioinformatics, 16(6):564-565,2000.

[10] Compugen. The BioXL/HTM system. Technical
report, Compugen, 2002.

[11] NCBI. Growth of GenBank. Technical report, Na-
tional Center for Biotechnology Information, March
12, 2002.

J. D. Grant, R. L. Dunbrack, F. J. Manion, and
M. F. Ochs. BeoBLAST: Distributed BLAST and
PSI-BLAST on a Beowulf cluster. Bioinformatics,
18(5):765-766,2002.

[12]

[13] Kai Hwang and Zhiwei Xu. Scalable Parallel Com-
puting, chapter 12 Parallel Paradigms and Program-

ming Model. McGraw-Hill Companies, Inc., 1998.

[14] Richard Hughey. Parallel hardware for sequence
comparison and alignment. Bioinformatics (for-

merly CABIOS), 12(6):473-479, 1996.

[15] A. Julich. Implementations of BLAST for paral-
lel computers. Bioinformatics (formerly CABIOS),

11(1):3-6, 1995.

[16] P. L. Miller, P. M. Nadkarni, and N. M. Carriero.
Parallel computation and FASTA: Confronting the
problem of parallel database search for a fast se-
quence comparison algorithm. Bioinformatics (for-

merly CABIOS), 7:71-78, 1991.

[17] Paracel. GeneMatcher2 system. Tech-
nical report, Paracel, 2002. Available at

http://www.paracel.com/products/gm2.html.

[18] TimeLogic. Adaptable hardware accelerated sys-
tems for bioinformatics. Technical report, TimeL-

ogic, 2002.

