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This paper presents an adaptive multiscale simulation of deformations of curved crystalline structures such
as carbon nanotubes (CNTs). It is based on quasicontinuum approach, which is a coarse-graining method. For
fully nonlocal quasicontinuum, high-order interpolation functions are adopted to locate the deformed positions
of atoms on a curved crystal structure. The “cluster” concept, which facilitates accurate energy approximation
for crystals, is extended such that the vertices of elements or subdivided regions may be chosen irrespective of
the positions of carbon atoms. Defining two remeshing criteria based on the second invariant of the Green’s
strain tensor and its gradient, an automatic adaptive scheme that provides gradually increasing resolution up to
atomistic scale in nonlocal deformations of curved bodies is implemented. Various numerical examples, in-
cluding a CNT fracture and deformations, demonstrate the effectiveness of the present scheme. This investi-
gation realizes the adaptive simulation of nonlocal deformation for curved, as opposed to rectilinear, crystalline

structures.
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I. INTRODUCTION

The quasicontinuum method' has been widely applied to
investigate the behaviors of defects, including dislocations as
well as those associated with the grain boundaries and mate-
rial interfaces of rectilinear crystalline bodies’> at the atom-
istic level. The effectiveness of the quasicontinuum lies in
the concurrent treatment of scales of different lengths be-
tween the local zone and the nonlocal zone, which assists
with an investigation of the behaviors of various defects such
as voids, twins, grain boundaries, and dislocations.>>~7 Due
to this feature, the quasicontinuum method has attracted a
substantial amount of attention as a computational method-
ology for multiscale boundary value problems in solid me-
chanics over the past decade. In particular, a fully nonlocal
version of the quasicontinuum?® paves the way for a seamless
coupling approach without an additional treatment for incon-
sistency such as that known as ghost force’ in the transition
zone between the continuum and atomistic regions. How-
ever, most of the fully nonlocal versions of quasicontinuum
have been limited to rectilinear crystalline bodies, and the
extension of nonlocal quasicontinuum (QC) to curved crys-
talline structures has yet to be done to the best of the authors’
knowledge.

This paper deals with a fully nonlocal quasicontinuum
method for application to curved crystalline structures. A
typical example of these curved crystalline structures in-
cludes carbon nanotubes (CNTs), for which the bulk of the
relevant information is known due to the technological inter-
est in these structures in relation to a variety of applications.
For this reason, the focus here is on CNTs for curved crys-
talline structures.

Most studies have used molecular dynamics or atomistic
model in order to look into the mechanics of nanotubes.’~!#
Moreover, many authors have employed a continuum or
structural mechanics approach for more practical and effi-
cient modeling.>° Among others, Arroyo and Belytschko!?
reported a continuum model for curved crystalline sheets
based on the exponential Cauchy-Born rule, which extends
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the standard Cauchy-Born rule to the case of curved crystal-
line structures. This was successfully applied to nonlinear
mechanical deformations of multiwalled carbon nanotubes,
though its scope is limited to local behavior. A bridging
scale’! scheme between continuum and atomistic calcula-
tions has also been reported. This scheme enables the obser-
vation of local and nonlocal behaviors of CNTs through a
single instantaneous simulation.?> This is an excellent ap-
proach for multiscale simulations as long as the local zone
and the nonlocal zone are known a priori. However, typi-
cally, multiscale problems are encountered for which the de-
tails or the size and range of the nonlocal zone that will
develop are unknown. For rectilinear crystalline structures
such as metals, an adaptive scheme combined with the qua-
sicontinuum has been extremely successful in exploring vari-
ous behaviors of defects in metals."® However, for curved
crystalline bodies, there have been no studies reported thus
far related to an automatic adaptive scheme with increasingly
fine resolution up to atomistic scale.

In the present paper, an automatic adaptive computing
scheme is reported for deformations of curved crystalline
structures such as carbon nanotubes in the framework of the
fully nonlocal quasicontinuum method.® The scheme seam-
lessly generalizes the standard quasicontinuum method to the
case of a curved crystalline body in the sense that it enables
one to deal with the nonlocal domain, i.e., the fully atomistic
region, as well as the local domain, i.e., the coarse-grained
region, for curved structures. A key feature includes the use
of higher order interpolation functions to map curved geom-
etries accurately and to interpolate the energy as well as the
use of the cluster-weighted average of the interatomic poten-
tial energy to compute the force on the individual degrees of
freedom. The outline of the paper is as follows. In Sec. II, the
computational scheme is described, and this is followed by
adaptive scheme in Sec. III and numerical examples in Sec.
IV. Finally, Sec. V closes the paper with some concluding
remarks.
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II. QUASICONTINUUM FOR CRYSTALLINE BODIES

In this section, a method to extend the standard quasicon-
tinuum for application to a crystalline body with curved ge-
ometry, such as a carbon nanotube, is discussed. The section
starts with a brief summary of the quasicontinuum methods.

A. Overview of a nonlocal quasicontinuum

The total potential energy E,,,,; of a given system is the
summation of the individual potential energies E; for all at-
oms in the system:

N
Etotal= E Eiv (1)
i=1

where N represents the total number of atoms in the system.
The total energy E,,, can be approximated by the coarse-
grained energy E" . according to the node-based summation
rule as follows:

Ng
Etolal = Eilotal = 2 WaEa' (2)

a=1

Here, Ny indicates the total number of representative atoms,
and w, and E, are the weight function and the potential
energy, respectively, of the ath representative atom. In recti-
linear crystalline structures, the mapping from the Lagrang-
ian variable X; to the current position x; for the ith atom is
approximated by x?, which is written in the form of the in-
terpolation,

Ng
Xfl = 2 Sa(xi)xa’ (3)
a=1

where S,(X;) indicates the linear shape function associated
with the ath representative atom, and x,, denotes the current
position of the ath representative atom or the nodal value in
finite element (FE). Here, all variables X, x;, xl’.’, and x,
indicate position vectors in the three-dimensional Euclidean
point space. Assuming the interpolation of the energy distri-
bution via the same function S,(X;) gives

N Ng

E?otal = E 2 Sa(Xi)Ea' (4)

=1 a=1

A comparison of Egs. (2) and (4) yields the following ex-
pression for the weight function:

N
Wa= 2 So(X)). (5)
i=1

The preceding node-based summation rules are not free
from the zero energy deformation modes. This, however, can
be prevented by taking a sufficient number of sampling
points.8 In this context, this node-based summation rule is
generalized to obtain what is known as a cluster-based sum-
mation rule, in which the shape function is sampled not only
at nodal points but also over neighborhoods, known as clus-
ters, of the representative atoms. In this cluster-based
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method, each cluster plays the role of a node in the node-
based rule; these are considered to be a representative crys-
tallite over which the shape function values are sampled for
interpolation. The coarse-grained energy according to the
cluster-based rule is given as

N
Epu=2 (Wﬁ)clusler[ > Ei] with E;= >, E{(ry),
B=1 ie(cluster B) j

rij<rm,

(6)
where (W) - indicates the weight of the cluster summa-
tion rule. From Egs. (4) and (6), it follows that

Ng

E (Wa) cluster 2
a=1

ie(cluster a)

S,g(Xi) =Wwg, (7)

where wp is the weight function of Eq. (5) according to the
node-based rule. Once (W) e iS Obtained from this equa-
tion, it is straightforward to compute the nodal internal force
by differentiating the coarse-grained potential energy of Eq.
(6) so that the equilibrium configuration may be obtained.
This is a fully nonlocal version of the quasicontinuum
method, which maintains a smooth connection between the
atomistic region and the continuum region and thus removes
the interface between the two regions. This nonlocal scheme
coarsens a domain without losing the atomistic framework
and therefore furnishes seamless bridging between the fine
and the coarse zones.® One of the striking features of this
fully nonlocal method is that no explicit use of deformation
measures such as deformation gradient and strain is made,
even in the local zone, as opposed to the original quasicon-
tinuum scheme by Tadmor et al.,' wherein deformation gra-
dient or strain variables are employed to implement the con-
stitutive equation in the local zone.

B. Deformations and inner displacements of carbon nanotubes

A graphene sheet, which is considered to be the given
structure before the sheet is rolled into a tube, is a type of
Bravais multilattice similar to a honeycomb structure. This
lattice is composed of two simple triangular sublattices and
is specified by two basis vectors B, and B, and a transla-
tional vector or shift T, as shown in Fig. 1. Each atom site is
reached by an integer multiple of two vectors B and B, plus
the shift vector T between the two sublattices. Under uni-
formly strained macroscopic deformations, the relative dis-
placement between the two sublattices is an additional inter-
nal mode of deformation, not given by a homogeneous
deformation field. The vector ¢ representing this additional
mode of deformation (see Fig. 1) is termed the inner dis-
placement between the two sublattices.”»** In the quasicon-
tinuum method, for the sake of simplicity, it is essential to
treat this additional deformation £ in the parental graphene
domain, rather than in the deformed or current configuration.
In the present section, we show that this is indeed possible.
Our discussion is limited to the local zone, but it is valid in
the nonlocal zone as well.

The undeformed reference configuration and current de-
formed configuration of a three-dimensional CNT are de-
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FIG. 1. (Color online) Inner displacement between two triangu-
lar sublattices comprising a graphene multilattice.

noted by €, and € (see Fig. 2). Furthermore, their respec-

tive tangent planes ©,(X) and Q(x) are defined at the
undeformed position X and at the deformed position x, re-

spectively. The mapping from ©,(X) to €, and from Q(x)
to  is given by exponential mapping.?>2® Finally, the origi-
nal configuration of the parental graphene sheet, i.e., the
original configuration before it is rolled to €, is denoted by

Q, which may, strictly speaking, differ from ), as the equi-
librium bond distances may change due to curvature effects.
Here, the superimposed “~ indicates the tangent plane on
three-dimensional tube while “~” represents the plane in two-
dimensional graphene.

It is assumed here that a homogeneous deformation F is
imposed on an undeformed material line element belonging

to the tangent space Tx{2,, which lies on the plane €, (X).
The resulting vector of the deformed material line element in
this case belongs to the tangent space T,€2, which lies on
Q(x). At this point, ¢,(£,) may be contemplated as the ex-
ponential mapping?*2® that transforms the tangent plane £,
onto the reference domain €, of the three-dimensional un-
deformed tube, where &, denotes a position vector on the
tangent plane €. Similarly, the transformation from the de-

formed tangent plane Q into the current domain € of the
deformed tube may be described by another exponential

mapping @(£), where & is a position vector on the tangent

plane Q. For this, the position vector & in the parental
graphene domain has to be adjusted to account for the inner

€

F
E, ——
.)_’E ﬁu N\ e')— €,
E| 2 - . 0 1
Q, Q

o
L g

FIG. 2. Domains and deformation maps between the graphene
and CNT tube.
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displacement, and this is discussed in the subsequent para-
graph.

As discussed earlier, the inner displacement £ is a supple-
mentary deformation mode defined in the deformed domain

Q. For convenience of development, the inner displacement

7 defined in the parental graphene domain Q, which is re-
lated to £, is utilized, following Tadmor et al.”’ The position

vector £ of an atom in the parental graphene domain Q may
be written as follows:

E=mB,+nB,+(6-1)T (8=1 or2). (8)

Here, m and n are integers and ¢ indicates sublattice 1 or 2.
The position vectors _§0 and _f on each of the two tangent
planes ©, and © are defined by the following relationships:

£,=F, (9a)

E=FF,&+(5-1)¢. (9b)

Here, F, is a deformation gradient from the parental domain

Q to the undeformed tangent plane !_)0 (see Fig. 2). The
detailed expressions for the deformations F, and F in Fig. 2
are described in the Appendix. The deformation F, is nearly
identical to the identity map; therefore, the shift vector tak-
ing place during F, is neglected in Eq. (9a). The shift vector

n, referred to the parental domain Q of the original graphene
sheet, then links to £ by the following relationship:

n=(FF,)"'¢. (10)
Taking into account the inner displacement 7, the position
vector é in the graphene domain is now adjusted to yield & as

E=E+(5-1)n, (11)

where & is the position vector that is modified after taking
into account the inner displacement in the graphene domain.

Note that & and ~‘§ are position vectors defined over the flat
domain Q on the two-dimensional graphene and &, and & are

position vectors defined over the tangent plane £, and Q on
the three-dimensional tube, respectively.

Once we establish Eq. (11), we may straightforwardly
proceed to apply the nonlocal quasicontinuum method® for
minimizing the total potential energy. As addressed at the
end of Sec. II A, the nonlocal quasicontinuum approach di-
rectly computes the potential energy from the atomistic cal-
culation without resorting to the use of any deformation vari-
ables such as deformation gradient F and other strain
variables. Note that these deformation variables used to play
a key role in implementing the elastic constitutive equation
in the coarse-grained (local) zone in the case of the original
quasicontinuum method.! In the nonlocal quasicontinuum
scheme, however, the atomistic calculation of the total po-
tential energy is implemented by way of the cluster-based
approximation like Eq. (6) but with a higher order interpola-
tion function to accurately trace the atom positions on a
curved surface. The starting point toward this is to introduce
a higher order interpolation referred to the parental graphene
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domain €, and to represent the configurations in £, and
in terms of &. This is treated in the next section.

C. High-order interpolation for a curved crystalline structure

The kinematic constraint of the Cauchy-Born rule is im-
posed on the atomic configuration, and the crystalline bodies
of carbon nanotubes are then tractable to the coarsening. In-
deed, Arroyo and Belytschko'> adopted the deformation gra-
dient with respect to a graphene sheet and the local approxi-
mation of exponential mapping in order to acquire the
information related to the atomic configuration. They suc-
cessfully established a coarse-grained model based on con-
tinuum theory for a curved crystalline structure such as a
carbon nanotube. In the present study, however, a higher or-
der interpolation for the coarse graining of local zones sub-
jected to the Cauchy-Born rule is introduced. Then, the total
potential energy is directly calculated from this higher order
interpolation of the atomic position vectors combined with
the cluster-based summation rule, as will be shown in Sec.
II D. For this, we first establish the higher order interpolation
of the undeformed position vectors in €, and the deformed
position vectors in €.

Here, & of Eq. (11) denotes the position vector or the
Lagrangian coordinate with the inner displacement having

been adjusted in the parental domain Q or the flat graphene

sheet. The shape function describing deformation from €2 to
Q is now given as a function of &. In this case, the atom
position vector x in the current domain  of a three-
dimensional deformed tube as well as the position vector X
in the reference domain €, of a three-dimensional unde-
formed tube cannot be written as in Eq. (3), as a linear shape
function S(&) fails to depict curved geometries. To represent
a curved shell, quadratic interpolation at a minimum is re-
quired for the current position. The aforementioned observa-
tion at this point necessitates introducing higher order inter-
polations to contend with the curved geometry of carbon
nanotubes. In terms of adaptability, triangular elements with
the Hermite-type interpolation or a cubic Lagrange shape
function pertaining to the area coordinates may be candi-
dates. For convenience of modeling, the nodal points on the
vertices of a triangular element can be chosen to coincide
with the atom positions on the graphene. The mid nodes may
not fall on atom sites in such a case. The nodes that fail to
fall on an atom position, whether they are at vertices or at
mid nodes, are termed here “atomless nodes” to distinguish
them from the atom nodes (representative atoms in Sec.
IT A), of which the locations coincide with atom sites on the
graphene. The choice of atomless sites for nodal points is
made possible for the local zones by the Cauchy-Born rule,
which leads to locally homogeneous deformations in the
context of continuum mechanics.

For clarity, let X” and x” denote the position vector of a
nodal point in the undeformed state €2, and in the current
domain ), respectively. These may be an atom node or an

atomless node on the parental domain Q of the graphene
sheet. Then, the current and the undeformed configurations,
each of which is curved in nature, are represented by the
following higher order interpolation:
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N, N,
X'= X H(£)XY and x!'= D) H(£)XS.  (12)
a=1 a=1

Here, X" and x" are the three-dimensional interpolated posi-
tion vector of the ith atom in the undeformed configuration
and in the current configuration, respectively, and N, is the
total number of the nodal points for displacement or position
interpolation. The function H,(&) is a higher order shape
function of ath node, which is defined on the position & of
the graphene sheet, i.e., the parental domain €. This implies
that all interpolation is taken with reference to the parental
domain €. For the high-order interpolation, the cubic
Lagrange interpolation function was chosen for the area co-
ordinates employed in the finite element method.?® The cubic
Lagrange interpolation function turned out to be sufficient
for describing deformed configurations of CNTs into generic
curved shapes. Atoms on two-dimensional graphene can be
mapped into an undeformed tube with a constant curvature
vector or into a deformed tube with a varying curvature vec-
tor. As previously mentioned, this higher order mapping
combined with the direct atomistic calculation based on the
cluster-based scheme enables one to do without introducing
deformation variables and the exponential mapping em-
ployed by Arroyo and Belytschko.!! On the other hand, this
high-order interpolation inevitably leads to atomless nodal
points. In the absence of atoms on nodal points, it will likely
be awkward to calculate the nodal energy in terms of Eq. (2),
which is the approach of the original quasicontinuum with
the node-based representation. However, the present ap-
proach with the cluster-based representation is capable of
contending with the atomless nodes in the context of the
locally homogeneous deformations, as long as the energy
distribution is smooth enough to be tractable to interpolation.
This is explained in the next section.

D. Coarse-grained energy and equilibrium equation
of the system

At this point, the means of summing up the interatomic
potential energies over the entire domain is considered. If the
atom position x in the current domain () is interpolated by a
high-order function, then the mid nodes of elements on the
parental domain may not be located on the atom sites. It is
important to note that the cluster-based rule [Eq. (6)] is ca-
pable of computing the energy of the cluster associated with
a given node regardless of whether it is an atom node or an
atomless node. Here, the cluster, which is considered to be a
representative crystallite, possesses its energy even in the
case of an atomless node. In addition, there are no difficulties
in interpolating the field variables of the local zones as the
locally homogeneous deformations prevail under the
Cauchy-Born rule. If the interpolation function of the present
high order (cubic) is chosen for the energy as well as for the
deformed position vector field, the coarse-grained energy
[Eq. (6)] is rewritten as

NU
Y X HJIEE,|. (13)

iecluster B a=1

NU
h
Etozal = 2 (Wﬁ)cluster
p=1

The two weights w, and (W,) e Of @ node and a cluster are
then related according to
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N,
S i S Hal&) = (14)
a=1 iecluster a

Here, w, is now defined as

N
W= 2 Hy(£), (15)
i=1

where the summation is taken over all of the atom sites
within the support of the shape function H,(&). The cluster
prevents unexpected deformation by enriching the sampling
points of energy. In addition, it diversifies the choice of the
nodal points (vertex or mid nodes of the elements) regardless
of the atom sites. Suppose a mesh changes from a coarse
configuration to a fine configuration depending on the field
gradient on the local region, and finally to fully atomistic or
molecular mechanics (MM) model on the nonlocal zone. In
the nonlocal zone, which is fully atomistic, the construction
of clusters about the nodes in the nonlocal zone is not re-
quired. In other words, nodal point in the nonlocal zone is
naturally identical to the atom point.

The constitutive equation for a local zone without external
force is described in terms of the potential energy, which
depends on the nodal vector x" and the inner displacement #:

7= 7x, y), (16)

where the total potential energy 7" is nothing but total sys-
tem energy E" . given by Eq. (6), in the absence of external
force. Note that # implicitly depends on the nodal position
vector x'. Therefore, it is likely very complex and time con-
suming to find the minimum-energy configuration of poten-
tial [Eq. (16)] with respect to the nodal vector x” and the
inner displacement 7 at one time. Practically, an iterative
search for the minimum-energy configuration is followed,?’
in which the variation of the potential energy is initially
made to vanish with respect to the variation of 7 while x” is
held constant. The potential energy is then minimized with
respect to x” while # is held constant. This process is re-
peated until convergence is reached. Here, the superimposed
hat “*” denotes a fixed value of x” or #. In this case, the
former iterative step leads to the following equation:

on’ ory | om 9
—| = —4 ) —H,(&)]%,
(977 071‘,-]- (977 ]V (7 1977
=0. (17)

In this equation, dm/dr;; is given in terms of JE;/dr;; from
Eq. (6), and i and j are atom numbers that ultlmately deter-
mine the integers of basis vectors and the lattice number in
Eq. (8). In Eq. (17), summation should be taken for the re-
peated indices i and j that meet r;;<<r., within the given

cluster. Additionally, £ is related to the position vector § and
the inner displacement 2 in the graphene domain, as in Eq.
(11). The inner displacement 7, equivalent to the additional
deformation referred to the original graphene plane, modifies
the position of the atoms belonging to the second sublattice.

The transformation from the original position vector E in the
graphene sheet to the position vector & in consideration of
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the inner displacement eventually leads to the corresponding
modification of the H(£) value in Eq. (17). This implies that
the mapping of each atom to the current configuration is
discriminated according to the sublattice [§=1 or 2 in Eq.
(8)] to which the atom belongs. It should be noted that the
current configuration is constructed from the nodal position
vector X and the high-order interpolation function. At this
point, the latter step serves to minimize the potential energy
with respect to the nodal position vector x while maintain-
ing the inner displacement at 5= 17,

In’(x",3)

" (18)

The inner displacement, which is uniform under homoge-
neous deformation, may be nonuniform, in general, in the
subdivided region of the FE with a high-order interpolation
function. It may be appropriate to consider another level of
interpolation for the inner displacement that differs from the
interpolation of the nodal position vector. However, for all
numerical examples adopted in this study, it is sufficient to
choose only one inner displacement vector within each ele-
ment.

III. ADAPTIVE MESHING TECHNIQUE

For large deformations of complex domains, it is impor-
tant to have the mesh to keep track of the deformation mag-
nitude and the related gradient for the best possible simula-
tion. If this is not done or possible, only a priori judgment
can be relied on based on the qualitative characteristics of the
deformation when constructing suitable meshes. In particu-
lar, this type of adaptive remeshing is important in coupling
methods between continuum and atomistic calculations when
a nanoscale system undergoes a surface effect. The imple-
mentation of a computational model for such automatic ad-
aptation of a mesh demands a mesh generator for triangula-
tion and an estimator for deformation. The code TRIANGLE
was employed for the two-dimensional triangulation.® This
code enables mesh generation with the constraint of the ver-
tex, i.e., nodal points, lying on the graphene domain. To es-
timate the deformations, the deformation measure & was cho-

sen in the following process:®

e=\I(E)h/a. (19)

Here, 11, E, h, and a are the second invariant of the strain,
Green’s strain, the element size, and the bond length or the
lattice spacing in graphene, respectively. The strain E is sim-
ply obtainable according to its definition when the deforma-
tion gradients F defined in Fig. 2 is determined (see the
Appendix). Note that F is obtained from F=F*F}' (see Fig.
2), where F* and F, are given by the gradient of x" and XV
with respect to & with the aid of Eq. (12). For local zones, the
Cauchy-Born rule suggests that atoms are displaced obeying
the locally homogeneous deformation, which is the basic as-
sumption of continuum mechanics. Then, each material ele-
ment or atom locally deforms according to the polar decom-
position F=RU wherein R is associated with rigid rotation,
so that it is sufficient to consider the stretch part, which is
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directly linked to the second invariant of strain. If an element
has a value of ¢ that is greater than a given tolerance, the
element is refined with nodes that are added on the largest
edge. However, it is necessary to have a mesh adapted for the
gradient of deformation as well as for the magnitude of de-
formation so that a steep gradient of strains may be properly
captured in the numerical solution. This is consistent with the
basic premise for the coarse-grained local region, in which
the deformation is free from any severe abrupt changes.
Here, the gradient of deformation in the element subdomain
is not constant, unlike the linear triangular element, due to
the high-order element that is employed for the interpolation
of the displacement field. The spatial derivative VVII of the
square root of the second invariant II at the Gauss points of
the high-order element is a good measure of the gradient of
de_formation. To approximate \II, the value of the jump of
VI across the interelement boundary for a specific element is
initially calculated. This is essentially the difference of VII
between the two nearest Gauss points, each of which belongs
to either of the two neighboring elements. Next, this is di-
vided by the distance between the two corresponding Gauss
points and is then averaged over the Gauss points considered
for a given element. A more straightforward means of ap-
proximating VII is to take the finite difference approxima-
tion between two neighboring Gauss points within a given
element; this scheme essentially yields similar adaptive
meshes. Before closing, the entire numerical procedure for
computation is summarized below.

(1) Determine the position of atoms € on the graphene.

(2) Make elements data.

(a) Choose nodal points and make elements on the
graphene by using mesh generator.

(b) Arrange the interpolation function H(&) at initial po-
sition, £=£.

(3) Make undeformed tube data. (Exponential mapping is
used for determining the initial undeformed tube from the
graphene configuration. The initial tube with completely cy-
lindrical structure has a constant curvature and unstretched
tangential planes.)

(a) Determine the positions of nodes XY on the unde-
formed tube initially of cylindrical shape.

(b) Represent the undeformed position X in XV and H(&)
[see Eq. (12)].

(4) Minimize the energy 7" from the cluster-based ap-
proximation with respect to nodal point x¥ and inner dis-
placement #. (This step is for finding the deformed atomic
configuration, which is determined from the nodal values of
the position vectors and the inner displacement. The incre-
mental deformation is sought, starting from the undeformed
state to find out a deformed configuration under a given load-
ing or displacement. Note that the potential energy is com-
puted directly from the given atomic potential, without re-
sorting to the use of the deformation variables, and no
exponential mappings are introduced for calculation of the
deformed configurations.)

(a) Mimimize the energy with respect to  ( 97"/ dnlsw
=0) while maintaining nodal position x”=%".

(b) Update the interpolation function H(£) employing &
=§+ 7, where 7 is the new vector obtained above.
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(¢c) Mimimize the energy with respect to XY
[o7"(x?, #)/ 9x"=0] while maintaining the inner displace-
ment 7= 1.

(d) Update the nodal positions utilizing the new x” ob-
tained above and update x!'=3" H (£)x", [see Eq. (12)] for
each of the reference and the current configuration.

(5) Calculate the deformation gradient F and the deforma-
tion measure &.

(6) If &> tolerance, then add nodal points on the longest
edge of the element, and go to step (2). Else, update and save
the nodal point and the inner displacement.

IV. NUMERICAL EXAMPLES

The Tersoff-Brenner interatomic potential?®3? was chosen

for the bonded interaction on the individual surface of carbon
nanotubes, and the Lennard-Jones type potential’! was cho-
sen to represent the nonbonded interaction between neigh-
boring walls. The role of this nonbonded potential is very
important when rippling or buckling occurs such that the
tube wall may come into van der Waal’s contact.’ For mini-
mization, limited memory BFGS,*?3% which is known as an
efficient quasi-Newton method, was adopted.

A. Cluster radius study

For a large-scale simulation, it is not efficient to calculate
the energies of clusters containing a large number of atoms.
An example of bending is used to examine the influence of
the size of the cluster radius on the calculation of the poten-
tial energy. A 43.36 nm long (60,0) single walled carbon
nanotube (SWCNT) is used in this examination. The entire
domain of the tube is modeled with a total 368 elements with
cubic shape functions. Refinement is not adopted during the
simulation, but a uniform mesh is chosen, as the focus here is
on looking into the effect of the cluster size on the accuracy
of the solution. There are 24 000 atoms overall, which
amounts to a total number of degrees of freedom of 72 000.
The total number of degrees of freedom in the QC model is
5776, which is approximately 8% of that in the MM model.
A bending condition is imposed by displacement on each end
of the tube, and the imposed bending angle ranges from 0° to
15°. If the cluster radius is greater than 4.45 A, which is
approximately three times the bond length of the graphene
(r,=1.45 A), the boundaries of any two neighboring clusters
meet over the entire domain for this mesh. The strain energy
is calculated for each of the different values of cluster radius
[see Fig. 3(a)]. Figure 3(b) shows the strain energy trend
zoomed in near the buckling point. Figure 3(c) shows the
relative errors in the strain energies with respect to the clus-
ter radii, given in multiples of the bond length r, of the
graphene before and after the buckling point. The reference
value E, denotes the strain energy of the model with the
largest cluster radius (r,=1.45 A).

The energy of an atom on the free-edge boundary [free
surface in three-dimensional (3D) bulk system] is higher
than the energy of an atom in the bulk of the interior due to
bond termination. According to the Brenner potential for a
carbon system, for example, an atom on the boundary and

184109-6



ADAPTIVE NONLOCAL QUASICONTINUUM FOR...

0E - R=1.46 .4
| - —— — R=1.95 i
| — —— — R=245 b v
I R=2.95 b o
e R=3.45 /3%
O R=395 NS
S R=4.45 NS
> | o
g | 0
v/
g 20 Z
'% i 2
s f /-
»n i A
| ’d/d
10 4
,./
B i
= Za
| 2
gL +ill TS PUTE FTTE FTTL PR T
0 2 4 6 8 10 12 14

Bending angle [degree]

@)

[ ——d—-— R=1.46
—-—p—-— R=1.95

30

>
L 28
>
2
Q
c
o
£
S
& 26

24

VY il |/'\ L 1 L | L L 1 L L
10 10.5 11 1.5

Bending angle [degree]

(b)

PHYSICAL REVIEW B 77, 184109 (2008)

12
g before buckling

el after buckling
SEN
o
3 i
wo |
w6l
5 |
‘2- |
B B
Q |
2
g sr
D i
o i

(o) =3

i l Il Il ] L l Il Il Il ] l
1 2 3
Cluster radius [unit=r ]
()

FIG. 3. (Color online) Cluster radius study in a bending simulation of a SWCNT: (a) strain energy curves with respect to the bending
angle according to various cluster radii, (b) strain energy curves zoomed in near the buckling point, and (c) relative errors of the strain energy

versus cluster radii before and after the buckling point.

one in the interior layer next to this boundary has an energy
gap of approximately 2 eV in the case of CNTs. This gives
rise to a substantial amount of difference in the total energy
over the entire domain, depending on the size of the cluster
radius. In other words, the energies associated with atoms on
the free surface may not be accurately reflected in coarse
graining, particularly if the mesh is not refined well enough
to capture the localized nature near the free surface bound-
ary. This influence of the edge atoms is termed the “edge
effect” (or the “surface effect” for a 3D bulk system). Two
cases, the first for the smallest cluster radius (1.46 A) and the
second for the largest cluster radius (4.45 A), yield a 4.96%
energy gap for each node lying on the edge of the tube (about

a 127 eV gap in total energy for this model). This will
clearly affect the local equilibrium near the free surface, and
full atomistic scale refinement or at least the maximum clus-
ter radius in the case of coarsening is necessary to capture
the localized deformation near the free surface. However, the
strain energy, which is defined as the difference of the overall
energy levels between the initial and the final configurations,
is much less sensitive to the size of the cluster radius, as the
energy deviation due to the free surface has been subtracted.
The instability point links to the strain energy, which is
mostly invariant with respect to the change of the size of the
cluster radius, as shown in Fig. 3(a).
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FIG. 4. Bending [(b) and (c)] and twisting (d) simulations for a
15-walled CNT: (a) front view of the initial configuration, (b) a
front view, (c) a perspective view of equilibrium configuration at
the bending angle 34°, and (d) a perspective view of the equilibrium
configuration at the twisting angle of 130°.

B. Deformation of multiwalled carbon nanotubes

A large-scale simulation was conducted in order to dem-
onstrate the efficiency of the proposed coarse-grained
scheme. A 15-walled carbon nanotube with a length of
62.54 nm and a diameter of 11.08 nm is used in a simulation
of bending [see Fig. 4(a)]. The chiralities from the inner wall
to the outer wall are (10,10), (15,15), ..., (80,80). This mul-
tiwalled CNT containing 673 650 atoms has over 2 X 10° de-
grees of freedom. The QC model used in this simulation
consists of 291 244 degrees of freedom, which is less than
13% of the fully atomistic calculations. In this system, the
entire domain is subdivided into the QC zone. The cluster
radius is 2.0 A, which is approximately 48% of the maxi-
mum radius. Bending and twisting motion is applied by im-
posing displacement on both (respective) ends of the tube,
with an imposed bending angle ranging from 0° to 34° and a
twisting angle ranging from 0° to 130°. At the final step of
bending angle, the CNT reaches a deformed state in three-
dimensional buckles. Although the system in this case is
smaller in size compared to those observed by Poncharal et
al.’* this deformation agrees very well with the rippling
structure reported in experiments’* and in simulations.?’ The
ripples shown in Fig. 4(b) were built by sequences of simple
two buckles on top and two tilted buckles on the side [see
Fig. 4(c)].?° The equilibrium configurations in the twisting
simulation show inhomogeneous deformation, i.e., rippling,
which is similar to the bending case.

C. Numerical examples using the adaptive scheme

Before looking into remeshing examples, it is necessary
to consider what is known as the boundary effect in the adap-
tive meshing simulation. The “boundary effect” is defined as
the influence of the boundary condition during the refine-
ment of the mesh. This boundary effect is different from the
edge effect in Sec. IV A. The edge effect was previously
examined; the cluster-based energy calculation was deter-
mined to overestimate the total energy due to high-energy

PHYSICAL REVIEW B 77, 184109 (2008)

(b)

FIG. 5. (Color online) Boundary effect caused by refinement in
coarse graining: The circles indicate atom sites, and the crossed
circles indicate nodal points. The states of energies associated with
the atoms at the gray circles are affected by the boundary condition,
which is represented by the boundary nodes at the crossed blue
circles; the energies of the atoms at the open circles are free from
imposed constraint. (a) Half of a bent tube with the displacement
boundary condition imposed on the end, (b) one-element case on a
prescribed boundary region before refinement, and (c) two-element
case after refinement.

atoms on the fee edge of the tube while not affecting the
strain energy. This effect vanishes when the cluster radius
increases to its maximum, even if the full atomistic refine-
ment is not yet taken. In other words, if the clusters cover the
entire domain, the total energy of the system is precisely
calculated within the accuracy of the geometry interpolation
by the shape function for all atoms regardless of whether
refinement takes place or not. Tadmor et al.! found that the
free surface (or edge), which is one of the interfacial effects,
can be captured by nonlocal QC formulation. In contrast to
the edge effect, the boundary effect appears even if the clus-
ter radius has the maximum value. To illustrate this, two
elements are depicted. They represent conditions before and
after refinement leading to subdivision of element 1 into el-
ements 1 and 2 on an edge of a bent tube, as shown in Fig.
5(a). Figure 5(b) shows a four-node quadrilateral element
and atoms belonging to the element. The displacement
boundary condition for bending is imposed on nodes 1 and 2
on the edge but not on nodes 3 and 4 in the interior. As the
positions of atoms belonging to the element are interpolated
by the nodal positions, the atoms are directly constrained by
the fixed boundary conditions of nodes 1 and 2 during the
minimization step at a specific bending angle. This implies
that the system becomes stiffer as the mesh continues to
coarsen; therefore, the atoms bound by this crude interpola-
tion lie in a higher energy state under prescribed displace-
ment boundary conditions. Assuming that the element is di-
vided into two elements 1 and 2 via refinement, as shown in
Fig. 5(c), the atoms in element 2 are then no longer affected
by nodes 1 and 2 under the displacement boundary condi-
tion. Therefore, the bound atoms of element 2 before refine-
ment are now free from their constrained condition, and the
strain energy of the system is relaxed. Under the traction
boundary condition, the opposite phenomenon will take
place. Consistent with this observation, the adaptive compu-
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FIG. 6. Bending plus compression of the CNT under consider-
ation (L=the initial length of the CNT). The dashed-dotted line
indicates the centroidal line of the tube in the deformed
configuration.

tation here indicates that the region in which the boundary
condition is imposed is modeled as fully atomistic and that
this is capable of properly accounting for the boundary ef-
fect.

The first example considered for the adaptive meshing
scheme is a bending simulation of a 52.34 nm long (40,40)
armchair SWCNT. The bending plus compression is imposed
by prescribing the positions of the atoms on each cross sec-
tion of the two ends and is schematically described in Fig. 6.
This tube contains 33 360 atoms, implying that the total
number of degrees of freedom for the fully atomistic simu-
lation is 100 080. The displacement boundary condition is
imposed on two edges of the tube, as in the previous models.
The initial QC model has only a local zone composed of 192
elements with a cubic shape function. While finding the equi-
librium at the bending angle of 0°, it is observed that the QC
model is refined around both of its ends for the accurate
estimation of the strain energy due to the presence of the
boundary effect. The total number of degrees of freedom in
this case reaches 13 150 (see Fig. 8). The criterion for refine-
ment of the mesh is 0.07 for the deformation measure de-
fined in Eq. (19) and 0.005a for its derivative aV VIL. We
have employed the cluster radius of 2.5 A, which is 50% of
the maximum radius in the initial mesh on the graphene.
Starting from a bending angle 4.2°, refinement takes place
from the upper surface on the tube in the middle of its length.
The center of the tube where the kink occurs is characterized
by nearly complete atomistic resolution. Then, at 8.8° and at
9°, which correspond to just before and directly after kink-
ing, the degrees of freedom are 21 973 and 29 324, respec-
tively. At the final bending angle of 18°, the total number of
degrees of freedom is 31 807, which is 31.8% of that re-
quired in MM. The strain energy curve is shown in Fig. 7.
The relative error of the QC model in the strain energy, com-
pared with MM model, is 1.4% and 3.5% at angles of 8.8°
and 9°, respectively. Despite the smaller number of degrees
of freedom compared to the MM model, the QC model is
able to predict the instability point accurately in the bending
simulation. Figure 8 shows deformed configurations of the
atoms and meshes at bending angles of 0°, 8.8°, 9°, and 18°.
A visualization of the deformation of the CNT and of its
adaptive meshing shown in Fig. 8 is available online.3

The quasicontinuum is a concurrent multiscale method
that couples the atomistic scale with the continuum scale.
Therefore, this method is able to capture the atomistic fea-
tures, e.g., defects and bond breakage or bond creation
within the range of accuracy of the interatomic potentials
employed in the nonlocal region. To demonstrate this aspect,
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FIG. 7. (Color online) Strain energy versus the bending angle in
a QC simulation using adaptive meshing.

tensile simulation for the fracture of a CNT with an initial
defect in the form of vacancy is examined, as in a related
bending case. The chirality is (24,24) and the length of the
model is 16.32 nm. The model is considered to have a 12-
atom vacancy, i.e., two hexagons are removed from the CNT.
The fully atomistic or MM model has 18 828 degrees of
freedom. The displacement boundary condition is imposed at
both ends. Instead of the cutoff function in the original
potential,®® which is not appropriate for a fracture mecha-
nism, the bond list is constructed using the original cutoff
distance (2.0 A) in the initial configuration for the tensile
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FIG. 8. (Color online) Equilibrium configurations of atoms and
meshes at each bending angle.
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FIG. 9. (Color online) Strain energy curve versus strain in ten-
sile simulation using adaptive meshing.

simulation of the fracture.’” Figure 9 shows the strain energy
versus the strain; the abrupt collapse of the strain energy is
caused by the sudden relaxation due to the fracture propa-
gated throughout the entire CNT cross section. As shown in
Fig. 9, the fracture strains of the MM model and the QC
model are in excellent agreement. The fracture strain is ap-
proximately 0.128 and the nominal stress at the point of fail-
ure is approximately 73 GPa. The stress is simply deter-
mined by dividing the total cross-sectional force on the
atoms at the end by the cross-sectional area of the tube. The
area of the cross section is given by 7Df, where D is the
diameter of the CNT and ¢ is the thickness, which is taken to
be the interlayer distance 0.345 nm in graphite. This is close
to the distance based on the van der Waals radius. This frac-
ture stress is smaller than that of a pristine tube. The decrease
in the strength is attributed to the role of the defect in the
fracture of a CNT.3® The QC model, which initially started
with 7959 degrees of freedom, eventually attains 9955 de-
grees of freedom at the moment of fracture (see Fig. 10). A
visualization of the deformation of the CNT and its adaptive
meshing for the tensile model is also available online.?® This
example clearly demonstrates the strength of the present
multiscale scheme of computation; this study enables an
adaptive computation for curved crystalline bodies.

Before closing this section, it is important to note that the
preceding example of a CNT fracture is dependent on the
quality of the force field employed for its accuracy. The ato-
mistic model using an empirical potential such as Tersoff-
Brenner is not as accurate as a tight-binding model or an ab
initio calculation when a configuration of atoms substantially
deviates from equilibrium. For accurate computations, mul-
tiscale computing, in which a quantum mechanical zone is
taken around the void while the remaining area is modeled as
QC, should be employed. This is currently ongoing and will
be reported in a subsequent publication.

V. CONCLUSION

In this paper, a simple method of extending a conven-
tional QC to the case of a curved crystalline body such as a
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FIG. 10. (Color online) Equilibrium configurations of atoms and
meshes at each tensile strain: Each of the split pieces is colored
differently after the fracture.

CNT is proposed. The concept of atomless degrees of free-
dom is introduced, which makes it possible to employ higher
order interpolations for the position and displacement vectors
in a cluster-based QC. This enables treatment of nonlocal
zones as well as local zones in deformations of curved crys-
talline sheets. The present method combined with an adap-
tive scheme based on the gradient of deformation as well as
the magnitude of deformation assures accurate results re-
gardless of the initial model. Various numerical examples
demonstrate the accuracy and the effectiveness of this
method.

ACKNOWLEDGMENTS

This research was supported by a Korea Science and En-
gineering Foundation (KOSEF) grant funded by the Korean
government (MOST) (ROA-2007-000-20115-0).

APPENDIX

Let dX and dx denote infinitesimal vectors on each of the
two configurations (1, and () of three-dimensional tube, re-
spectively (see Fig. 2), and write as follows:

dX = dX'E; = dx°G, (A1)

dx =FdX = dx'e; = d¢°g,,, (A2)

where E; and e; (i=1,2,3) are basis vectors of domains (),
and ) in three dimension, respectively, and G, and g, (@
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=1,2) are defined as convected base vectors on the surface
of the undeformed and deformed tube, respectively. In the
same context, infinitesimal material vector d§ on the parental

domain € of the two-dimensional graphene sheet is written
in basis vector E, as follows:

dé=dEE, = dE'E, + dEE,. (A3)

Then,
graphene sheet Q) to undeformed tubes Q, and from the

the deformation gradients F, and F* from the

graphene sheet Q) to the deformed tube ) are written as,
respectively,

PHYSICAL REVIEW B 77, 184109 (2008)

F, = X aXlE E®= G®E“ (2 X 2 matrix)
=—=— == matrix),
(Ad)
(9X ox'
F*= —e;® E* (3 X 2 matrix). (A5)
aE - g

Finally, the deformation F from the graphene sheet (), to
deformed tube () is given as follows:

i ®f£“) <&—§ﬁ1?: ®G5) (A6)
aga’ei : aXﬁ B :
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