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ABSTRACT

The performance of speech recognition system degrades rapidly in
the presence of ambient noise. To reduce the degradation, a
degradation model is proposed which represents the spectral
changes of speech signal uttered in noisy environments. The
model uses frequency warping and amplitude scaling of each
frequency band to simulate the variations of formant location,
formant bandwidth, pitch, spectral tilt, and energy in each
frequency band by Lombard effect. Another Lombard effect, the
variation of overall vocal intensity is represented by a
multiplicative constant term depending on spectral magnitude of
input speech. The noise contamination is represented by an
additive term in the frequency domain. According to this
degradation model, the cepstral vector of clean speech is estimated
from that of noisy-Lombard speech using spectral subtraction,
spectral magnitude normalization, band-pass filter in LIN-LOG
spectral domain, and multiple linear transformation. Noisy-
Lombard speech data is collected by simulating the noisy
environments using noises from automobile cabins, an exhibition
hall, telephone booths in downtown, crowded streets, and
computer rooms. The proposed method significantly reduces error
rates in the recognition of 50 Korean word. For example, the
recognition rate is 95.91% with this method, and 79.68% without
this method at SNR (Signal-to-Noise Ratio) 10 dB.

1. INTRODUCTION

Although speech recognition in artificially constrained conditions
has recently reached high levels of performance, problems still
remain in the deployment of speech recognition technology in the
real world. One of the problems is the performance degradation of
speech recognizers when they are used in noisy environments such
as offices, automobile cabins, streets, and computer rooms. The
reason for this performance degradation is not only a
contamination of speech signals by ambient noise, but also
articulation variability as the speaker attempts to communicate
more effectively in noisy environments, which is called the
Lombard effect [6].

A number of approaches has been considered for robust speech
recognition. Noise resistant features and distance measures, such
as SMC (short-time modified coherence), RASTA (RelAtive
SpecTrAl) processing, projection measures are used for suppress

additive noise [5,7,8]. Speech enhancement from noisy speech
using spectral subtraction [1], multiple linear regression
transformation or artificial neural network and model parameter
adaptation to noisy environment are also used for robust speech
recognition.

Since the Lombard effect is a nonlinear distortion depending on
the speaker, noise level, and noise type, it is not easy to  analyze.
The Lombard effect is modeled as an additive or multiplicative
term in the cepstral domain, and it is estimated and canceled
[2,3,9]. The multi-style training method uses Lombard speech for
training data [9]. The dynamic feature is known to be robust to
Lombard speech recognition [4], and the codebook adaptation and
acoustic phonetic variability models for HMM adaptation are used
for Lombard effect compensation [10,11].

In this paper, the Lombard effect and noise contamination are
represented by several explicit distortions in the frequency
domain, and these distortions are canceled in the feature extraction
stage according to the speech degradation model in noisy
environments. The cepstral vector of clean speech is estimated
from that of noisy-Lombard speech using spectral subtraction [1],
spectral magnitude normalization, band-pass filter in LIN-LOG
spectral domain [5], and multiple linear transformation. To
evaluate the proposed method, noisy Lombard speech is generated
by having speakers listen to real world noises through
headphones. Word recognition experiments are conducted with
this noisy-Lombard speech.

This paper is organized as follows: Section 2 describes the
database used for this experiment and section 3 describes feature
processing for Lombard effect compensation and noise
suppression. Section 4 describes the evaluation experiments, and
section 5 concludes the paper.

2. SPEECH AND NOISE MATERIAL

2.1. Noise material

To develop effective robust speech recognition method, noisy
speech uttered in the real world is required and the speech
database should contain every possible distortions which could
occur in noisy environments. But it is not feasible to collect
speech data in various noisy environments. In this study, 22 noises
obtained from automobile cabins, an exhibition hall, telephone



booths in downtown, crowded streets, and computer rooms with
various SPL (Sound Pressure  Level) are used for experiments. As
can be seen from Figure 1, The SPL of the noises varies between
60dB and 90dB. Noise-free Lombard speech is produced by the
speakers listening to these noises through headphones, and noisy-
Lombard speech is produced by adding these noises to noise-free
Lombard speech with various SNR.
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Figure 1: The average SPL of noises from headphones and speech
uttered by 20 speakers in each noisy environments.

2.2. Speech material

50 Korean words under 22 simulated noisy environments are
produced by 10 male and 10 female speakers. The average SPL of
these Lombard speech in each noisy environment is plotted in
Figure 1. It is observed that the SPL of the speech is proportional
to the SPL of the noises by Lombard effect.

Although speakers are trying to change their vocal intensity
according to the SPL of ambient noise, the SPL of speakers vary
considerably. This perturbation depends on speaker, noise level,
and noise type. As shown in Figure 2, the SNRs of 20 speakers in
each type of noisy environment vary greatly. This is also a  source
of performance degradation.
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Figure 2: Average SNR of 20 speakers in 22 noisy environment.

3. LOMBARD EFFECT COMPENSATION
AND NOISE SUPPRESSION

3.1. Degradation model

This section presents the model in frequency domain of Lombard
effect and noise contamination which degrade speech recognition
performance in noisy environments.

In noisy environment, speech is distorted by the Lombard effect
and then noise is added to speech. The Lombard effect is modeled
in two steps. First, the variations of formant location, formant
bandwidth, pitch, spectral tilt, and energy in each frequency band
is represented by nonlinear frequency warping F( )⋅  and
amplitude scaling of each frequency band A( )⋅ . The spectrum of
clean speech S ( )ω  is distorted by F( )⋅  and A( )⋅ , and
becomes Y1( )ω .

Y A S F1( ) ( ) ( ( ))ω ω ω=                                  (1)

Secondly, speakers increase their vocal intensity to communicate
effectively according to the level of ambient noises as shown in
Figure 1. The variation of overall intensity depends on noise level,
speaker, and phoneme. This is also a degradation factor and is
modeled by intensity variation factor G.

 Y G Y G A S F2 1( ) ( ) ( ) ( ( ))ω ω ω ω= ⋅ = ⋅                        (2)

Finally, noise contamination can be represented as an additive
term in the frequency domain. Let N( )ω  be the spectrum of noise
signal. Then the spectrum of Lombard speech Y2 ( )ω  becomes the
spectrum of noisy-Lombard speech Y3( )ω  by noise
contamination.

Y Y N G A S F N3 2( ) ( ) ( ) ( ) ( ( )) ( )ω ω ω ω ω ω= + = ⋅ +             (3)

3.2. Restoration of clean speech from noisy-
Lombard speech

Distortions of noisy-Lombard speech can be eliminated by the
inverse processing of degradation sequence.

Since the noise characteristics are assumed to change slowly
relative to those of speech signal. the spectrum of noise N( )ω
can be estimated in non-speech intervals. The spectrum of
Lombard speech Y2 ( )ω  is obtained from spectrum of noisy-
Lombard speech Y3( )ω  by subtracting N( )ω  using Spectral
subtraction method [1].

To cancel intensity variation factor G in Y2 ( )ω , G is defined by
equation (4)

G = average spectral magnitude of speech in input signal

reference spectral magnitude
     (4)

where reference spectral magnitude is defined by a fixed value
which is the average spectral magnitude of all words. Intensity
variation factor G depends on spectral magnitude of the input
word, and thus depends on the speaker, the type and level of
noise. Y1( )ω  is estimated by dividing Y2 ( )ω  by G,  Every input
signal has the same average spectral magnitude of speech interval
after divided by G. This normalization not only cancel intensity
variability, but also stabilize input signal to follow the LIN-LOG
RASTA filtering, which is effective in both convolution and
additive noise [5]. The optimal J value which is used in LIN-LOG
RASTA processing is signal dependent and this dependency is
another source of variability in speech recognition. Spectral
mapping or multiple J values are used for compensating this
variability. Those compensation methods are not used in the



proposed method since the input signals are processed by spectral
magnitude normalization.

For LIN-LOG RASTA filtering, Y1( )ω  is transformed to spectral
domain Y J Y( ) ln( ( ))ω ω= + ⋅1 1  which is linear-like for small
spectral values and logarithmic-like for large spectral values. To
suppress additive and convolutional noise, Y( )ω  is then filtered
by band-pass filter 01 2 2 1 0 941 3 4 1. ( ) / ( . )⋅ + − − −− − − −z z z z .
Finally, the filtered spectral value is transformed back by
approximate inverse transform Y e JY

1( ) /( )ω ω= .

The distortion factors, nonlinear frequency warping F( )⋅  and
amplitude scaling of each frequency band A( )⋅  can be canceled
in the cepstral domain. Let the cepstral coefficient of clean speech
be Cn

clean  and the corresponding spectrum of clean speech be
S ( )ω . Let the  cepstral coefficient of speech which is distorted
by F( )⋅  and A( )⋅  be Ck

Lombard  and the corresponding spectrum be
Y A S F1( ) ( ) ( ( ))ω ω ω= . Then we obtain Equation (5), (6).
Substituting Equation (6) into (5), we get Equation (7). Thus by
the multiple linear transformation, the cepstrum of clean speech is
estimated from that of the speech distorted by F( )⋅  and A( )⋅ .

C S e dn
clean j n= −∫

1
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The acoustic phonetic variability by Lombard effect depends on
the speaker, noise level, noise type, and phoneme. This
dependency is approximated in the acoustic feature domain by
dividing cepstral space using vector quantization. To get transform
matrix A and vector B, first, the cepstral vector of Lombard
speech and that of clean speech are Viterbi aligned with reference
HMM (Hidden Markov Model) respectively. Secondly, the pairs
are made with the cepstral vector of Lombard speech and clean
speech which are aligned in the same state of HMM. Thirdly, the
cepstral vectors of Lombard speech are collected for each
codeword.  Finally, using the collected cepstral vector of Lombard
speech and corresponding cepstral vector of clean speech, A and B
are estimated by linear multiple regression method for each
codeword.

The cepstral vector of clean speech is estimated by transforming
the cepstral vector of Lombard speech using matrix A and vector
B. To avoid the transformation being too dependent on training
data, the cepstral vector of clean speech is obtained by averaging
the transformed cepstral vector and the original cepstral vector.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

In order to validate the proposed method, speech recognition
experiments were conducted using noisy-Lombard speech
produced in 22 simulated noisy environments. The experimental
conditions were as follows. The speech data was sampled at
16kHz, 16 bits, and pre-emphasized by a filter1 0 951− −. z . Using
Hamming window with 32msec length, 14-order cepstral vectors
were  extracted every 16msec. Cepstral coefficients were
computed from 19 Bark-scale filter bank using DCT (Discrete
Cosine Transformation). 14th order cepstral vector, difference
cepstral vector, normalized energy, first and second order
difference energy were used for the feature vector. The size of 3
separate codebooks were 256, 256, and 32 respectively. 15 state
discrete density HMMs were used as a recognizer. 2 repetition of
50 words uttered by 5 males and 5 females under clean
environments were used for training data. Noisy-Lombard words
uttered by another 5 males and 5 females under 22 noisy
environments were used for evaluation.

The several features for comparison were as follows. (1) PROP:
feature extracted by proposed method, (2) BARK-CEP: cepstral
vector from log energy output of Bark-scale filter bank, DFT
(Discrete Fourier Transformation) used for making filter bank, (3)
SPEC-SUB: BARK-CEP with spectral subtraction, (4) LIN-LOG
RASTA: LIN-LOG RASTA proposed in [5], (5) LPC-CEP:  mel-
scale cepstrum from LPC (Linear Predictive Coding) coefficients,
(6) PROJ: projection measure to LPC-CEP, (7) SMC: mel-scale
cepstrum from SMC LPC coefficient.

4.2. Evaluation by word recognition

The noisy-Lombard speech used for preliminary experiments was
generated to have SNR 10 dB. Speech data recorded in street and
computer room noises (noise number 7 to 12, 20, 21) were used.

As shown in Table 1, the proposed method PROP could
effectively compensate Lombard effect and suppress noise. The
recognition rates of LPC based methods such as LPC-CEP, PROJ,
and SMC were worse than those of DFT based methods such as
PROP, BARK-CEP, SPEC-SUB, and LIN-LOG RASTA. This is
because LPC is more sensitive to noise than DFT. In LIN-LOG
RASTA, 1 0 7−  was used for J value. When 1 0 6−  was used, the
recognition rate was 87.5% and significantly degraded when 1 0 5−

and 1 0 8−  were used. The cepstral transformation matrixes and
vectors are trained using the pair, noisy-Lombard speech under
street and computer room noises and clean speech.

Table 1: Recognition rates of preliminary experiments (%). The
SNR of speech data is 10dB.

Feature PROP BARK
-CEP

SPEC-
SUB

LIN-LOG
RASTA

LPC-
CEP

PROJ SMC

Rec. rate 95.13 72.75 78.50 87.93 60.68 69.58 71.35

Table 2 indicates the rates of speech recognition experiments
using speech data uttered in 22 noisy environments with various



SNR. SMC and LIN-LOG RASTA were excluded in these
experiments because SMC has large computation load and LIN-
LOG RASTA  is difficult to choose J values.

SNR CLEAN means the speech data used for experiments were
noise-free Lombard speech. SNR REAL means the data were
contaminated by noises with the ratio of  SPL of speech to SPL of
noises from headphones. SNR 20dB, 10dB, 0dB mean that noises
were added to speech with SNR 20dB, 10dB, 0dB respectively. In
features  PROP-LOM was also a proposed feature extraction but
the training data was Noisy-Lombard speech uttered in noise
environments 7 to 12 and 20, 21 with SNR real. Since this method
contained the Lombard effect in training data, the cepstral
transform was not used.

Table 2: Recognition rate of several feature extraction methods at
various SNR

Feature

SNR

PROP PROP-
LOM

BARK-
CEP

SPEC-
SUB

LPC-
CEP

PROJ

CLEAN 98.60 99.17 96.15 95.58 92.75 92.12
REAL 97.63 99.02 91.16 91.17 86.03 87.30
20dB 98.15 99.01 92.45 91.65 85.92 87.45
10dB 95.91 97.71 79.68 82.26 72.91 75.98
0dB 79.75 83.80 43.74 55.03 42.56 46.42

SNR CLEAN had the only distortion from the Lombard effect. As
shown in Table 2, since proposed methods PROP and PROP-
LOM can compensate the Lombard effect, they improved
recognition rates compared with baseline feature extraction
BARK-CEP. But the other noise suppression methods SPEC-SUB
and PROJ degraded them when they were used in noise-free
speech. The experimental results in SNR REAL, 20dB, 10dB, and
0dB showed that the proposed methods were effective in noise
suppression and Lombard effect compensation. Since PROP-LOM
used Noisy-Lombard speech, SNR REAL, the recognizer was
trained on the data distorted by the Lombard effect and noise
contamination. It showed the best recognition rates.

5. CONCLUSIONS

This paper described the use of Lombard effect compensation and
noise suppression to reduce recognition performance degradation
under noise conditions. The degradation model representing
spectral changes of speech signal under noisy environments was
proposed. Non-linear warping function and amplitude scaling
function in the spectral domain represented variations of formant
location, formant bandwidth, pitch, spectral tilt, and energy in
each frequency band. These variations were approximated by
linear transformation in the cepstral domain. The cepstrum of
clean speech was estimated from that of  Lombard speech by
multiple linear transformation. Spectral magnitude was normalized
to cancel the variation of vocal intensity. Spectral subtraction was
used to suppress noise and the spectrum was filtered by band-pass
filter to cancel slow varying noise.

Experimental evaluations were executed in speaker-independent
isolated word recognition based on discrete density HMMs.

Noisy-Lombard speech of 50 Korean words were spoken by 10
male and 10 female listening to real world noises through
headphones. Recognition experiments were conducted with
contamination by noise from automobile cabins, an exhibition
hall, telephone booths in downtown, crowded streets, and
computer rooms. From the experiments, the effectiveness of the
proposed method has been confirmed.
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