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ABSTRACT

This paper proposed a segmental confidence weighting (SCW)
method that makes the segments with higher confidence score
contribute more to the recognition score at a pattemn
comparison step. As a two-stage approach, the proposed
method obtains N-best candidates and calculates HMM (hidden
Markov model) state-level segmental confidence scores using
the most likely candidate. After that it normalizes segmental
confidence scores and uses them as weighting factors for a
modified Viterbi algorithm to select the best candidate among
the N-best candidates. We added burst noises of various SINR
(signal-to-impulsive noise ratio) to 3000 word utterances for the
verification of the proposed method. The experimental results
showed that the proposed method could reduce the word error
rate by about 12.5% at SINR -5 dB.

1. INTRODUCTION

Speech recognition system operating in a real situation may
have to deal with a variety of noise signals to prevent serous
degradation of the performance. Great advances have been
achieved in the area of robust speech recognition over the past
two decades. The three major approaches are robust feature
extraction,  speech  enhancement and  model-based
compensation. The first approach tries to extract speech features
that are inherently immune to noise. The second one fries to
restore clean speech by removing noise from noisy speech
signal. Finally, the model-based techniques adapt or compensate
model parameters according to a target noise environment [1].

Most of the previous work 1s concentrated on the stationary
noise process like a white Gaussian noise or a slowly varying
noise such as a car noise. However, a large portion of real world
noise is highly non-stationary or impulsive, which cannot be
dealt eftectively with the previous approach. Therefore, new
compensation techniques are required for the ASR systems
running in these kinds of noise environments.

An impulsive or highly non-stationary noise contaminates
certain segments of speesch signal and leaves a large fraction of
speech samples nearly unaftected while a slowly varying non-
stationary noise degrades each segment on different levels. For
this reason segments of a noisy speech have various degrees of
confidence. In most of current ASR systems every segments
contribute to a recognition score equally, but it would be better
if a segment with higher confidence is taken more into account
at the pattern comparison step.

As a related approach, the segmental signal to noise ratio
(SNR) of a frame was used as a reliability measure and was
applied as a weighting factor for a distance between two vectors
m DTW (dvnamic time warping)-based pattern matching
procedure [3]. In another study, the segmental SNR and a noise
suppression technique are combined to give a weighting factor
[4]. A weighted Viterbi algorithm was proposed to apply

weighting factors to HMM (hidden Markov model) based
recognition system [5]. These approaches are effective for
slowly varying noise environments because it is feasible to
estimate the segmental SNR. However, they cannot be used in
highly non-stationary or impulsive noise situation because of
the difficulties in obtaining local SNR values.

This paper i1z based on the confidence measures that have
been extensively studied for the non-keyword rejection or the
utterance verification [7]. The previous confidence measure was
mainly used to reject a whole word-level or a whole utterance-
level speech, but m this work, we extended it to a subword
segment level. The proposed segmental confidence weighting
(SCW) method calculates confidence scores for HMM state
level segments and normalize them to the values between 0 and
1. A modified Viterbi algorithm uses the normalized confidence
scores as weighting factors to give a likelihood score. As the
proposed method does not require an estimation of noise
specttumn or a calculation of segmental SNR, it fits to the
immpulsive or the highly non-stationary noise environments.

This paper is organized as follows. Section 2 describes briefly
on the segmental SNR weighting methods. Section 3 explains
several different segimental confidence measures. In section 4,
we propose two confidence normalization functions. Section 5
details the modified Viterbi algorithm and overall 2-stage
procedure based on the proposed segmental confidence
weighting (SCW) method. Section ¢ gives experimental results
tollowed by conclusions in section 7.

2. SEGMENTAL SNR WEIGHTING

The feature vectors extracted fiom a noisy speech are
contaminated in different ways along the characteristics of the
noise properties. As shown in the figure 1, the stationary noise
contaminates the entire feature vector sequence while the
mpulsive noise contaminates only several portions of a speech
without affecting the other portions of the speech. A non-
stationary noise is an intermediate type of these two and it
contaminates each segment to a different degree. Even if the
noise is stationary, as the power of a speech signal changes fast,
the segimental SNR of a noisy speech is time-varying [3].

The segments with low SNR lose more linguistic information
than the segments with high SNR do. Therefore, the confidence
of segment 1s proportional to its SNR value. Because a noisy
speech 1s composed of segiments with various confidence values,
the pattern comparison algorithm should deal each segment
with different degrees of importance. However, most of current
systems take the segments equally.

Several approaches that reflect local SNR at the pattern
comparison step were proposed [3][4][5]. They first estimate
segmental SNR and normalize it to the values between 0 and 1.



Then use the values as weighting factors at the pattern
comparison step of DTW or HMM based recognition systems.

These methods showed performance improvements with the
reliable estimation of segmental SNR. However, when the noise
15 fast time-varying or mmpulsive, an exact estimation of the
segmental SNR becomes difficult. Therefore, in this work we
take another approach that does not need an estimation of local

SNR. The proposed method is based on the confidence measure,

which 1s described i the following sections.

3. SEGMENTAL CONFIDENCE
MEASURE

For the rehability test of a recogmition result, the confidence
measure has been extensively studied in the area of utterance
verification to reject incorrect utterances such as out-of-
vocabulary words, speaker’s hesitations or noise tokens. This
approach has rejected or accepted the whole utterance at a
sentence or a word level only.

In this study, we extend the previous confidence measure to a
subword level, for example, a phoneme or a HMM state level, to
reduce the contribution of severely contaminated segiments to a
likelihood score. Section 3.1 suminarizes the framework of the
utterance level confidence measure [6] followed by the
proposed subword level segmental confidence measure.

3.1 Word level confidence measure

, the Viterbi

decoding 1s employed in the recognition process to determine
the most likely word 177, where

Given a feature vector sequence Y = { XXy, X

W =arg max L(X |I7)) (1)
J
In the context of subword recognition, ¥ is a concatenation of
subword units that can be written as

W =piPy P, Pu )

where A/ 15 the number of subword units comprising 7 .
Assuming independence among subword units, the Viterbi
decoding implies that we can write the likelihood in (1} as

L(X W)

= max  LCUE pOLCER | py) LOXE L py)

(3)
where _\';’:_l 15 the feature vectors between ; — and r
cortesponding to the speech segment for subword umt p .

Given the subword model DDy P subword level

verification 13 performed independently on each subword m the
string, implying A7 independent likelihood ratio tests. For a
given subword  p m 177, the likelihood ratio can be wiitten as
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where ff 1s the hypothesis that the segment Al correspond
m=1

to the true mstance for subword p . and A 1s the hypothesis

that the segment does not correspond to the true mstance for
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Figure 1. Contamination of a feature vector sequence by (a) an
impulsive noise (b) a stationary noise.

subword p . Takang the log of (4) with sunplifymg the notation

_\';m as \ . results i a log likelihood difference, which 1s

m=1

G(X,.p,)=log L(X  |H,)
—logl L(X  |H )], l=m=z=M
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Since the density functions of L(X, |H,) and L(X,, |H,) ae
not known exactly, (5) can be approximated as a measure of the
classification of two classes, which is
V(X p,)=log L(X, [ p,)]
Wy .
| ©)
—log| —— > exp( ylogl L(X | p.)]
K -1 ; =
k#m
where the first class expressed in the first term represents the
case of correct subword recognition. The second class expressed

in the second term is the complement of the first class and
represents the case of incorrect subword recognition.

Assuming independence, the utterance level likelihood ratio for
word 777 can be written as a product of subword level likelihood
ratios as in (7).

M
T =T]T(X,:p.) (N

m=1
Taking the log of (7) followed by applying (6) results in (8).
M
F(XW)y=>T(X,.p,) ®)
m=1

The utterance 1s 1ejected or accepted by comparing 77( X" 77")

with a predefined threshold.

3.2 Frame level confidence measure

In the context of subword recognition, I} can be expressed as a
concatenation of subword units as in (2), fiuther, it can be
expressed as a concatenation of HMM states of each subword
that can be written as
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Figure 2. An example of phoneme level segmental confidence

onmput speech; R #(r) 1s a confidence score at 7 -th frame and

17 i5 a confidence score of the segment for 7 -th phoneme.

where N 1s the number of states comprising a subword.
Suppose that a vector X, 1s generated from a state 5-5’”) , a frame-

level confidence measure | " (x,

5" can be wuitten as

I, (x,; Si.m)_} = log[ L(x,
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3.3 Phoneme and HMM state level segmental
confidence measure

Based on the frame-level confidence measure that was defined

previously, an HMM state-level segmental confidence measure

can be defined as in (11) by averaging frame-level confidence

scores on a given state segment.

rom) "l g0
I = 7w >V (x,88) D

where TJ(’”? is the number of frames composing the given state

segiment. As a function of 7, the state-level confidence can be
expressed as in (12).
Re(ty=1"" «x st (12)
‘ J i J
Similarly, a phoneme-level segmental confidence measure can
be defined as i (13) by averaging frame-level confidence scores
on a given phoneine seginent.
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where 7% is the nmumber of frames composing the given
phoneme segment. Also, as a function of 7, the phoneme-level
confidence can be expressed as mn (14).

R¥(t)=T""", x,=p, (14

An example for the phoneme-level segmental confidence as a
function of ¢ is shown in figure 2.
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Figure 3. Distribution of segmental confidence scores.

4. CONFIDENCE NORMALIZATION

There are no upper and lower bound for a confidence score
malking it improper to be used as a weight factor directly. In this
work we normalized the score to have the value between 0 and 1.
Let us sunplify the segmental confidence function R#(7) or

-~

R (#) as R(¢). Figure 3 shows the distribution of R() values.
In the figure, the confidence gets higher from left to 1ight. g is a
threshold value, which will be used for the normalization.

We propose two kinds of normalization functions. The first
one 18 a hard limit function (HLF) in which all confidence scores
that are lower than the threshold take a value g << 1., and those
that are higher than the threshold take the wvalue 1-— g .
According to this function, a segment that has a very low
confidence value because of the severe contamination does not
contribute to the likelihood score while the other segments
contribute equally to the likelihood score. The HLF is written as

-«

. if R(t)=46
R, (1) =" ’

_ (15)
&  if R(t)<4

where § 15 a threshold and is set as ;4 — o, where ;4 and &

are the mean and the standard deviation of the confidence
distribution that is shown in figure 3.

The second normalization function is a threshold logic
function (TLF) where the confidence values that lie between the
upper and lower thresholds are linearly transformed to a value
between 1— g and ¢, and those that are out of the interval take
either 1 — g or g as their normalized confidence value. The TLF
is written as

C1l-s if R(t)z8,
Ry(n= 0% 4 g cRry<s, 0O
6, -6,

where O,=u+0 and 0, =u—oc are the upper and the

lower threshold respectively. According to the TLF, a segment
that has a confidence value lower than or higher than the
threshold values does not contribute at all or fully contribute to



the likelihood score while a segment whose confidence value
lies between the two thresholds contribute to the likelihood
score in proportion to their confidence values.

S. CONFIDENCE WEIGHTING VITERBI
ALGORITHM

In this section we mtroduce a modified Viterbi algorithm that
uses the nommalized confidence as a weighting factor. The
algorithm 1s as follows. The notations have the same meaning as
m[9].

Step 1: Inttialization. For each state j of HMM,

o, (1)y=m, < [b,(x, )]RNU)

w i (i)=20
Step 2: Iteration. For 2 < <T and ¥j,

S,(jy=max [5,_ ()< a,]~[b, (x,)] A )

1

w,(J)=arg max [S, (1)~ ay]

H

Step 3: Termination.

P =max [5,(s)]

s€sy

In the algorithm, the normalized confidence value R N(r')

controls the degree of contribution for a given frame. For
R, ()~ 1. the output probability of a given frame contributes

fully to the likelihood score. Similarly, for R »(O=0. the
output probability does not contribute to the likelihood score.

The overall procedure of the proposed segimental confidence
weighting (SCW) 1s as follows. Firstly N-best candidates are
selected using the Viterbi algorithm [9]. Using the most likely
word, the state-level segmentation i1s perforined followed by the
segmental confidence calculation. The confidence values are
then normalized and the modified Viterbi algorithim chooses the
best word among the N-best candidates. This 2-stage procedure
18 shown in figure 4.

6. EXPERIMENTAL RESULTS

For the venficaion of the proposed segmental confidence
weighting method, a speaker independent isolated word
recogmtion test was done. 100 words were selected from a 432
phoneme balanced word (PBW) database. The traiming database
consisted of 25 male and 25 female speakers. For the test
database 3000 utterances of 30 male and female speakers were
used. The test data were contaminated artificially by the white
burst noises of SINR 10, 5, 0, -5, -10 dB. Besides, at a given
SINR, 5, 10 and 20 percent of a signal was partly contaminated
by a burst noise. The burst noise was used because it 1s easy to
control the duration and the power of each burst. We used 12
MFCC (mel frequency cepstral coefficient), delta and
acceleration of it together with energy, delta energy and
acceleration energy. Monophone HMM models as well as
triphone HMM models were generated using HTK 3.0 toolkit.
Monophone models were used for the calculation of segmental

confidence score and triphone models were used for the N-best
calculation and for the modified Viterbi decoding.

contaminated most likely
speech Viterbi word state level
decoding segmentation
N-best segmental
confidence
confidence l
recognition - weighting
- weighted factor
result I " ac .
] Viterbi 4 normalization
decoding

Figure 4. Overall 2-stage procedure based on the proposed
SCW (segmental confidence weighting) method.

Figure 5. Examples of partly contaminated speech; (a) SINR =5
dB. 10% contamination (b) SINR -5 dB, 20% contammationn.

(a)

Fustly, we mvestigated the effects of varying the fraction of
contaminated segments and degree of contamination on the
performance. The results are listed in Table 1. In this experiment,
the duration of a burst is set to be 5% of the mput length.
Therefore 2 and 4 bursts comrespond to a 10% and a 20%
contamination respectively. An example of speech signals
added by 10% and 20% burst at SINR -5 dB are shown in
figure 5.

Table 1. Baseline word error rate on burst noise (with respect to
several SINR and contamination percentage). The length of a
burst is 5% of input speech signal

Burst Singal to Impulsive Noise Ratio (SINR)
We [ jode | sdB | 0dB | -5dB | -10dB
5% 57 93 14.4 227 46.4
10 % 75 16.1 27.4 40.5 56.9
20 % 9.0 205 392 501 70.4

According to the definition of SINR that was mentioned
previously, at a given burst rate the SINR decreases as the
power of a burst increases. In addition, for a fixed SINR the
power of a burst decreases as the burst rate increases. In table 1,



the error rate mcreases as SINR decreases. At a given SINR, the
error rate mcreases with increasing number of weaker bursts.

In the second experiment, the proposed 2-stage
compensation based on the segimental confidence weighting
(SCW) was evaluated and the two normalization functions were
compared. The results are listed in the table 2. The results in
table 2 in comparison to the results in table 1 reveals that the
error rate decreased by the SCW method in most of the cases.
The error rate was reduced by 12.5% on average for 5-20%
burst rate at SINR —5 dB. As a normalization method, the TLF
(threshold logic function) showed better performance than the
HLF (hard Limit function), which means that it is more effective
to use a continuous value between 0 and 1 rather than to use the
binary values as a confidential weighting factor.

Table 2. Word error rate of segmental confidence weighting
method and comparison of the two normalization functions
(NF), TLF (threshold logic function) and HLF (hard limit
function)

Burst SINR (dB)
rate NF 10 5 0 -5 -10
50, TLF 44 75 124 | 223 | 404
i HLF 47 84 | 135 | 241 | 475
10 % TLF 7.7 | 134 | 202 | 307 | 463
' HLF 69 | 138 | 230 | 346 | 52.7
20 % TLF 104 ] 201 | 355 | 522 | 685
' HLF 95 | 201 | 376 | 563 | 739

7. CONCLUSION

In this paper, we proposed segmental confidence weighting
(SCW) method to recognize a speech that 1s partly
contaminated by burst noise. To make the scores from the
segments of high confidence contribute more to the likelihood,
the SCW normalizes HMM state-level segmental confidences
and uses them as a weighting factor for a modified Viterbi
algorithm. The proposed method does not require the estunation
or the a priori knowledge of noise. The experimental results
using the burst noises at various SINR showed that it could
reduce the word error rate by 12.5% on average about various
burst rates. A study on an improved method to obtain segmental
confidence score is remained as a further work in addition to a
study on a maximum utilization of normalization and weighting
of confidence information.
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