
Rapid Speaker Adaptation for Continuous Speech Recognition 
Using Merging Eigenvoices 

Dong-jin Choi and Yung-Hwan Oh 

Voice Interface Laboratory, CS Division, KAIST, Daejeon, Republic of Korea 
{cdjin,yhoh}@speech.kaist.ac.kr 

 

Abstract 

Speaker adaptation in eigenvoice space is a popular method 
for rapid speaker adaptation. To improve the performance of 
the method and to obtain stabilized results, the number of 
speaker-dependent models should be increased and a greater 
number of eigenvoices should be re-estimated. However, the 
huge computation time required to find eigenvoices makes 
these solutions difficult, especially in a continuous speech 
recognition system. This paper describes a method to reduce 
computation time by estimating eigenvoices only for 
supplementary speaker-dependent models and merging them 
with the used eigenvoices. Experimental results show that the 
computation time is reduced by 73.7% while the performance 
is almost the same when the numbers of speaker-dependent 
models in two sets to be merged are the same. 

1. Introduction 
Generally, a speaker-dependent (SD) system outperforms a 
speaker-independent (SI) system when tested on the same 
speaker. Speaker adaptation aims to approach the 
performance of a SD system with as little data from the target 
speaker as possible. Maximum a posteriori (MAP) [1] and 
maximum likelihood linear regression (MLLR) [2] are well 
known speaker adaptation methods. However, these methods 
have a disadvantage in that the performance increases only 
slightly or even decreases with a very small amount of 
adaptation data [3]. Nowadays, people are concerned about 
rapid speaker adaptation, which is the technique of speaker 
adaptation using a small amount of data, around 30 sec. or 
less, since the range of applications which cannot request a 
long time speech for adaptation data are enlarged. 

The eigenvoice technique [3],[4] is a popular rapid speaker 
adaptation method. This technique constrains the adapted 
model to be a linear combination of a small number of basis 
vectors (eigenvoices) obtained from a set of reference 
speakers, thereby reducing the number of free parameters to 
be estimated. One drawback of this technique is numerical 
problems. Principal component analysis (PCA) is too high a 
price to pay for rapid adaptation, especially in cases with 
large HMM systems like a continuous speech recognizer [5].  

To improve performance of eigenvoice adaptation, a 

greater number of eigenvoices should be calculated.  
However, it is necessary to add sufficient SD models before 
estimating the eigenvoices because eigenvoices from 
insufficient SD models can yield unstable results [6]. A 
general eigenvoice adaptation method should combine used 
and supplementary SD models and calculate eigenvoices from 
the combined models to improve the performance. The 
computation time to calculate new eigenvoices using singular 
value decomposition (SVD) is increased in proportion to the 
number of combined SD models since the computation time 
of SVD is proportional to the amount of data. Time can be 
reduced if we calculate the eigenvoice for only 
complementary SD models and can use the used eigenvoices 
to calculate new eigenvoices. 

In this paper, we describe a method to merge eigenvoices 
so that the computation time to add eigenvoices for 
performance improvement is decreased while word error rates 
of the systems that use and do not use merging eigenvoices 
are almost the same. 

This paper is organised as follows. Speaker adaptation in 
eigenvoice space is reviewed in Section 2. Section 3 presents 
the method to merge eigenvoices. Section 4 evaluates the 
proposed method using the Resource Management (RM) 
corpus. Finally, we conclude this paper in Section 5. 

2. Eigenvoice Technique  
Suppose that we have R well-trained SD models and one SI 
model. The “supervector” is defined as 

, in which  is the mean vector 

of m-th Gaussian mixture of r-th SD model; n is the number 
of all Gaussian mixtures in r-th SD model. PCA is applied to 
the R supervectors, and R eigenvectors, , 

are yielded. The mean supervector, , and the dominant p 

eigenvectors are called the “eigenvoices.” The supervector for 
the new speaker can be obtained by a linear combination of 
the eigenvoices, such that 

TTn
r

T
r

T
rrX ])()()[( 21 µµµ L= m

rµ

)(,),2(),1( Reee L

)0(e

)()()1()1()0( pepweweX t +++= L                       (1) 

where  can be calculated using 

maximum likelihood eigen-decomposition (MLED) [3]. 

)(,),2(),1( pwww L

The dimensions of supervectors for continuous speech 



recognition (CSR) are typically very large. For example, a 
general CSR system using 39 order feature parameters, 3 
states, 6 mixtures, and triphone has about 300,000 order 
supervectors. Computing the covariance or correlation matrix 
of the eigenvoice in CSR is very difficult because of time and 
memory problems. Therefore, SVD is used generally in 
eigenvoice adaptation [6]. The SVD algorithm decomposes a 
matrix into two orthogonal matrices and a diagonal matrix: 

T
NNnNnnnN XVXXUXX )()()(1)( Σ=− µ              (2) 

where n is the dimension of the supervector and N is the 
number of SD models. )(Xµ is the mean, 1is a row N 1’s, 

 is an  matrix of eigenvectors, )(⋅U )( nn× )(⋅Σ  is an 

 matrix of spread values, and  is an )( Nn× )(⋅V )( NN ×  

matrix which contains information about the data projected 
into eigenspace. 

It is often assumed that only p eigenvectors with large 
spread values are of interest. We can modify (2) as follows: 

T
NpppnpnN XVXXUXX )()()(1)( Σ≈− µ               (3) 

The SVD is usually computed by a batch 

 time algorithm [7]. As mentioned 

above, because n is very large in CSR, the time required to 
calculate eigenvoice can be intolerable if N increases. 

)984( 322 NnNNnO ++

3. Merging Eigenvoices 
There are many methods for merging eigenspace models, but 
they fail to handle a change in the mean. The mean should be 
updated in the merging process in CSR because the means of 
Gaussians are very important in speech recognition. Hall 
introduced a method for merging eigenspace models that 
explicitly and accurately keep track of the mean of the 
observations [8],[9]. 

Suppose that there are two sets of supervectors, X and Y. 
The SVD of these data are specified as 

T
NpppnpnN XVXXUXX )()()(1)( Σ≈− µ                 (4) 

                      (5) T
MqqqnqnM YVYYUYY )()()(1)( Σ≈− µ

in which N and M are the number of supervectors of X and Y 
and p and q are the number of eigenvectors to be used as 
eigenvoices with respect to X and Y. 

Then we can specify the SVD eigenspace merged as 

T
sMNssnsMNn ZVZZUZZ )()( )()()(1)( ++ Σ≈− µ         (6) 

in which s is the number of eigenvoices to use in the merged 
eigenspace. 

3.1. Method of Merging Eigenvoices 

Suppose that there is an orthonormal basis set, , that spans 

both eigenspace models of X and Y, and 

nsΓ

)()( YX µµ − . 

We can then specify the required eigenvectors, , as a 

multiplication of 
nsZU )(

nsΓ  and a rotation matrix,  such that ssR

ssnsns RZU Γ=)(                                (7) 

To calculate nsΓ , we can compute the residues, , of 

each of the eigenvoices in : 
nqH

nqYU )(

nq
T

nppq YUXUG )()(=                           (8) 

pqnpnqnq GXUYUH )()( −=                         (9) 

The residue of )()( YX µµ − , , with respect to 

 is specified as 
nh

npXU )(

))()(()( YXXUg T
npp µµ −=                        (10) 

pnpn gXUYXh )())()(( −−= µµ                      (11) 

The  is all orthogonal to each of eigenvoices in 

. However, some of the  are zero vectors 

because such vectors represent the intersection of the two 
eigenspaces. These zero vectors should be removed in . 

The  also needs the removing process for the same reason. 

nqH

npXU )( nqH

nqH

nh

]),[( nnqnt hHOrthobasis ζν =                        (12) 

where ζ  is an operation that removes very small column 

vectors from the matrix and  is the function to 

compute a set of mutually orthogonal unit vectors that support 
its argument. t is the number of vectors from (12) and satisfies 
the following equation : 

)(⋅Orthobasis

),min(1 NMnqptps +≤++≤+=                    (13) 

By (12), nsΓ  can be specified as 

],)([ ntnpns XU ν=Γ                          (14) 

Using (4), (5), (6), (7), and (14), we can specify the 
following equation: 



SD Models

1+2

General EV
SD models

2

Additional
SD models

Merged 
eigenvoices

SD Models 

1

Used SD models

Use of merging EV

complementary 
eigenvoices

e1

e2

Used eigenvoices

O(4n2N+8nN2+9N3)

O(4n2(N+M)+8n(N+M)2

+9(N+M)3) 

O(4n2M+8nM2+9M3)

+O(4s2(N+M)+8s(N+M)2

+9(N+M)3)

+

e3

e4

e7

e6

e5

SD Models

1+2

General EV
SD models

2

Additional
SD models

Merged 
eigenvoices

SD Models 

1

Used SD models

Use of merging EV

complementary 
eigenvoices

e1

e2

Used eigenvoices

O(4n2N+8nN2+9N3)

O(4n2(N+M)+8n(N+M)2

+9(N+M)3) 

O(4n2M+8nM2+9M3)

+O(4s2(N+M)+8s(N+M)2

+9(N+M)3)

++

e3

e4

e7

e6

e5

Figure 1: Comparison of general eigenvoice adaptation and 
the proposed method to use merging eigenvoices 

 
 

]1)()()()(,

1)()()()([

)()(],)([

)()()(1)(

)(

)()(

ZYVYYU

ZXVXXU

ZVZRXU

ZVZZUZZ

T
Mqqqnq

T
Npppnp

T
sMNssssntnp

T
sMNssnsMNn

µ

µ

ν

µ

−Σ

−Σ=

Σ=

Σ≈−

+

++

(15) 

Multiplying both sides by  , we obtain T
ntnpXU ],)([ ν

T
sMNssss

T
Mqqqnq

T
Npppnp

T
ntnp

ZVZR

ZYVYYU

ZXVXXUXU

)()()(

]1)()()()(,

1)()()()([],)([

+Σ=

−Σ

−Σ

µ

µν
(16) 

Using SVD of the left side of (16), we can calculate . The 

time to calculate it is much shorter than in (6) since this SVD 
is an  problem and 

ssR

)( MNs +× ns << .  

Lastly, the merged eigenvoices, , can be obtained 

using (7). 
nsZU )(

3.2. Time Complexity 

Fig. 1 shows the block diagram and the time complexity for 
the general eigenvoice adaptation method and the proposed 
method to use merging eigenvoices. Suppose that we used 
eigenvoices obtained from SD models 1 and SD models 2 is 
added to improve the performance. In the general eigenvoice 
adaptation method, we should join SD models 1 and 2 to 
make SD models 1+2 and use new eigenvoices to be 
calculated from SD models 1+2. In this process, the time 
complexity of SVD, which takes the most of the time is  

))(9)(8)(4( 322 MNMNnMNnO +++++       (17)  

78

79

80

81

82

83

84

0 1 2 3 4 5

No. adaptation sentences

W
o
rd

 %
C

o
r 

 

(10)

(10,99,1,9)

(30,79,3,7)

(50,59,5,5)

(70,39,7,3)

(90,19,9,1)

Figure 2: Word correction rate when using and not using 
merging eigenvoices and when s=10 

78

79

80

81

82

83

84

85

0 1 2 3 4 5

No. adaptation sentences

W
o
rd

 %
C

o
r 
 

(20)

(10,99,2,18)

(30,79,6,14)

(50,59,10,10)

(70,39,14,6)

(90,19,18,2)

Figure 3: Word correction rate when using and not using 
merging eigenvoices and when s=20 

 
 

In the proposed method, we should calculate eigenvoices 
from only SD model 2 and merge it with the used eigenvoices 
to obtain the new eigenvoices. The time complexity in this 
method is 

      (18) 
))(9)(8)(4

984(
322

322

MNMNsMNs
MnMMnO

++++++

++

Usually, N+M is much smaller than n, and s is smaller than 
N+M in the eigenvoice adaptation; therefore, we can ignore 
the time to merge eigenvoices. This means that it takes time 
to calculate eigenvoices from only SD models 2. 

4. Experimental Results 
We used the Resource Management (RM) corpus to 

evaluate the proposed method. The speech was parameterized 
into the 12 mel-frequency cepstral coefficients along with 
normalized log-energy and their first and second-order time 
derivatives. This yielded a 39-dimensional feature vector. 
Acoustic models are trained based on monophones, and each 
HMM state has one mixture components for the output 
distribution.  The standard augmented 109-speaker SI training 



0

500

1000

1500

2000

2500

10 30 50 70 90

No. used SD models

C
P
U

 T
im

e
  
  

Not using Merging EV

Using Merging EV

Figure 4: Computation time when using and not using 
merging eigenvoices 
 
 
set of RM was used for building the SI models. A set of 109 
SD models were generated by performing MLLR adaptation 
of these SI models with full regression matrices, followed by 
MAP adaptation. We used a 12-speaker SD training set for 
the adaptation phase and 1200 sentences from SD evaluation-
test set for the recognition phase. 

Word correction rates, both using merging eigenvoices and 
not using them, are compared in Figs. 2 and 3. We use 10 and 
20 eigenvoices, respectively. Solid and dotted lines indicate 
the cases which use and do not use merging eigenvoices, 
respectively. In the key, the number next to the dotted line in 
parentheses is the number of merged eigenvoices. The 
numbers next to the solid lines are the number of the used SD 
models, the number of the supplementary SD models, the 
number of the used eigenvoices, and the number of the 
eigenvoices to be calculated from the supplementary SD 
models, in that order. The adaptation performance is almost 
the same regardless of the number of eigenvoices or SD 
models. 

Fig. 4 shows the computation time in cases that use and do 
not use merging eigenvoices when a total of 109 combined 
SD models are used. We ran the same code several times and 
chose the smallest value to minimize the effect of other 
concurrently running processes. In the case that merging 
eigenvoices are not used, CPU time is constant since we 
should calculate eigenvoices from combined SD models 
regardless of the number of used SD models. However, in the 
case that merging eigenvoices are used, CPU time decreases 
along with the number of used SD models since we should 
calculate eigenvoices from only complementary SD models 
and merge them with the used eigenvoices 

5. Conclusion 
In this paper, a method for merging eigenvoices has been 
presented. Instead of calculating new eigenvoices from 

combined SD models to improve the performance of 
eigenvoice adaptation systems, we calculate the eigenvoices 
from only complementary SD models and merge them with 
used eigenvoices. 

Experimental results show that there is only slight 
performance reduction due to computation error in the 
merging phase, while the computation time is remarkably 
reduced depending on the number of added SD models. 

Future research should include experiments for more 
complex HMM systems. Further tests are needed with 
systems based on triphones or multiple Gaussian mixtures. 

6. Acknowledgements 
This work was supported (in part) by the Ministry of 
information & Communications, Korea, under the 
Information Technology Research Center (ITRC) Support 
Program. 

7. References 
[1] C. H. Lee, C. H. Lin, and B. H. Juang, "A study on 

speaker adaptation of the parameters of continuous density 
hidden Markov models", IEEE Trans. Signal Processing, 
vol. 39, pp. 806-814, 1991.  

[2] C. Leggetter and P. Woodland, "Maximum likelihood 
linear regression for speaker adaptation of continuous 
density hidden Markov models", Computer Speech and 
Language, vol. 9, pp. 171-185, 1995.  

[3] R. Kuhn, J. Junqua, P. Nguyen, and N. Niedzielski, "Rapid 
Speaker Adaptation in Eigenvoice Space", IEEE Tran. 
Speech and Audio Processing, vol. 8, no. 6, pp. 695-707, 
2000.  

[4] R. Kuhn, P. Nguyen, J. Junqua, L. GoldWasser, N. 
Niedzielski, S. Fincke, K. Field, and M. Contolini, 
"Eigenvoices for speaker adaptation", Proc. Int. Conf. 
Speech Language Processing, vol. 5, pp. 1771-1774, 1998.  

[5] P. C. Woodland, "Speaker Adaptation: Techniques and 
Challenges", Proc. IEEE Workshop on Automatic Speech 
Recognition and Understanding, pp. 85-90, 2000. 

[6] R. Westwood, "Speaker Adaptation Using Eigenvoices", 
MS thesis, Cambridge University, 1999. 

[7] Gene H. Golub and Charles F. Van Loan, Matrix 
Computations. (3rd ed.), Johns Hopkins, 1996.  

[8] P. Hall, D. Marshall, and R. Martin, "Merging and 
Splitting Eigenspace Models", IEEE Tran. Pattern 
Analysis and Machine Intelligence, vol. 22, no. 9, pp. 
1042-1049, 2000.  

[9] P. Hall, D. Marshall, and R. Martin, "Adding and 
Subtracting Eigenspaces with Eigenvalue Decomposition 
and Singular Value Decomposition", Image and Vision 
Computing, vol. 20, pp. 1009-1016, 2002.  


	Introduction
	Eigenvoice Technique
	Merging Eigenvoices
	Method of Merging Eigenvoices
	Time Complexity

	Experimental Results
	Conclusion
	Acknowledgements
	References

