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ABSTRACT

A new technique has been developed to enable blind
source separation given only a single channel record-
ing. The proposed method infers source signals and
their contribution factors at each time point by a num-
ber of adaptation steps maximizing log-likelihood of the
estimated source parameters given the observed single
channel data and sets of basis functions. This infer-
encing is possible due to the prior information on the
inherent time structure of the sound sources by learn-
ing a priori sets of time-domain basis functions and the
associated coefficient densities that encode the sources
in a statistically efficient manner. A flexible model
for density estimation allows accurate modeling of the
observation and our experimental results show close-
to-perfect separation on simulated mixtures as well as
recordings in a real environment employing mixtures of
two different sources.

1. INTRODUCTION

The need for extracting individual sound sources from
mixtures of different signals is increasing in both the
commercial and scientific fields. The problem is formu-
lated as: it is assumed that the observed time series Y
[y(1) y(2) ... y(T)] is an addition of M independent
sources

Y =X+ X+ o+ A Xy, (1)
where X; is the time series of the i*" source, and the
positive constant A; determines the degree of partici-
pation or the realized scale of each source to the obser-
vations. The goal is to recover the original time series
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X; given only observed single channel input Y. It is
convenient assuming X; to have zero mean and unit
variance. The mixing is non-stationary, in a sense that
all the sources are unknown and time-varying.

Various sophisticated methods have been proposed
in the research areas such as computational auditory
scene analysis (CASA) [1, 2] and independent com-
ponent analysis (ICA) [3]. Separation algorithms in
CASA are based on isolating auditory streams in time
or frequency domain by assuming the sparseness of the
sources, that is, the observed instances of the individ-
ual sources are mutually exclusive in time samples or
in spectral domain. Previous work tried to localize the
acoustic objects into separate streams, such as classify-
ing speech segments into the same pitch (Fp) groups [4]
or decorrelating frequency bands [5]. Recently Roweis
[6] has presented a refiltering technique which estimates
A; in equation 1 as time-varying masking filters that lo-
calize sound streams in powerspectral domain. In his
work sound sources are supposedly disjoint in the spec-
trogram and there exists a “mask” that divides com-
pletely multiple streams. These approaches are how-
ever able to be applied to certain limited environments
due to the intuitive prior knowledge of the sources such
as harmonic modulations or temporal coherency of the
acoustic objects.

The ICA algorithms are data driven methods and
relax the strong frequency characteristical assumptions.
However ICA algorithms perform best only able when
the number of the observed signals are greater or equal
the number of sources [3]. Although some recent over-
complete representation may relax this assumption the
problem of separating sources from a single channel ob-
servation remains difficult. In other aspects, ICA has



been shown highly effective in encoding patterns, in-
cluding images [7] and natural sounds [8]. The basis
functions and the coefficients learned by ICA reflect
the statistical structures of the sources, by estimating
the maximum likelihood densities.

This paper introduces a technique for single chan-
nel blind source separation utilizing the ICA basis func-
tions. The algorithm recovers original sound streams in
a number of gradient-ascent adaptation steps maximiz-
ing the log-likelihood of the separated signals, which is
calculated by the likelihood of their associated coeffi-
cients for the given basis functions. The densities of the
source coefficients are modeled by generalized Gaussian
priors [9] that estimate wide range of probability den-
sity functions. The experimental results showed that
two different sources were almost perfectly recovered
in the simulated mixtures of rock and jazz music, and
male and female speech signals, as well as in the real
recordings of mixed speech signals and music sound.

2. ADAPTING ICA BASIS FUNCTIONS
AND MODEL PARAMETERS

The proposed method first involves the learning of the
time-domain basis functions of the sound sources that
we are interested in separating. This corresponds to the
prior information necessary to successfully separate the
signals.

In the case of sound sources, ICA assumes that
a segment sampled from a contiguous signal is con-
structed by a linear superposition of basis functions
with scalar multiples. This technique was employed in
[10] to learn the basis of speech signals. For the seg-
ment of size N starting at time ¢, x(t) = [z(t) z(t +
1) ... z(t+N—1)]T, ICA assumes an unknown source

vector s(t) that are statistically independent. The sources

are not observed directly but as a linear combination
such that

N
x(t) = As(t) = Zaisi(t), (2)

where A is a IV X N square matrix of real elements.
The columns of A, {a;}, are called the basis functions
generating the segments of the observed signal in the
real world whereas W = A~! refers to the ICA filters
that transform the segments into activations or source
coefficients s(t) = Wx(t).

The ICA learning algorithm is equivalent to max-
imizing the densities of the corresponding source vec-
tors for the given training data, as well as searching for
the linear transformation that make the components as
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statistically independent as possible [11],

arg max H P (x(t)|W)

arng%xH {HP(si(t))} | det W/, (3)

Independency between the components factorizes the
joint probability densities of the coefficients into the
product of marginal ones, and independency over time
does on the segments. What matters is therefore how
well approximated the model distribution is to the true
underlying distribution of p(s;). We use a flexible prior
known as generalized Gaussian or exponential power
distribution which models density functions that are
peaky and symmetric at the mean, with the varying
degree of normality in the following general form [9]:

w(q)

W*

5=
g

p(sli,7,q) = ] _—

exp [—C(q)

I[3/4]
I[1/q]

The exponent ¢ controls the

Y

]4/2

where 1 = E[s], o = /E[(s — 7], e(q) = |

_ _T[3/q'?
and wla) = G g7 ! |
distribution’s deviation from normality. The Gaussian,

Laplacian, and strong Laplacian —speech signals— dis-
tributions are modeled by putting ¢ = 2, ¢ = 1, and
q < 1 respectively.

3. SOURCE SEPARATION OF SINGLE
CHANNEL OBSERVATION

Given the generalized Gaussian model parameters we
perform log-likelihood maximization on the source sig-
nals to estimate the original sources. Scaling factors of
the generative model are learned as well.

3.1. Deriving Learning Rules for Source Signals

The goal of the algorithm is to infer multiple sources
from a single mixture given the basis functions in time
domain. We consider M = 2 only in equation 1. For
an observed mixture series Y, we assume that Y =
Y1 + Y, which are characterized by sets of parameters
{A1, Wi} and {\2, W2}, where W; is the basis filter
matrix of X;, and Y; = A\;X;. To simplify the inferring
steps, we force the sum of the factors to be constant:
e.g. A1 + Ay = 1. The likelihood of Y; given the obser-
vation is replaced by the multiplication of the marginal
ones of Y1 and Yo:

P(Y1|Y,)\1,W1,)\2,W2)
= P(Y1|A1, W1)P(Y2|A2, W2)
= P(Y1|A1, W1)P(Y = Yq|1 — X\, W5). (5)



At every time point ¢t € [1,T — N + 1] a segment
v1(t) of contiguous N samples is extracted from Y;.
The basis filter matrix W then infers the independent
source vector s1(t) = 1-Wiyi(t) by substituting x(t)
in equation 2 with )\1—1y1 (t). Respectively Wy infers
so(t) = )\1—2W2y2(t) where y2(t) is from Y,. We define
the likelihood of Y; at time ¢ by that of y; (¢):

P(y1(t)|Ad1, W1) = p(s1(t)) | det Wi, (6)
where p(+) is the exponential power distribution of cor-
responding source. Assuming the independency over
time, the conditional probability of Y is obtained from
the marginal ones of all the segments,

TN
H P(y1t| A1, Wh)
t=1
TN

HP(Slt)| det Wy |,

t=1

P(Y1|A\, Wy)

(7)

where, for convenience, Ty =T — N + 1 and time has
become subscripted in vectors and their components
throughout the rest of the manuscript. We denote the
log of equation 5 by £ and calculate it using equation
7 as

E IOgP(Yl|A1,W1)P(Y2|A2,W2)

TN

> llogp (s1e) + logp (sa)]
t=1

+1T'v log| det W || det W] . (8)
Our interest is in adapting Y1, i.e. ¥ (¢) for V¢ € [1,T],
toward the maximum of the objective function £. We
derive a gradient-ascent learning rule for y; (¢) by sum-
ming up the gradients over all the speech segments
where the sample lies:

oL
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which is derived by the fact that
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and 5 a( )
Y2 Yy—u
9% _O\W—y) _ 11
oy o (1)
where t, =t —n + 1, wir, = W;(k,n), and
Ologp(s cq. .1 .
o) = ZOBPO) i), (12)

expressed by the parameters ¢, ¢, and o of the gener-
alized Gaussian for p(s) as defined in equation 4. It
is assumed that the mean of source signal s is zero so
4 has been eliminated. The final learning rule follows
more simply

N
Ayr(t) o< Y [Ma(s16,) Wi(em) — Mp(s2e,) Waim)]
n=1

(13)
where w;(. ) is the n'™ column vector of W;. Because
0L/0ys = —OL /0y, every iteration step satisfies the
condition y = y1 + y2, thus learning on either y; or
yo yields the same results: (y1 + Ay1) + (y2 + Ays)
(y1 + Ayr) + (y2 — Ayr) = y.

3.2. Updating Scaling Factors

The contribution factors A; should be updated simulta-
neously with Y;. This can be accomplished by simply
finding the maximum a posteriori values. Given the
basis functions {W1, W5} and the current estimate of
the sources {Y7, Y2}, the posterior probability of A; is

P(A1|Y17Y27W11W2) X
P(Y1|A1, W1)P(Y2|1 — A1, Wa)pr(A1), (14)

where py(-) is the prior density function of A\. The
value of \; maximizing the posterior probability also
maximizes the log of it,

Al =

arg max log P(\[Y1,Y2, Wi, W)

argmax{L + logpa() (15)
where £ is the log-likelihood of the estimated sources
defined in equation 8. Assuming uniform distribution
of X in [0,1], 0{L + logpr(A)}/OX = OL/OA, and it is
calculated as

oL Y1 |
2T (16)
where
Tn
vi=y osit) Wiy (17)
t=1

derived by the chain rule

dlogp(s) _ dlogp(s) Is
19D o Os

1
a2

& oWy (—

) a9



In the case of exponential power distributions, v is al-
ways less than or equal to zero because, for each co-
efficient s of sy (subscripts are omitted for compact
notation),

S
e(s)wry = @(S)X
o a1, oy ]3] sign(s)
= L |s|* sign(s) 3
_Y
UMISI <0 (19)
Tn N
Sv=> "> o(su)wry: <0, (20)
t=1 k=1

where wy, is the k™" basis filter and equation 19 holds
because ¢, q,0,\ > 0. Therefore L£/0A1 = 0 subject
to A1 + A2 = 1 and A1, A2 € [0,1] always has a solution
at the local maxima of £ such that

8_/::0 )‘_%—1/)1
O

V |¢1| — V |'(/)2| . (22)
v|1/)1|+\/|1/)2|’ V1] + /[42]

According to the above equation the algorithm updates
the scaling factors w.r.t. the current estimate of the
source signals.

>0
A ’
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*
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4. EXPERIMENTAL RESULTS

We performed separation experiments on the simulated
mixtures of four sound sources of different characteris-
tics. They were monaural signals of rock and jazz mu-
sic, male and female speech of the speakers ‘mcpm0’
and ‘fdaw0’ from the TIMIT speech database. Rock
music was mainly composed of guitar and drum sounds,
and jazz was generated by a wind instrument. Vocal
parts of both music sounds were excluded. All signals
were downsampled to 8kHz, from original 44.1kHz (mu-
sic) and 16kHz (TIMIT speech). The following sections
compare the characteristics of the sound sources by the
learned basis functions in time domain and demon-
strate the separation results. Audio files for all the
experiments are accessible at the website
http://inc.ucsd.edu/ " jangbal/chlbss/.

4.1. Comparing Basis Functions

Using the generalized Gaussian ICA learning algorithm
we adapted the basis functions of the target sources.
The training data are generated by employing every
window of 64 samples long (8ms) starting at every sam-
ple of the source signals. The amount was approxi-
mately 7 seconds (56,000 datapoints) for each sound
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Fig. 1. Examples of learned basis functions for each
sound sources. 6 was chosen and shown out of 64. The
full set of basis functions is available on the website as
well as the actual audio files. Basis functions of Jazz
music are highly localized in frequency but not in time,
and most of speech basis functions are localized both
in time and frequency.
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Fig. 2. Average powerspectra of the basis functions
for each sound source. The powerspectra of the basis
functions are averaged in each frequency band and rep-
resented in y-axis. Frequency scale ranges in 0~4kHz
(z-axis), since the data are sampled at 8kHz.

source. Figure 1 displays the examples of learned basis
functions. Music basis functions exhibit consistent am-
plitudes with harmonics, and the speech basis functions
changes their amplitudes along the time axis. Most of
male basis functions are similar to a Gabor function
(Gaussian modulated sinusoidal). See [10] for more
detailed discussions about the speech basis. Figure
2 compares the four sound sources by average pow-
erspectra of the basis functions. Each basis covers the
frequency axis differently in amplitude, although there
exists high degree of overlap especially between the two
speech bases. These differences in time and frequency
domain enable exclusion of each other which results in
the recovered signals. We present the performed sepa-
ration results in the following sections.



5 5
0 0
-5 . -5 )
Time (sec) Time (sec)

25 Y1 35 25 Y, 3.5

Fig. 3. Waveforms of separation results for the mixture
of jazz music and male speech. In the vertical order the
figures represent the time courses of: original sources
(S1, S2), mixed signal (S; +8S-), scaling factors blocked
in 600 samples (A1, A2), and recovered signals (Y,
Y.). Left sides subscripted 1 are for the jazz music,
and right sides subscripted 2 for the male speech.

4.2. Separation Results

We generated single channel mixture by picking two
sources out of the four and simply adding them. Then

we applied the proposed method and reported the signal-

to-noise ratio (SNR) of the recovered results (y;: after
separation) and that of the mixed (m: before separa-
tion) in table 1. Given the original source s and its
estimate 5, SNR is defined by

. 3 s
snrg(5) [dB] = 10logg =——— -
S( )[ ] g10 Z(S_§)2
In terms of total SNR increase of both sources after sep-
aration, E?Zl {snrs, (y;) — snrg, (m) }, sources are more
cleanly recovered in the mixtures containing music sig-
nals than in the male-female mixture.

Table 1. SNR results. {R, J, M, F} stand for rock, jazz
music, male, and female speech. ‘Mizture’ columns
are the sources that are mixed to m, and ‘snrg,’s are
the calculated SNR. of mixed source (m) and recovered
signals (y;) given the original source (s;).

Mizture SN, Snrs, Total
m = $1 + S2 m Yy m  Ys | increase
R+1J -39 51 39 89 14.0
R+ M 3.7 35| 37 7.2 10.7
R+F -39 27| 39 6.6 9.3
J+M 02 74|-02 72 14.6
J+F 0.0 65| 0.0 6.6 13.1
M+ F -02 29| 02 3.2 6.1
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Fig. 4. Waveforms of separation results for the mix-
ture of rock (left sides) and jazz music (right sides).
Unlike jazz-male separation, scaling factors are set to

be constant all over the time axis.

Separation of jazz music and male speech was the
best, and the waveforms of source signals and sepa-
rated signals are illustrated in figure 3. As shown in
the third rows of the figure we updated the value of
A every block of 600 samples long, because amplitude
changes frequently in the male speech. Note that A is,
though slightly, proportional to the amplitude of sep-
arated signal, which implies that blockwisely varying
the value of A enables temporal masking as in other
CASA approaches.

Figure 4 demonstrates the separation results on the
the rock-jazz mixture. Because music signals seldom
change their amplitude, setting A constant all over the
time was better than blocking. For the other experi-
mental results listed in table 1, audio files as well as
waveform views are also available at the website.

5. EXPERIMENTS WITH REAL
RECORDINGS

We have tested the performance of the proposed method
on recordings in a real environment. The recorded sig-
nals are composed of a male speech utterance counting
digits with music played in the background. The focus
of this experiment is to recover the human speech in
real recordings, to see how well the proposed separa-
tion algorithm works.

Data are recorded with two microphones, and we
first applied the time-delayed blind deconvolution [12]
and obtained the original sources. Then we used them
as training data for the basis functions. The data
are sampled at 8kHz, basis functions in 64 samples.
The average powerspectra are compared in figure 5.
Two kinds of sound sources have similar characteris-
tics though low frequency components are more em-
phasized in background music sound. The algorithm
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Fig. 5. Average powerspectra of the basis functions
for music sound and male speech used in real data sep-

aration.
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Fig. 6. Separation result for the real recording of
mixed speech and music. Input signals are on top, be-
low are A\; and A2 (blocked in 600 samples), and the
recovered music and male speech.

successfully recovered the original sources as shown in
figure 6. The full set of the basis functions as well as
the separated results is available at the website also.

6. CONCLUSION

We presented a novel technique for single channel blind
source separation. Instead of well-known prior knowl-
edge of the sources, we exploited time-domain ICA
basis functions that inherently capture the statistical
structures of the sources. The algorithm recovers orig-
inal auditory streams according to the gradient-ascent
learning rule pursuing the maximum likelihood esti-
mate of original sources, induced by the parameters of
the basis filters and of the generalized Gaussian distri-
butions of the filter coefficients. Separating two dif-
ferent sources was quite successful in the simulated
mixtures of rock and jazz music, and male and fe-
male speech signals. Furthermore in the separation of
the real recordings speech and background music were
cleanly recovered. Consequently, the proposed method
has many potential applications in real environments
such as denosing for speech recognition and enhance-
ment.
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