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Rate of Convergence Towards
Semi-Relativistic Hartree Dynamics

Ji Oon Lee

Abstract. We consider the semi-relativistic system of N gravitating
Bosons with gravitation constant G. The time evolution of the system
is described by the relativistic dispersion law, and we assume the mean-
field scaling of the interaction where N → ∞ and G → 0 while GN = λ
fixed. In the super-critical regime of large λ, we introduce the regularized
interaction where the cutoff vanishes as N → ∞. We show that the dif-
ference between the many-body semi-relativistic Schrödinger dynamics
and the corresponding semi-relativistic Hartree dynamics is at most of
order N−1 for all λ, i.e., the result covers the sub-critical regime and the
super-critical regime. The N dependence of the bound is optimal.

1. Introduction

We consider a system of N gravitating three-dimensional Bosons in R
3. When

the particles in the system have the relativistic dispersion with Newtonian
gravity, the Hamiltonian of the system is

Hgrav =
N∑

j=1

(1 − Δj)1/2 −G

N∑

i<j

1
|xi − xj | . (1.1)

The Hamiltonian Hgrav acts on the Hilbert space L2(R3N )s, the subspace of
L2(R3N ) consisting of all symmetric functions with respect to the permutations
of particles. Such a system is known as a Boson star.
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We are interested in the mean-field limit, where we letG → 0 andN → ∞
with λ := GN is fixed. The N particle Hamiltonian is thus defined by

HN =
N∑

j=1

(1 − Δj)1/2 − λ

N

N∑

i<j

1
|xi − xj | . (1.2)

In the HamiltonianHN , the kinetic energy and the interaction potential energy
scale is of the same order (inverse length), hence the system is critical and its
behavior hugely depends on the coupling constant λ. It was proved by Lieb and
Yau in [24] that there exists a critical coupling constant λcrit(N), depending
on N , such that the minimum energy

EλN = inf
ψ∈L2(R3N )

〈ψ,HNψ〉
‖ψ‖2

L2

(1.3)

is bounded below if λ < λcrit(N) and EλN = −∞ if λ > λcrit(N). As N → ∞,
λcrit(N) converges to a number λHcrit, where

1
λHcrit

= sup
‖ϕ‖L2(R3)=1

(
1
2

∫
dxdy

|ϕ(x)|2|ϕ(y)|2
|x− y|

)/(∫
dx
∣∣∣|∇|1/2ϕ(x)

∣∣∣
2
)
.

(1.4)

The exact value of λHcrit is not known, but it was shown in [23,24] that 4/π ≤
λHcrit ≤ 2.7.

In the subcritical case λ < λHcrit, the HamiltonianHN defines a self-adjoint
operator with domain H1/2(R3N ) when N is sufficiently large. (Technically,
HN is considered as the Friedrichs extension of (1.2).) Thus, it generates the
one-parameter group of unitary operators e−itHN that describes the time evo-
lution of the given system. We focus on the time evolution with respect to HN

of a factorized initial data ψN := ϕ⊗N for some ϕ ∈ H1(R3). It is expected
that ψN,t := e−itHNψN satisfies

ψN,t 
 ϕ⊗N
t , (1.5)

where ϕt is the solution of the semi-relativistic nonlinear Hartree equation

i∂tϕt = (1 − Δ)1/2ϕt − λ

(
1

| · | ∗ |ϕt|2
)
ϕt (1.6)

with initial data ϕt=0 = ϕ.
The factorization (1.5) should be understood in terms of the marginal

densities (reduced density matrices) associated with ψN,t. We define the k-
particle marginal density through its kernel

γ
(k)
N,t(xk,x

′
k)

:=
∫

dxk+1 · · · dxNψN,t(xk, xk+1, . . . , xN )ψN,t(x′
k, xk+1, . . . , xN ), (1.7)

where xk = (x1, x2, . . . , xk) and x′
k = (x′

1, x
′
2, . . . , x

′
k). Since ‖ψN,t‖L2 = 1,

we can see that Tr γ(k)
N,t = 1 for all 1 ≤ k ≤ N . Thus, γ(k)

N,t is a trace
class operator. Elgart and Schlein [6] proved that, in the large N limit, the
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k-particle marginal density associated with ψN,t converges to k-particle mar-
ginal density associated with the factorized wavefunction ϕ⊗N

t , under the con-
dition that λ < 4/π and ϕ ∈ H1(R). More precisely, for any fixed t ∈ R,

Tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣→ 0 as N → ∞, (1.8)

where |ϕt〉〈ϕt| denotes the rank one projection onto ϕt. For λ < λHcrit, it is
proved by Lenzmann [22] that the semi-relativistic Hartree equation (1.6) is
globally well-posed in Hs(R3) for every s ≥ 1/2. Therefore, (1.8) shows that
the solution of the N -particle Schrödinger equation ψN,t can be approximated
by products of the solution of the semi-relativistic Hartree equation ϕt for all
t ∈ R.

The rate of convergence in (1.8) is attained by Knowles and Pickl [21] for
the case λ < 4/π with the initial condition ϕ ∈ Hs for s > 1. More precisely,

Tr
∣∣∣γ(k)
N,t − |ϕt〉〈ϕt|⊗k

∣∣∣ ≤ C(k, t)√
N

(1.9)

for some constant C(k, t) independent of N . Here, C(k, t) = Ct
√
k where Ct

grows at most exponentially in t.
In the supercritical regime λ > λHcrit, on the other hand, solutions of (1.6)

may blow up in finite time, which was proved by Fröhlich and Lenzmann [13].
Physically, the blowup of the solution of (1.6) describes the gravitational col-
lapse of a Boson star whose mass is over a critical value, provided that the
relativistic dynamics of the system can be approximated by the semi-relativ-
istic Hartree dynamics as in the subcriticial case. This assumption was proved
by Michelangeli and Schlein [25] with the regularized Hamiltonian

Hα
N =

N∑

j=1

(1 − Δj)1/2 − λ

N

N∑

i<j

1
|xi − xj | + αN

(1.10)

with αN > 0 and αN → 0 as N → ∞. The regularized Hamiltonian Hα
N defines

a quadratic form, which is bounded below, hence we may consider its Friedrichs
extension as a self-adjoint operator with domain H1/2(R3N ). If we let γα,(1)N,t

be the one-particle marginal density associated with ψαN,t = e−itHα
Nϕ⊗N , then

[25, Theorem 1.1] shows that with the initial condition ϕ ∈ H2(R3),

Tr
∣∣∣γα,(1)N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C(t)√
N

(1.11)

for all |t| ≤ T , where T is the maximal time of the existence of the solution
of (1.6).

The corresponding results for non-relativistic dynamics is relatively well-
established. Spohn [29] first proved that (1.8) holds when the interaction poten-
tial is bounded. This result was extended by Erdős and Yau [8] for the Coulomb
type interaction. Rodnianski and Schlein [28] obtained an explicit bound on the
rate of the convergence in (1.8) for the Coulomb type interaction. The result
in [28], which showed that the rate of the convergence in (1.8) is O(N−1/2), is
extended further by Knowles and Pickl [21] for more singular potentials. On
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the other hand, Erdős and Schlein [7] proved that the rate of convergence in
(1.8) is O(N−1) for bounded potentials, which is considered to be optimal.
The same rate of convergence for more singular potentials including Coulomb
type potential was obtained in [2,3]. Another important result in this direction
is the derivation of the Gross–Pitaevskii equation for describing Bose–Einstein
condensates by Erdős et al. [9–12]. (See also works by Pickl [26,27].) We also
remark that other results concerning second-order correction to the mean-field
limit are attained by Grillakis et al. [16,17]. (See also works by Chen [4].)

In this paper, we improve the bound (1.9) and (1.11) by applying the
method developed in [28]. First introduced by Hepp [19] and extended by
Ginibre and Velo [14,15], this method have been successful in proving various
bounds on the rate of convergence as in [2,3,25,28]. We show that the left hand
sides of (1.9) and (1.11), the differences between the one-particle marginal den-
sity associated with the solution of the time evolution of the factorized initial
data and the orthogonal projection onto the solution of the semi-relativistic
Hartree equation (1.6), are O(N−1). The first main result of this paper, which
considers the subcritical case, is the following theorem:

Theorem 1.1. Suppose that λ < λHcrit, ϕ ∈ H1(R3) with ‖ϕ‖L2 = 1, and
ψN = ϕ⊗N . Let ψN,t = e−itHNψN be the evolution of the initial wave func-
tion ψN with respect to the Hamiltonian (1.2) and let γ(1)

N,t be the one-particle
marginal density associated with ψN,t. Let ϕt be the solution of the (1.6) with
initial data ϕt=0 = ϕ. Let

ν(t) := sup
|s|≤t

‖ϕs‖H1 . (1.12)

Then, there exists a constant C, depending only on λ and ν(t), such that

Tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ CN−1. (1.13)

Remark 1.2. Since the semi-relativistic Hartree equation (1.6) is globally well-
posed in H1 for the subcritical case, ν(t) < ∞ for all t ∈ R. See [5,22] for more
detail.

In the supercritical case, while we should introduce the regularized Ham-
iltonian (1.10) to define a self-adjoint operator, the approximating semi-rela-
tivistic Hartree equation does not need to contain the regularized non-linear
term, i.e., it suffices to consider the equation (1.6) for approximating the evo-
lution of the N -particle factorized initial state. The second main result of this
paper is the following theorem:

Theorem 1.3. Suppose that λ ≥ λHcrit, ϕ ∈ H1(R3) with ‖ϕ‖L2 = 1, and
ψN = ϕ⊗N . Let ψαN,t = e−itHα

NψN be the evolution of the initial wave function

ψN with respect to the Hamiltonian (1.10) with αN ≤ N−4 and let γα,(1)N,t be
the one-particle marginal density associated with ψαN,t. Let ϕt be the solution
of the (1.6) with initial data ϕt=0 = ϕ. Fix T such that

κ := sup
|t|≤T

‖ϕt‖H1/2 < ∞. (1.14)
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Then, there exists a constant C, depending only on λ, ‖ϕ‖H1 , T , and κ, such
that

Tr
∣∣∣γα,(1)N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ CN−1 (1.15)

for all |t| ≤ T .

Remark 1.4. The existence of such T follows from the local well-posedness of
the semi-relativistic Hartree equation (1.6). See [5,22] for more detail.

As in [2,3,25,28], we first consider the case where the initial state is the
coherent state in the Fock space. (See (3.18) and (3.20).) For the evolution
of the coherent state, we need to control the fluctuation UN (t; s), which is
defined in (3.32), around the semi-relativistic Hartree dynamics. It was proved
in [25, Theorem 4.1] that for the evolution of the coherent state we can achieve
the optimal rate of convergence O(N−1) towards the semi-relativistic Hartree
dynamics. We then use the information on the evolution of the coherent state
to estimate the fluctuations for the dynamics of the factorized state (1.5).

The main technical difficulty here is that the conversion procedure from
the coherent state to the factorized state generates a factor of order N3/4,
which makes the rate of convergence to be of order N−1/4 if no further treat-
ment is applied. (See the term E2

t in (4.15) for the detail.) To compensate the
loss in the rate of convergence, Rodnianski and Schlein [28] used an estimate on
this term, which is equivalent to Lemma 7.1 in this paper. This improves the
rate by N1/4, which gives the O(N−1/2) rate of convergence in [28] and [25].

In the non-relativistic case, as in [2,3], it was possible to overcome the
difficulty by controlling the fluctuation U(t; s) first by comparing it with an
approximate dynamics U2(t; s), whose generator is L2(t) (see (3.29)), which was
introduced by Ginibre and Velo [14] as a limiting dynamics. While this tech-
nique circumvents the problem simply by not generating the term with a factor
of order N3/4, it requires to estimate the square of the interaction potential
energy by kinetic energy, which does not work for the semi-relativistic case.

In this paper, we use an approximate evolution Ũ(t; s) as in [28] and attain
an additional factor of order N−1/2 by improving the estimate Lemma 7.1 as
in Lemma 7.2. While this improved bound holds only for Fock states with
odd number of particles, it turns out by counting the parity that this bound
is enough to achieve the optimal rate of convergence for the factorized initial
data. This estimate shows we can convert the results for the coherent states to
the factorized states without any loss in terms of N dependence, and in partic-
ular, it can also be applied for other problems including the rate of convergence
problem for the non-relativistic case.

Another technical difficulty in the semi-relativistic case appears in the
case 4/π ≤ λ < λcrit. In this case, while the system is still subcritical, it is
harder to control the interaction potential energy by the kinetic energy unlike
the case λ ≤ 4/π where we may use Kato’s inequality. See Lemmas 2.1 and
6.1 for the technical details.

The paper is organized as follows. In Sect. 2, we show that the time evolu-
tion with original Hamiltonian can be well approximated by the time evolution
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with regularized Hamiltonian, provided that the cutoff approaches zero suffi-
ciently fast. In Sect. 3, we define the Fock space and reformulate the problem
using the operators defined on the Fock space. In Sect. 4, we prove Proposi-
tion 2.4, which implies the main results of the paper. A series of estimates will
be proved in Sects. 5–8.

Remark 1.5. Throughout the paper, C and K will denote various constants
independent of N . The Lp-space norm for 1 ≤ p ≤ ∞ will be denoted by ‖ · ‖p.
The sequence αN is positive and satisfies αN ≤ N−4. The norm ‖·‖ will denote
the Fock space norm, which will be defined later via the scalar product (3.2),
except for the case we denote by ‖J‖ the operator norm of an operator J as
in Lemma 3.2.

2. Regularization of the Interaction

Recall that the regularized Hamiltonian is defined by

Hα
N =

N∑

j=1

(1 − Δj)1/2 − λ

N

N∑

i<j

1
|xi − xj | + αN

. (2.1)

As in [3], we first prove an estimate for the difference between the evolution
of the initial N -particle wavefunction with respect to the original Hamiltonian
HN and with respect to the regularized Hamiltonian Hα

N .

Lemma 2.1. Let ψN = ϕ⊗N for some ϕ ∈ H1(R3) with ‖ϕ‖2 = 1. Let ψN,t =
e−iHN tψN and ψαN,t = e−iHα

N tψN . If λ < λHcrit, then there exist constants C > 0
and N0 such that, for all t ∈ R and positive integer N > N0,

∥∥ψN,t − ψαN,t
∥∥2

2
≤ CN2αN |t|. (2.2)

Proof. We first consider the derivative
d

dt

∥∥ψN,t − ψαN,t
∥∥2

2
= −2 Re

d

dt
〈ψN,t, ψαN,t〉

= 2 Im〈ψN,t, (HN −Hα
N )ψαN,t〉. (2.3)

Next, we note that
∣∣〈ψN,t, (HN −Hα

N )ψαN,t〉
∣∣

=
λ

N

∣∣∣∣∣∣

〈
ψN,t,

N∑

i<j

(
1

|xi − xj | − 1
|xi − xj | + αN

)
ψαN,t

〉∣∣∣∣∣∣

≤ λαN
N

N∑

i<j

∣∣∣∣

〈
ψN,t,

(
1

|xi − xj |(|xi − xj | + αN )

)
ψαN,t

〉∣∣∣∣

≤ λαN
N

N∑

i<j

〈ψN,t, (1 − Δi)1/2(1 − Δj)1/2ψN,t〉1/2

×〈ψαN,t, (1 − Δi)1/2(1 − Δj)1/2ψαN,t〉1/2
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≤ λαN
N

N∑

i<j

(〈
ψN,t, (1 − Δi)1/2(1 − Δj)1/2ψN,t

〉

× (1 − Δj)1/2ψαN,t〉
)
, (2.4)

where we used the operator inequality
1

|xi − xj |2 ≤ C(1 − Δi)1/2(1 − Δj)1/2. (2.5)

(See [6, Lemma 9.1] for the proof.)
In Lemma 6.1, we show that

N∑

i<j

〈ψN,t, (1 − Δi)1/2(1 − Δj)1/2ψN,t〉 ≤ CN3 (2.6)

and
N∑

i<j

〈ψαN,t, (1 − Δi)1/2(1 − Δj)1/2ψαN,t〉 ≤ CN3. (2.7)

Thus, from (2.3), (2.4), and Lemma 6.1, we find that
d

dt

∥∥ψN,t − ψαN,t
∥∥2

2
≤ CN2αN . (2.8)

The desired lemma follows after integrating over t. �
From Lemma 2.1, we obtain a bound on the difference between the mar-

ginal densities associated with the ψN,t and ψαN,t.

Corollary 2.2. Let ψN = ϕ⊗N for some ϕ ∈ H1(R3) with ‖ϕ‖2 = 1. Let
ψN,t = e−iHN tψN and ψαN,t = e−iHα

N tψN . For any k ∈ N, let γ(k)
N,t and γ

α,(k)
N,t

be the k-particle reduced densities associated with ψN,t and ψαN,t, respectively.
Suppose αN ≤ N−4 in (2.1). If λ < λHcrit, then there exist constants C > 0
and N0 such that, for all t ∈ R and positive integer N > N0,

Tr
∣∣∣γ(k)
N,t − γ

α,(k)
N,t

∣∣∣ ≤ C|t|1/2N−1. (2.9)

Proof. See [3, Corollary 2.1]. �
We next estimate the difference between the solutions of the semi-relativ-

istic Hartree equations with the Coulomb potential and with the regularized
potential. The proof of the following proposition will be given in Sect. 6.

Proposition 2.3. Let ϕ ∈ H1(R3) with ‖ϕ‖2 = 1. Let ϕt denote the solution of
the nonlinear Hartree equation (1.6) with initial condition ϕt=0 = ϕ and ϕαt
the solution of the regularized semi-relativistic Hartree equation

i∂tϕ
α
t = (1 − Δ)1/2ϕαt − λ

(
1

| · | + αN
∗ |ϕαt |2

)
ϕαt , (2.10)

with the same initial condition ϕαt=0 = ϕ. Fix T such that

κ = sup
|t|≤T

‖ϕt‖H1/2 < ∞. (2.11)
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Then, there exist constants C and K, depending only on λ, κ, T , and ‖ϕ‖H1 ,
such that

‖ϕt − ϕαt ‖H1/2 ≤ Cα
1/2
N (2.12)

for all |t| < T . Therefore,

Tr ||ϕαt 〉〈ϕαt | − |ϕt〉〈ϕt|| ≤ ‖ϕt − ϕαt ‖2 ≤ Cα
1/2
N . (2.13)

As a consequence of Corollary 2.2 and Proposition 2.3, Theorems 1.1 and
1.3 follow from the next proposition.

Proposition 2.4. Let ϕ ∈ H1(R3) with ‖ϕ‖2 = 1. Let γα,(1)N,t be the one-particle
marginal density associated with e−itHα

Nϕ⊗N and ϕαt the solution of the reg-
ularized semi-relativistic Hartree equation (2.10) with initial data ϕt=0 = ϕ.
Suppose αN ≤ N−4 in (2.1). Then, there exists a constant C, depending only
on λ, ‖ϕ‖H1 , T , and κ, such that

Tr
∣∣∣γα,(1)N,t − |ϕαt 〉〈ϕαt |

∣∣∣ ≤ CN−1 (2.14)

for all |t| ≤ T .

The proof of Proposition 2.4 will be given in Sect. 4, where we will use
the Fock space representation of the problem.

3. Fock Space Representation

Let F be the Fock space of symmetric functions, i.e.

F :=
⊕

n≥0

(L2(R3n))s, (3.1)

where we let L2(R3n)s = C when n = 0 and s denotes the subspace of sym-
metric functions with respect to the permutation of particles x1, x2, . . . , xn.
A vector ψ in F is a sequence ψ = {ψ(n)}n≥0 of n-particle wavefunctions
ψ(n) ∈ (L2(R3n))s. The scalar product between ψ1, ψ2 ∈ F is defined by

〈ψ1, ψ2〉F =
∑

n≥0

〈ψ(n)
1 , ψ

(n)
2 〉L2(R3n) (3.2)

and we will omit the subscript F from now on. We let

Ω := {1, 0, 0, . . .} ∈ F , (3.3)

which is called the vacuum. We will also make use of an operator Pn, the
projection onto the n-particle sector of the Fock space, which is defined by
Pnψ = {0, 0, . . . , ψ(n), 0, . . .} for a vector ψ in F .

On F , the creation operator a∗
x and the annihilation operator ax for

x ∈ R
3 are defined by

(a∗
xψ)(n)(x1, . . . , xn) =

1√
N

n∑

j=1

δ(x−xj)ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(axψ)(n)(x1, . . . , xn) =
√
n+ 1 ψ(n+1)(x, x1, . . . , xn).

(3.4)
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For f ∈ L2(R3), a∗(f) and a(f) are given by

a∗(f) =
∫

dxf(x)a∗
x

a(f) =
∫

dxf(x)ax,
(3.5)

or equivalently,

(a∗
xψ)(n)(x1, . . . , xn) =

1√
N

n∑

j=1

f(xj)ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(axψ)(n)(x1, . . . , xn) =
√
n+ 1

∫
dx f(x)ψ(n+1)(x, x1, . . . , xn).

(3.6)

We also use the self-adjoint operator

φ(f) = a∗(f) + a(f) (3.7)

for f ∈ L2(R3). We have the following lemma that will be used to bound the
creation operator and the annihilation operator:

Lemma 3.1. For any f ∈ L2(R3) and ψ ∈ D(N 1/2), we have

‖a(f)ψ‖ ≤ ‖f‖2‖N 1/2ψ‖, (3.8)

‖a∗(f)ψ‖ ≤ ‖f‖2‖(N + 1)1/2ψ‖, (3.9)

‖a(f)ψ‖ ≤ 2‖f‖2‖(N + 1)1/2ψ‖. (3.10)

Proof. See [28, Lemma 2.1]. �

For an operator J acting on L2(R3), we define the second quantization of
J , dΓ(J), as the operator on F whose action on the n-particle sector is given
by

(dΓ(J)ψ)(n) =
n∑

j=1

Jjψ
(n), (3.11)

where Jj = 1 ⊗ 1 ⊗ · · · 1 ⊗ J ⊗ 1 ⊗ · · · 1 is the operator acting only on the j-th
particle. If J has a kernel J(x; y), then dΓ(J) can be written as

dΓ(J) =
∫

dxdy J(x; y)a∗
xay. (3.12)

The number operator N is defined by

N := dΓ(1) =
∫

dx a∗
xax (3.13)

and it also satisfies

(Nψ)(n) = nψ(n). (3.14)

We will use the following lemma to estimate dΓ(J):

Lemma 3.2. For any bounded one-particle operator J on L2(R3) and for every
ψ ∈ D(ψ), we have
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‖dΓ(J)ψ‖ ≤ ‖J‖‖Nψ‖. (3.15)

Here, ‖J‖ denotes the operator norm of J .

Proof. See [3, Lemma 3.1]. �

We define the Hamiltonian HN on F by

HN :=
∫

dx a∗
x(1 − Δx)1/2ax − λ

2N

∫∫
dxdy

1
|x− y|a

∗
xa

∗
yayax. (3.16)

Note that for any function ψ(N) ∈ L2(R3N )s, HNψ
(N) = HNψ

(N). Similarly,
we define the regularized Hamiltonian Hα

N on F by

Hα
N :=

∫
dx a∗

x(1 − Δx)1/2ax − λ

2N

∫∫
dxdy

1
|x− y| + αN

a∗
xa

∗
yayax, (3.17)

which also satisfies Hα
Nψ

(N) = Hα
Nψ

(N) for any function ψ(N) ∈ L2(R3N )s.
For f ∈ L2(R3), the Weyl operator W (f) is defined by

W (f) := exp(a∗(f) − a(f)), (3.18)

and it satisfies

W (f) = e−‖f‖2
2/2 exp(a∗(f)) exp(−a(f)). (3.19)

The coherent state with a one-particle wave function f is W (f)Ω, which sat-
isfies

W (f)Ω = e−‖f‖2
2/2 exp(a∗(f))Ω = e−‖f‖2

2/2
∑

n≥0

(a∗(f))n√
n!

Ω. (3.20)

Let Γα,(1)N,t (x; y) be the kernel of the one-particle marginal density associ-
ated with the time evolution of the coherent state W (

√
Nϕ)Ω with respect to

the regularized Hamiltonian Hα. By definition,

Γα,(1)N,t (x; y) =
1
N

〈e−iHα
N tW (

√
Nϕ)Ω, a∗

yaxe
−iHα

N tW (
√
Nϕ)Ω〉, (3.21)

We expect that the limit of the kernel of one particle marginal density is
ϕαt (y)ϕαt (x), thus we expand Γα,(1)N,t (x; y) in terms of (ax − √

Nϕαt (x)) and
(a∗
y − √

Nϕαt (x)). Then, we get

Γα,(1)N,t (x; y) = ϕαt (x)ϕαt (y)

+
1
N

〈Ω,W ∗(
√
Nϕ)eiH

α
N t(a∗

y −
√
Nϕαt (y))(ax −

√
Nϕαt (x))

×e−iHα
N tW (

√
Nϕ)Ω〉

+
ϕαt (x)√
N

〈Ω,W ∗(
√
Nϕ)eiH

α
N t(a∗

y−
√
Nϕαt (y))e−iH

α
N tW (

√
Nϕ)Ω〉

+
ϕαt (y)√
N

〈Ω,W ∗(
√
Nϕ)eiH

α
N t(ax−

√
Nϕαt (x))e−iH

α
N tW (

√
Nϕ)Ω〉.

(3.22)
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It is well known that the Weyl operator satisfies for any f ∈ L2(R3) that

W ∗(f)axW (f) = ax + f(x). (3.23)

(See [28, Lemma 2.2].) This shows that

ax −
√
Nϕαt (x) = W (

√
Nϕαt )axW ∗(

√
Nϕαt ), (3.24)

which allows us to simplify the terms in the right hand side of (3.22), for
example,

W ∗(
√
Nϕ)eiH

α
N t(ax −

√
Nϕαt (x))e−iHα

N tW (
√
Nϕ)

= W ∗(
√
Nϕ)eiH

α
N tW (

√
Nϕαt )axW ∗(

√
Nϕαt )e−iHα

N tW (
√
Nϕ). (3.25)

To further understand the operator W ∗(
√
Nϕαt )e−iHα

N tW (
√
Nϕ), we consider

the time derivative of it. As in [19,14], it turns out that

i∂tW
∗(

√
Nϕαt )e−iHα

N tW (
√
Nϕ)

=:

(
4∑

k=0

Lk(t)
)
W ∗(

√
Nϕαt )e−iHα

N tW (
√
Nϕ), (3.26)

where the operators Lk(t) contains k creation/annihilation operators in it.
More precisely, we have

L0(t) =
N

2

t∫

0

dτ
∫

dx
(

λ

| · | + αN
∗ |ϕατ |2

)
(x)|ϕατ (x)|2, (3.27)

L1(t) = 0, (3.28)

L2(t) =
∫

dx a∗
x(1 − Δx)1/2ax + λ

∫
dx
(

1
| · | + αN

∗ |ϕαt |2
)

(x)a∗
xax

+ λ

∫∫
dxdy

1
|x− y| + αN

ϕαt (x)ϕαt (y)a∗
yax (3.29)

+
λ

2

∫∫
dxdy

1
|x− y| + αN

(ϕαt (x)ϕαt (y)a∗
xa

∗
y + ϕαt (x)ϕαt (y)axay),

L3(t) =
λ√
N

∫∫
dxdy

1
|x− y| + αN

a∗
x

(
ϕαt (y)a∗

y + ϕαt (y)ay
)
ax, (3.30)

L4 =
λ

2N

∫∫
dxdy

1
|x− y| + αN

a∗
xa

∗
yaxay. (3.31)

Note that L0(t) is not an operator but a complex-valued function on t, which
we call the phase factor. Although this term contains the factor N , we may
ignore this term by using a function e−iL0(t) whose derivative can offset the
term L0(t) in the right hand side of (3.26).

Generalizing the idea explained above, we define the unitary evolution

U(t; s) := e−iω(t;s)W ∗(
√
Nϕαt )e−i(t−s)Hα

NW (
√
Nϕαs ) (3.32)
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with the phase factor

ω(t; s) :=
N

2

t∫

s

dτ
∫

dx(
λ

| · | + αN
∗ |ϕατ |2)(x)|ϕατ (x)|2. (3.33)

We can find from the above construction that U(t; s) is a unitary operator
satisfying

i∂tU(t; s) = (L2(t) + L3(t) + L4)U(t; s) and U(s; s) = I. (3.34)

Furthermore, since e−iω(t;s) commutes with the operators ax and a∗
x, we find

from (3.25) that

W ∗(
√
Nϕ)eiH

α
N t(ax −

√
Nϕαt (x))e−iHα

N tW (
√
Nϕ) = U∗(t; 0)axU(t; 0).

(3.35)

Let

K :=
∫

dx a∗
x(1 − Δx)1/2ax. (3.36)

We consider a modified evolution Ũ(t; s), which is a unitary operator satisfying

i∂tŨ(t; s) = (L2(t) + L4)Ũ(t; s) and Ũ(s; s) = I (3.37)

We remark that Ũ(t; s) is bounded in Q(K+N 2), the form domain of the oper-
ator (K +N 2), and is strongly differentiable from Q(K +N 2) to Q∗(K +N 2).
See Sect. 8 for more detail.

For simplicity, we will use notations

U(t) := U(t; 0), Ũ(t) := Ũ(t; 0). (3.38)

When written through the kernel form, the one-particle marginal density
associated with the time evolution of the factorized states with respect to the
regularized Hamiltonian, γα,(1)N,t (x; y), satisfies

γ
α,(1)
N,t (x; y) =

1
N

〈
(a∗(ϕ))N√

N !
Ω, eitH

α
Na∗

yaxe
−itHα

N
(a∗(ϕ))N√

N !
Ω
〉
. (3.39)

4. Proof of Main Results

In this section, we prove Proposition 2.4, which implies Theorems 1.1 and 1.3.
We will use the following lemmas, which will be proved in Sect. 5.

Lemma 4.1. For a Hermitian Operator J on L2(R3), let

E1
t (J) :=

dN
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)dΓ(J)U(t)Ω

〉
. (4.1)

Then, there exist constants C and K, depending only on λ and sup|s|≤t ‖ϕs‖H1 ,
such that

|E1
t (J)| ≤ C‖J‖eKt

N
. (4.2)
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Lemma 4.2. For a Hermitian Operator J on L2(R3), let

E2
t (J) :=

dN√
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)φ(Jϕt)U(t)Ω

〉
. (4.3)

Then, there exist constants C and K, depending only on λ and sup|s|≤t ‖ϕs‖H1 ,
such that

|E2
t (J)| ≤ C‖J‖eKt

N
. (4.4)

We are now ready to prove Proposition 2.4.

Proof of Proposition 2.4. We have seen in Sect. 3 that

W ∗(
√
Nϕ)eiH

α
N t(ax −

√
Nϕαt (x))e−iHα

N tW (
√
Nϕ) = U∗(t)axU(t). (4.5)

By definition, we have that

PNW (
√
Nϕ)Ω = e−N/2

(
a∗(

√
Nϕ)
)N

N !
Ω =

1
dN

(
a∗(ϕ)

)N
√
N !

Ω, (4.6)

where PN is the projection onto the N -particle sector of the Fock space. Here,
dN denotes the constant

dN :=

√
N !

NN/2e−N/2 
 N1/4. (4.7)

For the factorized initial data, we first rewrite (3.39) using the coherent state
and the projection operator PN . From (4.6) we get

γ
α,(1)
N,t (x; y)=

1
N

〈
(a∗(ϕ))N√

N !
Ω, eiH

α
N ta∗

yaxe
−iHα

N t
(a∗(ϕ))N√

N !
Ω
〉

=
dN
N

〈
(a∗(ϕ))N√

N !
Ω, eiH

α
N ta∗

ye
−iHα

N teiH
α
N taxe

−iHα
N tPNW (

√
Nϕ)Ω

〉

(4.8)

By counting the number of particles, we find that

eiH
α
N ta∗

ye
−iHα

N teiH
α
N taxe

−iHα
N tPN = PNe

iHα
N ta∗

ye
−iHα

N teiH
α
N taxe

−iHα
N t, (4.9)

where we used the fact that the evolution operator e−iHα
N t conserves the num-

ber of particles in a Fock state. Moreover, it is obvious that
〈

(a∗(ϕ))N√
N !

Ω, PNψ
〉

=
〈

(a∗(ϕ))N√
N !

Ω, ψ
〉

(4.10)

for any ψ ∈ F . Thus, we obtain from (4.8) that

γ
α,(1)
N,t (x; y) =

dN
N

〈
(a∗(ϕ))N√

N !
Ω, eiH

α
N ta∗

ye
−iHα

N teiH
α
N taxe

−iHα
N tW (

√
Nϕ)Ω

〉

(4.11)

To simplify it further, we apply (4.5) to find that

eiH
α
N taxe

−iHα
N t = W (

√
Nϕ)U∗(t)(ax +

√
Nϕαt (x))U(t)W ∗(

√
Nϕ) (4.12)
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and an analogous result for the creation operator. Hence, we get

γ
α,(1)
N,t (x; y)

=
dN
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)

(
a∗
y +

√
Nϕαt (y)

)U(t)W ∗(
√
Nϕ)

×W (
√
Nϕ)U∗(t)

(
ax +

√
Nϕαt (x)

)U(t)W ∗(
√
Nϕ)W (

√
Nϕ)Ω

〉

=
dN
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)

(
a∗
y +

√
Nϕαt (y)

)

×(ax +
√
Nϕαt (x)

)U(t)Ω
〉
. (4.13)

Expanding the term
(
a∗
y+

√
Nϕαt (y)

)(
ax+

√
Nϕαt (x)

)
, we obtain the following

equation for the one-particle marginal.

γ
α,(1)
N,t (x; y) − ϕαt (y)ϕαt (x)

=
dN
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)a∗

yaxU(t)Ω
〉

+ϕαt (y)
dN√
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)axU(t)Ω

〉

+ϕαt (x)
dN√
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)a∗

yU(t)Ω
〉
. (4.14)

For any compact one-particle Hermitian operator J on L2(R3), we find

Tr J
(
γ
α,(1)
N,t − |ϕαt 〉〈ϕαt |

)

=
dN
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)dΓ(J)U(t)Ω

〉

+
dN√
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)U∗(t)φ(Jϕαt )U(t)Ω

〉

= E1
t (J) + E2

t (J). (4.15)

Lemma 4.1 and Lemma 4.2 show that
∣∣∣Tr J

(
γ
α,(1)
N,t − |ϕαt 〉〈ϕαt |

)∣∣∣ ≤ |E1
t (J)| + |E2

t (J)| ≤ C

N
‖J‖eKt (4.16)

for all compact Hermitian operators J on L2(R3). Since the space of compact
operators is the dual to the space of trace class operators, and since γα,(1)N,t and
|ϕαt 〉〈ϕαt | are Hermitian, we obtain that

Tr
∣∣∣γα,(1)N,t − |ϕαt 〉〈ϕαt |

∣∣∣ ≤ CeKt

N
, (4.17)

which was to be proved. �
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5. Comparison of Dynamics

In this section, we prove important lemmas that were used in the proof of
Theorem 1.1 by estimating the difference between U(t; s) and Ũ(t; s).

Lemma 5.1. For any ψ ∈ F and j ∈ N, there exist constants C and K, depend-
ing on λ, j, and supτ≤|t|,|s| ‖ϕτ‖H1/2 , such that

〈Ũ(t; s)ψ,N jŨ(t; s)ψ〉 ≤ CeK|t−s|〈ψ, (N + 1)jψ〉. (5.1)

Proof. Let ψ̃ = Ũ(t; s)ψ. We have

d
dt

〈ψ̃, (N + 1)jψ̃〉 = 〈ψ̃, [iL2, (N + 1)j ]ψ̃〉

= Im
∫∫

dxdy
λ

|x− y|ϕt(x)ϕt(y)〈ψ̃, [a
∗
xa

∗
y, (N + 1)j ]ψ̃〉

= Im
∫∫

dxdy
λ

|x− y|ϕt(x)ϕt(y)〈ψ̃, a
∗
xa

∗
y((N + 1)j − (N + 3)j)ψ̃〉

= Im
∫∫

dxdy
λ

|x− y|ϕt(x)ϕt(y)

×〈(N + 3)
j
2 −1axayψ̃, (N + 3)1− j

2 ((N + 1)j − (N + 3)j)ψ̃〉. (5.2)

Thus, from Schwarz inequality, we obtain that
∣∣∣∣
d
dt

〈ψ̃, (N + 1)jψ̃〉
∣∣∣∣

≤
∫∫

dxdy
λ

|x− y| |ϕt(x)||ϕt(y)|‖(N + 3)
j
2 −1axayψ̃‖

× ‖(N + 3)1− j
2 ((N + 1)j − (N + 3)j)ψ̃‖

≤ λ‖(N + 3)1− j
2 ((N + 1)j − (N + 3)j)ψ̃‖

(∫∫
dxdy

|ϕt(x)|2|ϕt(y)|2
|x− y|2

)1/2

×
(∫∫

dxdy‖(N + 3)
j
2 −1axayψ̃‖2

)1/2

(5.3)

Easy algebra shows that (N + 3)1−(j/2)|(N + 1)j − (N + 3)j | ≤ C(N + 1)j/2.
From Hardy-Littlewood-Sobolev inequality we have that

∫∫
dxdy

|ϕt(x)|2|ϕt(y)|2
|x− y|2 ≤ C‖ϕt‖4

3 ≤ ‖ϕt‖4
H1/2 . (5.4)

We also have that
∫∫

dxdy‖(N + 3)(j/2)−1axayψ
α‖2 =

∫∫
dxdy‖axay(N + 1)(j/2)−1ψα‖2

≤ ‖(N + 1)j/2ψα‖2. (5.5)
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Altogether, we have shown that
∣∣∣∣
d

dt
〈Ũ(t; s)ψ, (N + 1)jŨ(t; s)ψ〉

∣∣∣∣ ≤ C‖(N + 1)j/2Ũ(t; s)ψ‖2

= C〈Ũ(t; s)ψ, (N + 1)jŨ(t; s)ψ〉. (5.6)

Since Ũ(s; s) = I, we also have

〈Ũ(s; s)ψ, (N + 1)jŨ(s; s)ψ〉 = 〈ψ, (N + 1)jψ〉. (5.7)

Using (5.6) and (5.7) the conclusion follows directly from the Gronwall’s
lemma. �
Lemma 5.2. For any ψ ∈ F and j ∈ N, there exist constants C and K, depend-
ing on λ, j, and sup|τ |≤|t|,|s| ‖ϕτ‖H1 such that

〈U(t; s)ψ,N jU(t; s)ψ〉 ≤ CeK|t−s|〈ψ, (N + 1)2j+2ψ〉. (5.8)

Proof. See [28, Proposition 3.3]. �
Lemma 5.3. For any ψ ∈ F and j ∈ N, there exist a constant C, depending
on λ, j, and ‖ϕt‖H1 such that

‖(N + 1)j/2L3(t)ψ‖ ≤ C√
N

‖(N + 1)(j+3)/2ψ‖. (5.9)

Proof. While this lemma can be proved as in [3, Lemma 6.3], we give a shorter
proof here. Let

A3(t) =
∫∫

dxdy
1

|x− y| + αN
ϕt(y)a

∗
xayax. (5.10)

Then,

(N + 1)j/2L3(t) =
λ√
N

(
(N + 1)j/2A3(t) + (N + 1)j/2A∗

3(t)
)
. (5.11)

We estimate (N + 1)jA3(t) and (N + 1)jA∗
3(t) separately. The first term

(N + 1)jA3(t) satisfies for any ξ ∈ F that

|〈ξ, (N + 1)j/2A3(t)ψ〉| =
∣∣∣∣
∫∫

dxdy
ϕt(y)

|x− y| + αN
〈ξ, (N + 1)j/2a∗

xayaxψ〉
∣∣∣∣

=
∣∣∣∣
∫∫

dxdy
ϕt(y)

|x− y| + αN
〈(N + 1)−1/2ξ, (N + 1)(j+1)/2a∗

xayaxψ〉
∣∣∣∣

≤
(∫∫

dxdy
|ϕt(y)|2
|x− y|2 ‖ax(N + 1)−1/2ξ‖2

)1/2

×
(∫∫

dxdy‖ayaxN (j+1)/2ψ‖2

)1/2

≤ C‖ϕt‖H1‖ξ‖‖N (j+3)/2ψ‖, (5.12)

where we used Hardy inequality in the last inequality. Since ξ was arbitrary,
we obtain that

‖(N + 1)j/2A3(t)ψ‖ ≤ C‖ϕt‖H1‖N (j+3)/2ψ‖. (5.13)
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Similarly, we can find that

‖(N + 1)j/2A∗
3(t)ψ‖ ≤ C‖ϕt‖H1‖(N + 2)(j+3)/2ψ‖. (5.14)

Hence, from (5.11), (5.13), and (5.14) we get

‖(N + 1)j/2L3(t)ψ‖ ≤ C√
N

‖(N + 1)(j+3)/2ψ‖, (5.15)

which was to be proved. �

Lemma 5.4. For all j ∈ N, there exist constants C and K depending only on
λ, j, and sup|s|≤t ‖ϕs‖H1 such that, for any f ∈ L2(R3),

∥∥∥(N + 1)j/2
(
U∗(t)φ(f)U(t) − Ũ∗(t)φ(f)Ũ(t)

)
Ω
∥∥∥ ≤ C‖f‖2e

Kt

N
. (5.16)

Proof. Let

R1(f) :=
(
U∗(t) − Ũ∗(t)

)
φ(f)Ũ(t) (5.17)

and

R2(f) := U∗(t)φ(f)
(
U(t) − Ũ(t)

)
(5.18)

so that

U∗(t)φ(f)U(t) − Ũ∗(t)φ(f)Ũ(t) = R1(f) + R2(f). (5.19)

Then, from Lemmas 5.1, 5.2, and 5.3, we find that
∥∥∥(N + 1)j/2R1(f)Ω

∥∥∥

=

∥∥∥∥∥∥

t∫

0

ds (N + 1)j/2U∗(s; 0)L3(s)Ũ∗(t; s)φ(f)Ũ(t)Ω

∥∥∥∥∥∥

≤
t∫

0

ds
∥∥∥(N + 1)j/2U∗(s; 0)L3(s)Ũ∗(t; s)φ(f)Ũ(t)Ω

∥∥∥

≤ CeKt
t∫

0

ds
∥∥∥(N + 1)j+1L3(s)Ũ∗(t; s)φ(f)Ũ(t)Ω

∥∥∥

≤ CeKt√
N

t∫

0

ds
∥∥∥(N + 1)j+(5/2)φ(f)Ũ(t)Ω

∥∥∥

≤ CeKt√
N

∥∥∥(N + 1)j+(5/2)φ(f)Ũ(t)Ω
∥∥∥ (5.20)

Thus, we can get the following bound for R1(f).

‖(N + 1)j/2R1(f)Ω‖

≤ CeKt√
N

(
‖a(f)(N + 1)j+(5/2)Ũ(t)Ω‖ + ‖a∗(f)(N + 1)j+(5/2)Ũ(t)Ω‖

)
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≤ C‖f‖2e
Kt

√
N

‖(N + 1)j+3Ũ(t)Ω‖ ≤ C‖f‖2e
Kt

√
N

‖(N + 1)j+(5/2)Ω‖

≤ C‖f‖2e
Kt

√
N

. (5.21)

The study of R2(f) is similar and gives

‖(N + 1)j/2R2(f)Ω‖ ≤ C‖f‖2e
Kt

√
N

. (5.22)

Therefore,
∥∥∥(N + 1)j/2

(
U∗(t)φ(f)U(t) − Ũ∗(t)φ(f)Ũ(t)

)
Ω
∥∥∥

≤
∥∥∥(N + 1)j/2R1(f)Ω

∥∥∥+
∥∥∥(N + 1)j/2R2(f)Ω

∥∥∥

≤ C‖f‖2e
Kt

√
N

, (5.23)

which was to be proved. �

In Sect. 7, we will prove the following estimates:
There exists a constant C > 0 such that, for any ϕ ∈ L2(R3) with

‖ϕ‖2 = 1, we have
∥∥∥∥∥(N + 1)−1/2W ∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ C

dN
. (5.24)

Moreover, for all non-negative integers k ≤ (1/2)N1/3,
∥∥∥∥∥P2k+1W

∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ 2(k + 1)3/2

dN
√
N

. (5.25)

We are now ready to prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. We first observe that

|E1
t (J)| =

∣∣∣∣
dN
N

〈
W ∗(

√
Nϕ)

(a∗(ϕ))N√
N !

Ω,U∗(t)dΓ(J)U(t)Ω
〉∣∣∣∣

≤ dN
N

∥∥∥∥(N + 1)−1/2W ∗(
√
Nϕ)

(a∗(ϕ))N√
N !

Ω
∥∥∥∥
∥∥∥(N + 1)1/2U∗(t)dΓ(J)U(t)Ω

∥∥∥ .

(5.26)

From the estimate (5.24), we have
∥∥∥∥∥(N + 1)−1/2W ∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ C

dN
. (5.27)

Lemma 5.2 shows that

‖(N + 1)1/2U∗(t)dΓ(J)U(t)Ω‖ ≤ CeKt‖(N + 1)2dΓ(J)U(t)Ω‖
≤ C‖J‖eKt‖(N + 1)3U(t)Ω‖ ≤ C‖J‖eKt‖(N + 1)7Ω‖ = C‖J‖eKt

(5.28)



Vol. 14 (2013) Rate of Convergence 331

Thus, we obtain

|E1
t (J)| ≤ C‖J‖eKt

N
, (5.29)

which proves the desired lemma. �

Proof of Lemma 4.2. Let

R(Jϕt) := U∗(t)φ(Jϕt)U(t) − Ũ∗(t)φ(Jϕt)Ũ(t). (5.30)

From the parity, we have that P2kŨ∗(t)φ(Jϕt)Ũ(t)Ω = 0 for any k = 0, 1, . . ..
(See Lemma 8.2.) Thus, we have

|E2
t (J)| =

dN√
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)Ũ∗(t)φ(Jϕt)Ũ(t)Ω

〉

+
dN√
N

〈
(a∗(ϕ))N√

N !
Ω,W (

√
Nϕ)R(Jϕt)Ω

〉

≤ dN√
N

∥∥∥∥∥

∞∑

k=1

(N + 1)−5/2P2k−1W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥

×
∥∥∥(N + 1)5/2Ũ∗(t)φ(Jϕt)Ũ(t)Ω

∥∥∥

+
dN√
N

∥∥∥∥∥(N + 1)−1/2W ∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥

×
∥∥∥(N + 1)1/2R(Jϕt)Ω

∥∥∥ (5.31)

Let M := (1/2)N1/3. We have from the estimate (5.25) that
∥∥∥∥∥

∞∑

k=1

(N + 1)−5/2P2k−1W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥

2

≤
M∑

k=1

∥∥∥∥∥(N + 1)−5/2P2k−1W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥

2

+
1
M5

∞∑

k=M

∥∥∥∥∥P2k−1W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥

2

≤
(

M∑

k=1

C

k2d2
NN

)
+

C

N5/3

∥∥∥∥∥W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥

2

≤ C

d2
NN

. (5.32)

Lemma 5.1 shows that

‖(N + 1)5/2Ũ∗(t)φ(Jϕt)Ũ(t)Ω‖ ≤ CeKt‖(N + 1)5/2φ(Jϕt)Ũ(t)Ω‖
≤ C‖Jϕt‖2e

Kt‖(N + 1)3Ũ(t)Ω‖2 ≤ C‖J‖eKt‖(N + 1)3Ω‖2 = C‖J‖eKt.
(5.33)
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We find from (5.24) that
∥∥∥∥∥(N + 1)−1/2W ∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ C

dN
. (5.34)

Finally, Lemma 5.4 shows that

‖(N + 1)1/2R(Jϕt)Ω‖ ≤ C‖Jϕt‖2e
Kt

N
≤ C‖J‖eKt

N
. (5.35)

Therefore,

|E2
t (J)| ≤ C‖J‖eKt

N
, (5.36)

which was to be proved. �

6. Properties of Regularized Dynamics

In this section, we prove various lemmas, which allows us to use the regularized
dynamics instead of the full dynamics.

Lemma 6.1. Let ψN = ϕ⊗N for some ϕ ∈ H1(R3) with ‖ϕ‖ = 1. Let ψN,t =
e−iHN tψN and ψαN,t = e−iHα

N tψN . If λ < λHcrit, then there exists a constant
C > 0 and N0 such that, for all t ∈ R and for any positive integer N > N0,

N∑

i<j

〈ψN,t, (1 − Δi)1/2(1 − Δj)1/2ψN,t〉 ≤ CN3 (6.1)

and
N∑

i<j

〈ψαN,t, (1 − Δi)1/2(1 − Δj)1/2ψαN,t〉 ≤ CN3. (6.2)

Proof. Let

Sj = (1 − Δj)1/2, Vij =
λ

|xi − xj | , (6.3)

so that

HN =
N∑

j=1

Sj − 1
N

N∑

i<j

Vij . (6.4)

We first consider the operator

HN−1 =
N−1∑

j=1

Sj − 1
N − 1

N−1∑

i<j

Vij . (6.5)

Let η = (λHcrit/λ)1/2 so that η > 1 and λη < λHcrit. Then,

HN−1 = η−1

⎛

⎝(η − 1)
N−1∑

j=1

Sj +
N−1∑

j=1

Sj − λη

N − 1

N−1∑

i<j

Vij

⎞

⎠ . (6.6)



Vol. 14 (2013) Rate of Convergence 333

When N is sufficiently large, we have the following operator inequality
N−1∑

j=1

Sj − λη

N − 1

N−1∑

i<j

Vij ≥ −M(N − 1) (6.7)

for some M ≥ 0. (See [24, Theorem 1].) Thus,

HN−1 ≥ −η−1MN + (1 − η−1)
N−1∑

j=1

Sj . (6.8)

Let

H
(N−1)
N =

N−1∑

j=1

Sj − 1
N

N−1∑

i<j

Vij . (6.9)

We consider the operator

H2
N =

⎛

⎝H(N−1)
N + SN − 1

N

N−1∑

j=1

VjN

⎞

⎠
2

=

⎛

⎝H(N−1)
N − 1

N

N−1∑

j=1

VjN

⎞

⎠
2

+ S2
N + 2H(N−1)

N SN

−SN
⎛

⎝ 1
N

N−1∑

j=1

VjN

⎞

⎠−
⎛

⎝ 1
N

N−1∑

j=1

VjN

⎞

⎠SN , (6.10)

where we used that [H(N−1)
N , SN ] = 0. Now, we find that

H2
N ≥ S2

N + 2H(N−1)
N SN − SN

⎛

⎝ 1
N

N−1∑

j=1

VjN

⎞

⎠−
⎛

⎝ 1
N

N−1∑

j=1

VjN

⎞

⎠SN . (6.11)

Since

H
(N−1)
N ≥ HN−1 ≥ −η−1MN + (1 − η−1)

N−1∑

j=1

Sj , (6.12)

we have that

H
(N−1)
N SN = S

1/2
N H

(N−1)
N S

1/2
N ≥ S

1/2
N

⎛

⎝−η−1MN + (1 − η−1)
N−1∑

j=1

Sj

⎞

⎠S1/2
N

≥ −η−1MNSN + (1 − η−1)
N−1∑

j=1

SjSN . (6.13)

Let C0 be a constant satisfying the operator inequality

C0SjSN ≥ V 2
jN , (6.14)
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and choose N1 large so that (1 − η−1) ≥ C0N
−1
1 . Then, for all N > N1,

2H(N−1)
N SN + 2MNSN

≥ 2(1 − η−1)
∑

j

= 1N−1SjSN ≥ (1 − η−1)
N−1∑

j=1

SjSN +
1
N

N−1∑

j=1

V 2
jN

≥ (1 − η−1)
N−1∑

j=1

SjSN +

⎛

⎝ 1
N

N−1∑

j=1

VjN

⎞

⎠
2

, (6.15)

where the last inequality comes from the Schwarz inequality. Hence, we obtain
from (6.11) and (6.15) that

H2
N + 2MNSN ≥ (1 − η−1)

N−1∑

j=1

SjSN +

⎛

⎝SN − 1
N

N−1∑

j=1

VjN

⎞

⎠
2

≥ (1 − η−1)
N−1∑

j=1

SjSN . (6.16)

Similarly, for any 1 ≤ j ≤ N ,

H2
N + 2MNSj ≥ (1 − η−1)

N∑

i:i
=j
SiSj . (6.17)

Thus, summing (6.17) over j, we get

NH2
N + 2MN

N∑

j=1

Sj ≥ (1 − η−1)
N∑

i
=j
SiSj . (6.18)

For the operator HN , similarly to (6.8), we have

HN ≥ −η−1MN + (1 − η−1)
N∑

j=1

Sj , (6.19)

thus,

(1 − η−1)−1HN + (η − 1)−1MN ≥
N∑

j=1

Sj . (6.20)

Together with (6.18), we have shown that

ηN

η − 1
H2
N + 2(

η

η − 1
)2MNHN +

2ηM2N2

(η − 1)2
≥

N∑

i
=j
SiSj . (6.21)

Since HN and H2
N have the upper bounds

HN ≤
N∑

j=1

Sj (6.22)
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and

H2
N =

⎛

⎝
N∑

j=1

Sj − 1
N

N∑

i<j

Vij

⎞

⎠
2

≤ 2

⎛

⎝
N∑

j=1

Sj

⎞

⎠
2

+
2
N2

⎛

⎝
N∑

i<j

Vij

⎞

⎠
2

≤ 2N
N∑

j=1

S2
j +

N − 1
N

N∑

i<j

V 2
ij ≤ CN

N∑

j=1

S2
j , (6.23)

respectively, we have that

〈ψN,t,HNψN,t〉 = 〈ϕ⊗N ,HNϕ
⊗N 〉

≤ 〈ϕ⊗N ,
N∑

j=1

Sjϕ
⊗N 〉 ≤ CN‖ϕ‖2

H1/2 (6.24)

and

〈ψN,t,H2
NψN,t〉 = 〈ϕ⊗N ,H2

Nϕ
⊗N 〉 ≤ CN〈ϕ⊗N ,

N∑

j=1

S2
jϕ

⊗N 〉 ≤ CN2‖ϕ‖2
H1 .

(6.25)

Therefore, from (6.21), (6.24), and (6.25), we find
N∑

i<j

〈ψN,t, SiSjψN,t〉 ≤ CN3, (6.26)

which proves the first part of the lemma. The second part of the lemma can
be proved analogously. �

We consider the regularized semi-relativistic Hartree equation (2.10)
given by

i∂tϕ
α
t = (1 − Δ)1/2ϕαt − λ

(
1

| · | + αN
∗ |ϕαt |2

)
ϕαt , (6.27)

and study properties of the solution of (2.10).
The following results will be used in the proof of Proposition 2.3:

Lemma 6.2 (Generalized Leibniz Rule). Suppose that 1 < p < ∞, s ≥ 0,
α ≥ 0, β ≥ 0, and 1/pi + 1/qi = 1/p with i = 1, 2, 1 < q1 ≤ ∞, 1 < p2 ≤ ∞.
Then

‖(−Δ)s/2(fg)‖p
≤ C

(
‖(−Δ)(s+α)/2f‖p1‖(−Δ)α/2g‖q1 + ‖(−Δ)β/2f‖p2‖(−Δ)(s+β)/2g‖q2

)
,

(6.28)

where the positive constant C depends on all of the parameters above but not
on f and g.

Proof. See [18, Theorem 1.4]. �
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Lemma 6.3 (Propagation of regularity). Fix s > 1/2. Let ϕ ∈ Hs(R3) with
‖ϕ‖2 = 1. Let ϕt and ϕαt denote the solutions of the semi-relativistic Hartree
equations (1.6) and Hartree equation with cutoff, respectively, with the initial
condition ϕt=0 = ϕ. Fix T > 0 such that

κ = sup
|t|≤T

‖ϕt‖H1/2 < ∞. (6.29)

Then, there exists a constant ν = ν(κ, T, s, ‖ϕ‖Hs) < ∞ (but independent of
αN ) such that

sup
|t|≤T

‖ϕt‖Hs , sup
|t|≤T

‖ϕαt ‖Hs ≤ ν. (6.30)

Proof. See [25, Proposition 2.1]. �

To prove Proposition 2.3, we first consider the following a priori bound
on the difference in L2-norm:

Lemma 6.4. Suppose that the assumptions of Proposition 2.3 are satisfied.
Then, there exist constants C and K, depending only on λ, κ, T , and ‖ϕ‖H1 ,
such that

‖ϕt − ϕαt ‖2 ≤ CαN (6.31)

for all |t| < T .

Proof. See [25, Proposition 2.2] �

Using Lemma 6.4, we prove Proposition 2.3. In the following proof, we
generally follow the proof of [25, Proposition 2.2] except in a few estimates.

Proof of Proposition 2.3. First, note that, for any |t| ≤ T , ‖ϕt‖H1 ≤ ν for some
constant ν depending only on T , κ, and ‖ϕ‖H1 , which follows from Lemma 6.2.
To prove the proposition, it suffices to show that

‖(−Δ)1/4(ϕt − ϕαt )‖2 ≤ Cα
1/2
N . (6.32)

From Schwarz inequality, we obtain that
∣∣∣∣
d

dt
‖(−Δ)1/4(ϕt − ϕαt )‖2

2

∣∣∣∣

=

∣∣∣∣∣− 2λ Im

〈
(−Δ)1/4(ϕt − ϕαt ),

(−Δ)1/4
[(

1
| · | ∗ |ϕt|2

)
ϕt −

(
1

| · | + αN
∗ |ϕαt |2

)
ϕαt

]〉∣∣∣∣∣

≤ 2λ‖(−Δ)1/4(ϕt − ϕαt )‖2

×
∥∥∥∥(−Δ)1/4

[(
1

| · | ∗ |ϕt|2
)
ϕt −

(
1

| · | + αN
∗ |ϕαt |2

)
ϕαt

]∥∥∥∥
2

.

(6.33)
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To estimate the right hand side, we use the following decomposition:
∥∥∥∥(−Δ)1/4

[(
1

| · | ∗ |ϕt|2
)
ϕt −

(
1

| · | + αN
∗ |ϕαt |2

)
ϕαt

]∥∥∥∥
2

≤
∥∥∥∥(−Δ)1/4

[(
1

| · | ∗ |ϕt|2
)

(ϕt − ϕαt )
]∥∥∥∥

2

+
∥∥∥∥(−Δ)1/4

[((
1

| · | − 1
| · | + αN

)
∗ |ϕt|2

)
(ϕt − ϕαt )

]∥∥∥∥
2

+
∥∥∥∥(−Δ)1/4

[((
1

| · | − 1
| · | + αN

)
∗ |ϕt|2

)
ϕt

]∥∥∥∥
2

+
∥∥∥∥(−Δ)1/4

[(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)
(ϕt − ϕαt )

]∥∥∥∥
2

+
∥∥∥∥(−Δ)1/4

[(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)
ϕt

]∥∥∥∥
2

. (6.34)

The first term in the right hand side of (6.34) is bounded by
∥∥∥∥(−Δ)1/4

[(
1

| · | ∗ |ϕt|2
)

(ϕt − ϕαt )
]∥∥∥∥

2

≤ C

∥∥∥∥(−Δ)1/4
(

1
| · | ∗ |ϕt|2

)∥∥∥∥
6

‖ϕt − ϕαt ‖3

+C
∥∥∥∥

1
| · | ∗ |ϕt|2

∥∥∥∥
∞

‖(−Δ)1/4(ϕt − ϕαt )‖2 (6.35)

where we used the generalized Leibniz rule, Lemma 6.2. By Sobolev inequality,

‖ϕt − ϕαt ‖3 ≤ C‖(−Δ)1/4(ϕt − ϕαt )‖2, (6.36)

and by Kato’s inequality,
∥∥∥∥

1
| · | ∗ |ϕt|2

∥∥∥∥
∞

≤ C‖ϕt‖H1/2 . (6.37)

Since
1

| · | ∗ |ϕt|2 = −4π(−Δ)−1|ϕt|2, (6.38)

we find that

(−Δ)1/4
(

1
| · | ∗ |ϕt|2

)
= −4π(−Δ)−3/4|ϕt|2 = −4πG3/2 ∗ |ϕt|2, (6.39)

where G3/2 is the kernel of the operator (−Δ)−3/4 that is given by

G3/2(x) =
π2

√
2

Γ(3/4)
|x|−3/2. (6.40)

Thus, from Hardy–Littlewood–Sobolev inequality and Sobolev inequality,
∥∥∥∥(−Δ)1/4

(
1

| · | ∗ |ϕt|2
)∥∥∥∥

6

= C
∥∥∥| · |−3/2 ∗ |ϕt|2

∥∥∥
6

≤ C‖ϕt‖2
3 ≤ C‖ϕt‖2

H1/2 .

(6.41)
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From (6.35), (6.36), (6.37), and (6.41), we get
∥∥∥∥(−Δ)1/4

[(
1

| · | ∗ |ϕt|2
)

(ϕt − ϕαt )
]∥∥∥∥

2

≤ C‖(−Δ)1/4(ϕt − ϕαt )‖2. (6.42)

The second term in the right hand side of (6.34) can be bounded analo-
gously, hence it satisfies

∥∥∥∥(−Δ)1/4
[((

1
| · | − 1

| · | + αN

)
∗ |ϕt|2

)
(ϕt − ϕαt )

]∥∥∥∥
2

≤ C‖(−Δ)1/4(ϕt − ϕαt )‖2. (6.43)

The third term in the right hand side of (6.34) is again bounded using
Lemma 6.2 by

∥∥∥∥(−Δ)1/4
[((

1
| · | − 1

| · | + αN

)
∗ |ϕt|2

)
ϕt

]∥∥∥∥
2

≤ C

∥∥∥∥(−Δ)1/4
[((

1
| · | − 1

| · | + αN

)
∗ |ϕt|2

)]∥∥∥∥
3

‖ϕt‖6

+C
∥∥∥∥

(
1

| · | − 1
| · | + αN

)
∗ |ϕt|2

∥∥∥∥
∞

‖(−Δ)1/4ϕt‖2. (6.44)

We have from Hardy–Littlewood–Sobolev inequality, generalized Leibniz rule,
and Sobolev inequality that
∥∥∥∥(−Δ)1/4

[((
1

| · | − 1
| · | + αN

)
∗ |ϕt|2

)]∥∥∥∥
3

≤ αN

∥∥∥∥
1

| · |2 ∗ (−Δ)1/4|ϕt|2
∥∥∥∥

3

≤ CαN‖(−Δ)1/4(ϕtϕt)‖3/2 ≤ CαN‖(−Δ)1/4ϕt‖2‖ϕt‖6 ≤ CαNκν. (6.45)

From Hardy inequality, we get that
∥∥∥∥

(
1

| · | − 1
| · | + αN

)
∗ |ϕt|2

∥∥∥∥
∞

≤ αN

∥∥∥∥
1

| · |2 ∗ |ϕt|2
∥∥∥∥

∞
≤ CαNν

2. (6.46)

Thus, from (6.44), (6.45), and (6.44), we obtain that
∥∥∥∥(−Δ)1/4

[((
1

| · | − 1
| · | + αN

)
∗ |ϕt|2

)
ϕt

]∥∥∥∥
2

≤ CαN . (6.47)

The fourth term in the right hand side of (6.34) is bounded by
∥∥∥∥(−Δ)1/4

[(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)
(ϕt − ϕαt )

]∥∥∥∥
2

≤ C

∥∥∥∥(−Δ)1/4
(

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
)∥∥∥∥

∞
‖ϕt − ϕαt ‖2

+C
∥∥∥∥

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
∥∥∥∥

∞
‖(−Δ)1/4(ϕt − ϕαt )‖2 (6.48)

We notice that
(

(−Δ)1/4
1

| · | + αN

)
(x) ≤ C

(|x| + αN )3/2
, (6.49)
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which is proved in [25, Proposition 2.2]. Thus,
∥∥∥∥(−Δ)1/4

(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)∥∥∥∥
∞

‖ϕt − ϕαt ‖2

≤ Cα
−3/2
N

∥∥|ϕt|2 − |ϕαt |2∥∥
1
‖ϕt − ϕαt ‖2

≤ Cα
−3/2
N

∥∥|ϕt| + |ϕαt |∥∥
2
‖ϕt − ϕαt ‖2

2 ≤ Cα
1/2
N , (6.50)

where we used Lemma 6.4 in the last inequality. We also have that
∥∥∥∥

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
∥∥∥∥

∞
≤ α−1

N

∥∥|ϕt|2 − |ϕαt |2∥∥
1

≤ C, (6.51)

where we used the same argument as in (6.50). Thus, from (6.48), (6.50), and
(6.51), we obtain that

∥∥∥∥(−Δ)1/4
[(

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
)

(ϕt − ϕαt )
]∥∥∥∥

2

≤ Cα
1/2
N + C‖(−Δ)1/4(ϕt − ϕαt )‖2. (6.52)

The last term of the right hand side (6.34) is bounded by
∥∥∥∥(−Δ)1/4

[(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)
ϕt

]∥∥∥∥
2

≤ C

∥∥∥∥(−Δ)1/4
(

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
)∥∥∥∥

3

‖ϕt‖6

+C
∥∥∥∥

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
∥∥∥∥

6

‖(−Δ)1/4ϕt‖3. (6.53)

The first term in the right hand side of (6.53) is bounded by
∥∥∥∥(−Δ)1/4

(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)∥∥∥∥
3

≤
∥∥∥∥(−Δ)1/4

1
| · | + αN

∥∥∥∥
3

‖|ϕt|2 − |ϕαt |2‖1

≤ CαN

∥∥∥∥
1

(| · | + αN )3/2

∥∥∥∥
3

, (6.54)

where we used the bound (6.49). An explicit computation shows that

∥∥∥∥
1

(| · | + αN )3/2

∥∥∥∥
3

3

= 4π

∞∫

0

r2

(r + αN )9/2
dr =

64π
105

α
−3/2
N . (6.55)

Hence,
∥∥∥∥(−Δ)1/4

(
1

| · | + αN
∗ (|ϕt|2 − |ϕαt |2)

)∥∥∥∥
3

≤ Cα
1/2
N . (6.56)
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The second term in the right hand side of (6.53) is estimated as
∥∥∥∥

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
∥∥∥∥

6

‖(−Δ)1/4ϕt‖3

≤
∥∥∥∥

1
| · | ∗ ∣∣|ϕt|2 − |ϕαt |2∣∣

∥∥∥∥
6

‖ϕt‖H1

≤ C
∥∥|ϕt|2 − |ϕαt |2∥∥

6/5
‖ϕt‖H1 ≤ C ‖|ϕt| + |ϕαt |‖2 ‖ϕt − ϕαt ‖3‖ϕt‖H1

≤ Cν‖(−Δ)1/4(ϕt − ϕαt )‖2, (6.57)

where we used Sobolev inequality and Hardy–Littlewood–Sobolev inequality.
Thus, from (6.53), (6.56), and (6.57), we obtain that

∥∥∥∥(−Δ)1/4
[(

1
| · | + αN

∗ (|ϕt|2 − |ϕαt |2)
)
ϕt

]∥∥∥∥
2

≤ Cα
1/2
N + C‖(−Δ)1/4(ϕt − ϕαt )‖2. (6.58)

Therefore, from (6.33), (6.34), (6.42), (6.43), (6.47), (6.52), and (6.58),
we find that∣∣∣∣

d
dt

‖(−Δ)1/4(ϕt − ϕαt )‖2
2

∣∣∣∣

≤ C‖(−Δ)1/4(ϕt − ϕαt )‖2

(
α

1/2
N + ‖(−Δ)1/4(ϕt − ϕαt )‖2

)

≤ CαN + C‖(−Δ)1/4(ϕt − ϕαt )‖2
2. (6.59)

Now, (6.32) follows from Gronwall’s lemma. This concludes the proof of the
Proposition 2.3. �

7. Properties of Weyl Operator

In this section, we prove various estimates on the following state:

W ∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω. (7.1)

Lemma 7.1. There exists a constant C > 0 such that, for any ϕ ∈ L2(R3) with
‖ϕ‖2 = 1, we have

∥∥∥∥∥(N + 1)−1/2W ∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ C

dN
. (7.2)

Proof. See [2, Lemma 6.3]. �

In the next lemma, we prove an estimate on the state (7.1), which pri-
marily shows that the state has a very small probability of having an odd
number of particles.
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Lemma 7.2. For all non-negative integers k ≤ (1/2)N1/3,
∥∥∥∥∥P2kW

∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ 2
dN

(7.3)

and
∥∥∥∥∥P2k+1W

∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ 2(k + 1)3/2

dN
√
N

. (7.4)

Proof. Since

W ∗(
√
Nϕ) = W (−

√
Nϕ) = e−N/2 exp

(
a∗(−

√
Nϕ)
)

exp
(
a(

√
Nϕ)
)
, (7.5)

we find for any � ≤ N that

P	W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

=
e−N/2
√
N !

	∑

m=0

(
a∗(−√

Nϕ)
)m

m!

(
a(

√
Nϕ)
)N−	+m

(N − �+m)!
(
a∗(ϕ)

)NΩ

=
e−N/2
√
N !

√
N
N−	 	∑

m=0

(−1)mNm

m!(N − �+m)!
(
a∗(ϕ)

)m(
a(ϕ)
)N−	+m(

a∗(ϕ)
)NΩ

=
e−N/2
√
N !

√
N
N−	 	∑

m=0

(
N

�−m

)
(−1)mNm

m!
(
a∗(ϕ)

)	Ω

=
1
dN

N−	/2L(N−	)
	 (N)

(
a∗(ϕ)

)	Ω, (7.6)

where L(α)
n (x) denotes the generalized Laguerre polynomial.

Generalized Laguerre polynomials L(α)
n (x) satisfy the following recurrence

relations:

L(α−1)
n (x) = L(α)

n (x) − L
(α)
n−1(x), (7.7)

xL(α+1)
n (x) = (n+ α+ 1)L(α)

n (x) − (n+ 1)L(α)
n+1(x). (7.8)

(See [1] for more detail.) From the recurrence relations, we find that

xL
(α+2)
n−2 (x) = xL

(α+2)
n−1 (x) − xL

(α+1)
n−1 (x)

=
[
(n+ α+ 1)L(α+1)

n−1 (x) − nL(α+1)
n (x)

]
− xL

(α+1)
n−1 (x)

= (α+ 1 − x)L(α+1)
n−1 (x) − nL(α+1)

n (x) + nL
(α+1)
n−1 (x)

= (α+ 1 − x)L(α+1)
n−1 (x) − nL(α)

n (x). (7.9)

Hence we get,

L(α)
n (x) =

α+ 1 − x

n
L

(α+1)
n−1 (x) − x

n
L

(α+2)
n−2 (x). (7.10)
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Define

A	 :=

{
N (1−	)/2L(N−	)

	 (N) if � odd

N−	/2L(N−	)
	 (N) if � even

. (7.11)

Then, from (7.10), we can find the following recurrence relations for A	:

A2k+1 = − 2k
2k + 1

A2k − A2k−1

2k + 1
, A2k = −2k − 1

2k
· A2k−1

N
− A2k−2

2k
,

(7.12)

where k is a non-negative integer. It can be easily computed that A0 = 1 and
A1 = 0. Now, we consider the following claim:

Claim. For any 1 ≤ k ≤ (1/2)N1/3,

|A2k−2| ≤ 1√
(2k − 2)!

, |A2k−1| ≤ k
√
k√

(2k − 1)!
. (7.13)

We prove the claim inductively. It is trivial that A0 and A1 satisfy the
claim. If A0, A1, . . . , A2k−1 satisfies (7.13), then from (7.12), we obtain that

|A2k| ≤ k
√
k

N
√

(2k − 1)!
+

1
k
√

(2k − 2)!
=

1√
(2k)!

(√
2k2

N
+

√
2k − 1

2k

)

≤ 1√
(2k)!

(√
2k2

N
+ 1 − 1

4k

)
≤ 1√

(2k)!
, (7.14)

since k ≤ (1/2)N1/3. We also have that

|A2k+1|

≤ 1√
(2k)!

+
k
√
k

(2k + 1)
√

(2k − 1)!
=

1√
(2k + 1)!

(√
2k + 1 +

√
2k2

√
2k + 1

)

=
1√

(2k + 1)!

(
2k + 1 +

2k4

2k + 1
+ 2

√
2k2

)1/2

≤ 1√
(2k + 1)!

(k3 + 3k2 + 2k + 1)1/2 ≤ (k + 1)
√
k + 1√

(2k + 1)!
. (7.15)

Thus, the claim (7.13) is proved.
Now, we observe that
∥∥∥∥∥P2kW

∗(
√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ =
A2k

dN

∥∥∥
(
a∗(ϕ)

)2kΩ
∥∥∥

≤ 1
dN

∥∥∥∥∥

(
a∗(ϕ)

)2k
√

(2k)!
Ω

∥∥∥∥∥ ≤ 1
dN

(7.16)
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and ∥∥∥∥∥P2k+1W
∗(

√
Nϕ)

(
a∗(ϕ)

)N
√
N !

Ω

∥∥∥∥∥ ≤ A2k+1

dN
√
N

∥∥∥
(
a∗(ϕ)

)2k+1Ω
∥∥∥

≤ (k + 1)3/2

dN
√
N

∥∥∥∥∥

(
a∗(ϕ)

)2k+1

√
(2k + 1)!

Ω

∥∥∥∥∥ ≤ (k + 1)3/2

dN
√
N

. (7.17)

This proves the desired lemma. �

8. Properties of the Evolution Operator Ũ(t; s)

In this section, we prove some basic properties of the operator Ũ(t; s).
Following [15, Proposition 2.2], we can prove that Ũ(t; s) is bounded in

Q(K+N 2), provided that (L2(t)+L4) is stable. (See [20, Proposition 3.4] and
[2, Lemma 7.1] for more detail.) The following lemma shows that (L2(t)+L4)
is stable:

Lemma 8.1. Assume that ν(t) = sup|s|≤t ‖ϕαs ‖H1 < ∞. Then, there exist con-
stants C ′,K ′ > 0, depending on N , αN , λ, t, and ν(t), such that, for the
operator A2(t) = L2(t) + L4 + C(N 2 + 1), we have the operator inequality

d
dt
A2(t) ≤ K ′A2(t). (8.1)

Proof. Note that
d
dt
A2(t) =

d
dt

L2(t)

= −
∫∫

dxdy
λ

|x− y| + αN
ϕαt (y)ϕ̇αt (y)a∗

xax

−
∫∫

dxdy
λ

|x− y| + αN
ϕαt (x)ϕ̇αt (y)a∗

yax

−
∫∫

dxdy
λ

|x− y| + αN
ϕαt (x)ϕ̇αt (y)a∗

xa
∗
y + h.c. (8.2)

where h.c. denotes the Hermitian conjugate and ϕ̇αt = ∂tϕ
α
t . Recall that ϕαt is

the solution of (2.10). Since

‖(1 − Δ)1/2φt‖2 ≤ ‖φt‖H1 (8.3)

and

‖ 1
| · | + αN

∗ |φt|2‖∞ ≤ ‖φt‖H1/2 < ∞, (8.4)

we find that ϕ̇αt ∈ L2(R3). Thus, for any ψ ∈ F ,
∣∣∣∣

〈
ψ,

∫∫
dxdy

λ

|x− y| + αN
ϕαt (x)ϕ̇αt (y)a∗

xa
∗
yψ

〉∣∣∣∣

=
∣∣∣∣
∫

dxdy
〈
axayψ,

λ

|x− y| + αN
ϕαt (x)ϕ̇αt (y)ψ

〉∣∣∣∣
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≤
∫

dxdy‖axayψ‖2 +
∫

dxdy| λ

|x− y| + αN
|2|ϕαt (x)|2|ϕ̇αt (y)|2‖ψ‖2

≤ 〈ψ,N 2ψ〉 + C‖ϕαt ‖H1‖ϕ̇αt ‖2〈ψ,ψ〉. (8.5)

Other terms in the right hand side of (8.2) can be bounded similarly. Thus,
we find that

d
dt
A2(t) ≤ C(N 2 + 1). (8.6)

Lemma 6.1 of [3] shows that −C(N + 1) ≤ L2(t) − K ≤ C(N + 1) for
some constant C > 0. Moreover, for any ψ ∈ F ,

|〈ψ,L4ψ〉| =
∣∣∣∣

〈
ψ,

λ

2N

∫∫
dxdy

1
|x− y| + αN

a∗
xa

∗
yaxayψ

〉∣∣∣∣

≤ CN−1α−1
N 〈ψ,N 2ψ〉, (8.7)

hence L4 ≤ CN−1α−1
N N 2. In summary, we showed that that there exist con-

stants C ′,K ′ ≥ 0 such that
d
dt
A2(t) ≤ K ′(N 2 + 1) ≤ K ′(L2(t) + L4 + C ′(N 2 + 1)) = K ′A2(t), (8.8)

which was to be proved. �
The following lemma that shows the number of the particles in the state

Ũ∗(t)φ(f)Ũ(t)Ω cannot be even.

Lemma 8.2. Let f ∈ L2(R3). Then, for any k = 0, 1, 2, . . .,

P2kŨ∗(t)φ(f)Ũ(t)Ω = 0. (8.9)

Proof. We first show that the parity (−1)N and the operator Ũ(t) commute.
We note that

i
d
dt

(
Ũ∗(t)(−1)N Ũ(t)

)
= Ũ∗(t)[(−1)N , (L2(t) + L4)]Ũ(t). (8.10)

Since (L2(t) + L4) and (−1)N commute, we have that
d
dt

(
Ũ∗(t)(−1)N Ũ(t)

)
= 0. (8.11)

We also know that Ũ(0) = I, hence,

Ũ∗(t)(−1)N Ũ(t) = Ũ∗(0)(−1)N Ũ(0) = (−1)N . (8.12)

Thus, (−1)N Ũ(t) = Ũ(t)(−1)N for all t. Similarly, Ũ∗(t) and (−1)N also com-
mute.

Since Ũ(t) and Ũ∗(t) commute with the parity (−1)N , we have that for
any non-negative integer k and any η ∈ F ,

〈η, P2kŨ∗(t)a(f)Ũ(t)Ω〉
= 〈η, P2k(−1)N Ũ∗(t)a(f)Ũ(t)Ω〉 = 〈η, P2kŨ∗(t)(−1)Na(f)Ũ(t)Ω〉
= 〈η, P2kŨ∗(t)a(f)(−1)N−1Ũ(t)Ω〉 = 〈η, P2kŨ∗(t)a(f)Ũ(t)(−1)N−1Ω〉
= −〈η, P2kŨ∗(t)a(f)Ũ(t)Ω〉, (8.13)
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which shows that P2kŨ∗(t)a(f)Ũ(t)Ω = 0. The proof for that

P2kŨ∗(t)a∗(f)Ũ(t)Ω = 0 (8.14)

is similar. Therefore, we get the desired lemma. �
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