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Abstract 
Although HMM is widely used for on-line handwriting recognition, there is no simple and well-

established method of designing the HMM topology. We propose a data-driven systematic method to 

design HMM topology. Data samples in a single pattern class are structurally simplified into a sequence 

of straight-line segments, and then these simplified representations of the samples are clustered. An 

HMM is constructed for each of these clusters, by assigning a state to each straight-line segments. Then 

the resulting multiple models of the class are combined to form an architecture of a multiple parallel-path 

HMM, which behaves as a single HMM. To avoid excessive growing of the number of the states, 

parameter tying is applied in that structural similarity among patterns is reflected. Experiments on on-line 

Hangul recognition showed about 19 % of error reductions, compared to the intuitive design method. 
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1. INTRODUCTION 

As one of the major research directions for on-line handwriting recognition, hidden Markov model 

(HMM) is widely used because of the time sequential nature of on-line scripts as well as its capability of 

modeling shape variability in probabilistic terms. However, there has been no serious study or guidance in 

the design of HMM topology. Previous studies suggested that HMM should be designed depending on the 

signal being modeled.1, 2 The model needs to have enough number of free parameters to accommodate 

complexity of target patterns and to reflect properties of the patterns. In practice, however, an arbitrary 

increment of the model parameters is not recommended, since available training samples are usually 

limited. Therefore, HMM topology should be determined based both on available training data and on the 

target patterns to be represented. 

In this paper, we are focusing on two design parameters, i.e. , the number of states in HMM and the 

number of models for a class. Despite its importance, relatively little attention has been paid to the design 

of HMM topology. Simply, the same number of states was used,3 or all possible instances of the number 
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of states were tested and then the best one was selected.4 Attempts have been also made to incorporate 

intuitive knowledge.5, 6 Data-driven methods include utilization of length information such as average 

length of observation symbols  7 or length of pre -defined sub-character units,8 and more systematic 

adjustment of the number of states by successive state-splitting 9 or merging 10 according to maximum 

likelihood criterion. Structural design method was also presented,11 where the topology of a Markov 

network was inferred from a finite set of samples. 

We propose a data-driven method of design HMM topology for on-line handwriting recognition. Our 

design principle is that HMM topology should be constructed from data, reflecting the structure of a 

target pattern. Here, we assumed that a target pattern is composed of straight-line segments. Accordingly, 

a sample of the target pattern can be structurally decomposed and simplified as a sequence of straight-line 

segments, i.e., structural units. According to our design principle, the HMM has a state corresponding to 

each straight-line segment. To handle shape and writing-order variations present inside a class, sequences 

of straight-line segments, which are simplified representations of samples, are clustered to construct 

multiple models. The resulting multiple models for a single class are combined to form a single HMM 

architecture, called a multiple parallel-path HMM. For training, the initial observation probability 

distribution for each state is estimated from the distribution of corresponding straight-line segments, and 

then the Viterbi path training method is applied. When models for a single class have parts that are not 

simply similar in shape but structurally similar, corresponding states are tied. The number of parameters 

in the HMM are hence reduced to a manageable size. This state-tying based on structural similarity is 

performed at the design stage of the HMM. 

The proposed method was evaluated on on-line Hangul (the Korean script) recognition, since Hangul 

graphemes are typically structured with line segments. Experiments showed that our method reduced 

about 19 % of character recognition error compared to the intuitive design methods. We believe that the 

proposed design method can be applied to other scripts that are mostly composed of straight-line 

segments, such as Chinese characters. 

The organization of the paper is as follows. Section 2 presents the data-driven design method of 

HMM topology, combining architecture of multiple models, and the structural state-tying method. Section 

3 introduces Hangul and the on-line Hangul recognition system briefly, then addresses the external 

duration modeling for performance improvement. Section 4 shows the experimental results of the 

proposed approach and analysis of the results. Conclusion is followed in Sect. 5. 

2. DATA-DRIVEN DESIGN OF HMM TOPOLOGY 

In this section, we will describe how to determine the number of states in HMM and the number of 

models for each pattern class, based on training samples. We will also explain how these multiple models 

for a single class are combined in the architecture of a multiple parallel-path HMM. Finally, the structure-

based state-tying method to reduce the number of parameters will be explained. 
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2.1. Mapping line segment to HMM state 

The number of HMM states is an important design parameter. It is a measure, albeit crude, of the 

complexity of the finite state grammar represented by the Markov chain embedded in the HMM 6 and 

corresponds, roughly, to the number and dynamics of signal ‘prototypes’ being modeled. For instance, a 

state could correspond to certain phonetic event in a speech recognition system.2 Thus, in modeling 

complex patterns, the number of states should be increased accordingly. When there are insufficient 

numbers of states, the discrimination power of the HMM is reduced, since more than one signal should be 

modeled on one state. On the other hand, the excessive number of states can generate the over-fitting 

problem when the number of training samples is insufficient compared to that of the model parameters.12 

We propose a data-driven design method of HMM topology for on-line handwriting recognition. In 

this method, the number of HMM states is determined by the structural decomposition of the target 

pattern. Handwriting is structurally simplified as a sequence of the straight-line segments (see Fig. 1-(b)). 

After noise removal and smoothing operation, adjacent pen movements with similar directions are 

grouped into a single straight-line segment. An invisible pen-up movement between pen-down strokes is 

also inserted as an imaginary line. Average direction of a line segment with pen-down movement is 

encoded as one of 16-direction codes, and the imaginary line is encoded by another 16-direction codes as 

shown in Fig. 2. We call the resulting direction code sequence a skeleton pattern  (Fig. 1-(c)). It is 

regarded as a simplified representation of the pen movement, since both hand vibrations and length 

variations are ignored but only directional information remains. It describes a time-sequential and global 

shape of the pen movements. 

(a)           (b)               (c)                   (d) 

Fig. 1.  Examples of HMM topology design 

(a) Handwriting sample,  (b) Line segment approximation,  (c) Skeleton pattern,  (d) Resulting HMM 

 

The structure of HMM is based on the skeleton pattern of a sample as shown in Fig. 1-(d). The 

transition structure of the model is a simple left-to-right casual model. The number of states is determined 

by mapping each straight-line segment into a single HMM state. Thus, each state assumes a uni-modal 

feature distribution only for the corresponding straight-line. Length variations of the straight-line are 

modeled in the self-loop of the state. As a consequence, each state of HMM corresponds to a straight-line 

segment of handwriting in time -sequential order. For this reason, external knowledge can be utilized for 

the verification of the recognition result. 
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                         (a) Pen-down codes    (b) Pen-up codes  

Fig. 2.  Two sets of 16 direction codes for a skeleton pattern  

 

Fig. 3.  Initial observation probability distribution from a skeleton pattern  

 

Since the maximum likelihood training method of HMM is a kind of the steepest gradient search 

method, a good initial estimate, instead of random or uniform probability, is helpful for finding the global 

maximum of the likelihood function.1 We can obtain initial observation probability distributions from the 

mapping relation between states and the skeleton pattern (see Fig. 3). The distribution of the line 

segments is accumulated from the training sample, and then its normalization is used as the initial 

parameter of the corresponding state. When good initial observation probability distributions are given, 

the Viterbi path training methods 13 works better and faster, compared to the usual Baum-Welch method. 

2.2. Design of multiple models by clustering 

Whether or not having a single HMM to model whole patterns of a single class is also an important 

design decision. Several models may be needed to represent quite different shapes of a single class, such 

as the well-known division of printed style and cursive style (see Fig. 4). To this end, a clustering method 

is usually applied to obtain multiple models in each class. Nonetheless, it is difficult to decide the number 

of models in advance for top-down clustering. Similarly, selecting a proper distance measure for 

clustering samples without any additional knowledge or constraints is a difficult task. 

 

Fig. 4.  Two different writing styles of the Roman character ‘b’ 
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      (a)         (b)            (c)                    (d)                (e) 

Fig. 5.  Example of a multiple HMM design: Hangul consonant ‘ ’ 

(a) Various handwriting samples,  (b) Line segment approximations,  (c) Skeleton patterns, 

(d) Representative patterns,  (e) Resulting HMMs 

 

Skeleton patterns within a class, each of which is the simplified representations of sample, are 

clustered to determine the number of models for the class. The agglo merative clustering method,12 which 

is a bottom-up approach, gathers skeleton patterns of the similar direction codes into a cluster.  Since the 

skeleton patterns contain only principal pen movements, the proposed method collects the data samples of 

similar global shape as shown in Fig. 5-(c) and (d). 

For the clustering, the distance between two skeleton patterns are defined as follows. The distance 
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The skeleton pattern that appears most frequently in each cluster is chosen as the representative 

pattern of that cluster (Fig. 5-(d)). Thus, various writing styles of a class are reflected by the set of 

representative patterns. An HMM is, then, constructed from each representative pattern by the method 

described in Sect. 2.1. As a consequence, the number of representative patterns decides the number of 

models in a class, and the length of the representative pattern determines the number of states of the 

corresponding HMM. In our experiment, clusters containing only a small number of samples are 

disregarded to prevent generating too many models. 
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2.3. Combining models to one multiple parallel-path HMM 

One model for one class yields many benefits. It allows a modular design of a recognizer in that a model 

can be replaced with another easily. If different numbers of models exist in each class, models of the same 

class may compete for selection. It may hurt our attempt to select the top most labels  for post-processing. 

In addition, a prior probability, which is obtained from language corpus, cannot be easily applied if there 

exist multiple models for a single class label. 

For these reasons, we propose a multiple parallel-path HMM (MPP-HMM) architecture, to combine 

the multiple models of the same class into a single HMM structure. Dummy initial and dummy final 

nodes are introduced and connected to the multiple models of the same class. Then, these models are 

arranged in parallel. There is no connection between the multiple models. Thus, each constituent model 

forms one of the multiple paths from the dummy initial node to the dummy final one (see Fig. 6-(a)). A 

prior probability of each constituent model, Pr(λi), is assigned to the initial probability of the model πi: 

KKiii == )Pr(λπ ,           ∑
=

=
C

i
i

1

0.1π , 

where λi denotes the constituent HMM for cluster i, Ki is the size of data in cluster i, K is the size of all 

samples for the class, and C is the number of clusters in the class. Even though the MPP-HMM contains 

the multiple models inside, it behaves like a single HMM for the class. The structure of Fig. 6-(a) can be 

represented to the structure of Fig. 6-(b), which equals to the general left-to-right HMM structure. 

 

(a)                                       (b) 

Fig. 6.  Architecture of multiple parallel paths HMM 

 

The forward-backward algorithm of HMM still holds in this architecture. The model likelihood score 

P(O|λ) for input O and HMM λ is calculated by summing all of constituent models’ likelihood, each of 

which is weighted by corresponding a prior probability πi: 

∑
=

×=
C

i
iiOPOP

1

)|()|( πλλ  

The Viterbi search for finding the maximum likelihood path also can be applied without modification. It 

is the selection of the maximum path Q* among those for constituent models: 
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where Qi is a state sequence of model λi. 

Training for the MPP-HMM involved two sessions. In the first session, each constituent model is 

trained individually with only the data inside the corresponding cluster. Note that, samples from the small 

size clusters, which are disregarded during the model building process, are disregarded in this session. 

Instead, they are included in the next training session. Each of them selects the maximum likelihood 

model among the multiple models, and then participates in the update of the parameters of the selected 

model. Finally, new a priori probability of each model is calculated according to the number of updated 

training samples, and then used for the path probability to the model. 

2.4. State-tying based on structural similarity 

Maintaining a balance of design between the model complexity and the amo unt of training data is critical 

for successful recognition system. Even though multiple models dramatically increase the modeling 

power, the limited number of training samples is  not enough for deciding the large number of free 

parameters. Parameter-tying is one of the solutions for maintaining multiple models with limited training 

samples. Parameter-tying with HMM-based modeling is usually applied to states, actually observation 

probability distributions.2,14 

Due to fast and sloppy writing, the pen movement is easily affected by the previous and the following 

pen directions, and therefore, simple shape similarity may not be robust for different writers. Thus, in our 

method, not only the local closeness of output distributions but also their structural simi larities are 

considered to determine the state-tying. The structural similarity is measured from the relative position of 

observation inside a pattern and from the global shape of the pattern. We can easily measure the structural 

similarity by comparing representative patterns, which are used for building multiple HMMs in Sect. 2.2. 

In particular, our method determines which states are tied at the design phase. 

The structural state-tying method is applied only to the states in the same class. The edit distance 15 is 

applied for comparing representative patterns. The edit distance measures the distance between two 

strings by the minimum cost sequence of ‘edit operations’ needed to change the one string into the other. 

The edit distance DE (X, Y) between two representative patterns ),,,(
121 LxxxX K=  and 

),,,(
221 LyyyY K=  is computed by the dynamic programming method using the recursion relation: 
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,),(),(min{),( 11 SjijiEjiE EyxyxDyxD ×+= −− δ  

                        ,),( 1 DjiE EyxD +−  }),( 1 IjiE EyxD +−  

where Es is a substitution penalty, ED is a deletion penalty, EI is an insertion penalty, and 

δ (xi, yj) = 0,   if  d (xi, yj) < T 

δ (xi, yj) = 1,   otherwise 

where d (xi, yj) is the directional difference between direction code xi and yj, and T is the predefined 

threshold. Then, 

),(),(
21 LLEE yxDYXD =  

If the distance DE (X, Y) is within a threshold, X and Y are considered for tying. Among the aligned 

matching result of these two patterns, state i of the model for X and state j of the model for Y are tied 

when δ (xi, yj) = 0. Consequently, observation probability distributions are shared among the tied states, 

but transition probabilities are separately maintained. 

Figure 7 shows an example of the structural state-tying. The vertical line corresponding to the 1st state 

of a left model and the vertical line corresponding to the 1st state of a right model are tied. However, the 

same directional vertical line corresponding to the 3rd state of the right model is not tied to the 1st state of 

the left model because their relative positions are different. 

 

Fig. 7.  Example of state-tying based on structural similarity 

3. IMPLEMENTATION FOR ON-LINE HANGUL RECOGNITION 

The proposed design method was evaluated on on-line Hangul recognition system. In this section, Hangul 

and on-line Hangul recognition system will be explained briefly. Also presented is the heuristic of 

external duration modeling which was introduced to achieve a level of duration modeling with small 

computational burden. 
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3.1. Hangul 

Hangul, the script used for Korean language, is a phonetic writing system. A character in Hangul, which 

corresponds to a single spoken syllable, is formed by spatial arrangement of either two or three 

graphemes: an initial consonant, a vowel, and an optional final consonant. Graphemes consis t of 24 basic 

phonetic symbols. Characters are usually written in the order of an initial consonant, a vowel, and a final 

consonant, if any. Each grapheme is formed by line segments consisting of sequential combination of 

horizontal, vertical, and/or diagonal lines (see Fig. 8). Especially in the case of vowel, a long vertical line 

with short horizontal lines or a long horizontal line with short vertical lines constitutes basic vowels. 

Additional consonants/vowels are from spatial combinations of the basic consonants/vowels. Only two 

consonants with circles, ` ’ and ` ’, are exceptions. Therefore, a Hangul character can be easily 

decomposed and represented as a sequence of straight-line segments, although co-articulating effects 

deform the basic shapes. Several previous structural Hangul recognizers attempt to extract these basic line 

segments to recognize characters.16,17 

 

 

Fig. 8.  24 basic graphemes of Hangul 

3.2. HMM based on-line Hangul recognizer 

We have reported a HMM network-based approach for on-line Hangul recognition system.5 Discrete 

HMM was adopted to construct the grapheme and the ligature models. Invisible pen-up movements as 

well as conventional pen-down strokes were encoded into observation symbols that consist of two sets of 

16 direction codes. A character in Hangul can be considered as an alternating sequence of graphemes and 

intermediate ligatures. By sequential concatenation of these two kinds of HMM as the order of writing 

character, a 5-layer finite state network called BongNet was designed for all legal characters as shown in 

Fig. 9. The first, the third, and the fifth layers model the initial consonant, the vowel, and the final 

consonant, respectively. The second and the fourth layers correspond to ligatures between graphemes. All 

possible ligatures were grouped using the information of character’s topology or the spatial arrangement 

of component graphemes. 
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Fig. 9.  BongNet – Hangul character recognition network 

 

In such a finite state network, a path spanning from the initial node to the final node, represents a 

character. The recognition problem is a matter of finding the most likely path that best aligns to an input 

code sequence. We used a modified version of the Viterbi algorithm, which keeps several highest 

hypotheses during search. Checking language models or other source of knowledge on post-processing 

reorders candidates . Besides language models, structural knowledge from shape analyzers, position 

analyzers, and pair-wise discriminators were applied.18 From the maximal probability path, optimal 

character and ligature segmentation, associated character labels are obtained simultaneously. Any external 

segmentation is not necessary because the boundaries are obtained from a global viewpoint in recognition. 

3.3. External state duration modeling 

States of normal HMM have exponential duration density inherently.1 Such exponential duration 

characteristic is inappropriate for most physical signals. Particularly for our on-line recognition problem, 

the durational information of the straight-line segments was not reflected on the proposed topology design 

method. Patterns with similar pen movements but largely different in their lengths can be often confused. 

Hangul has several confusing classes that have almost same pen movements as those of other classes (see 

Fig. 10-(a), (b)). Sometimes, handwritten input with a small noisy hook or serif may be mistaken to other 

class when no duration information is used (see Fig. 10-(c)). 

 

(a) ‘ ’ Vs. ‘ ’            (b) ‘ ’ Vs. ‘ ’          (c) ‘ ’ Vs. ‘ ’ Vs. ‘ ’ 

Fig. 10.  Examples of confusing Hangul graphemes by similar pen movements  

 

We have applied the external state duration method 19 in order to emphasize duration difference. This 

method adds random variables to the state duration outside the model. After mo del training, the duration 
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information is calculated from the maximal paths of all training samples. For recognition purposes, it is 

used as a post-processor. After the Viterbi search algorithm determines the maximum likelihood state 

sequences, the duration di of state i is counted along the candidate Viterbi paths, and then the duration 

score is added as the post-processing score: 

αδδ ))((
1

^

ii

N

i
dP

=
∏×=  

where δ is the model likelihood score on the maximum path, Pi(di) is the duration score of duration di on 

state i, N is the number of states, and α is the multiplier factor to adjust the importance of the duration 

part of the scoring. Since the state duration is  not estimated as part of the training session, it is not the 

maximum likelihood estimate in the strict sense, but a heuristic one. Even though it does not guarantee an 

optimal solution, it generally works well. This explicit duration model needs a negligible amount of the 

computational overhead compared to the usual parametric or non-parametric internal state duration model. 

However, it may be unprofitable in case of a single model for a single class, because one state may model 

different pen movements, and thus, hold various state durations. 

4. EXPERIMENTS 

The data for experiments were collected without any constraint on writing style. Both printed and cursive 

handwriting styles were included. To train HMMs, we used about 85,000 Hangul characters in frequently 

used 2,350 Hangul character classes written by 84 writers. Since grapheme boundaries in these characters 

are not available,  graphemes were manually segmented for the training. The test data were collected from 

different writers who did not participate in the training data. Two kinds of texts were used that are 

composed of 580 and 168 kinds of characters respectively. Test data consists of 12,140 Hangul characters 

written by 23 writers. 

For comparing the proposed design method against an ordinary design method, the Hangul 

recognition system with a single HMM for each class 5 was used. In this system, the number of HMM 

states were tuned by intuitive and empirical methods. Table 1 shows the character recognition results of 

these approaches. First, the fixed number of states for every model, ranging from 3 to 16, was tested, and 

then the best performing number was chosen. Second, a half of the average length of observations in the 

training samples was selected for the number of the state of the class. The proportion, a half, was decided 

empirically. Last, the number of states was chosen by intuitive knowledge. Note that the intuitive method 

does not show the best result due to the variety writing styles in each class. The best performing, the 

second method is selected for comparison with our proposed method. 
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Table 1. Correct recognition rate (%) of the character recognition test : single model per class 

Methods 
 

Fixed number 
of states  

Proportion of 
code length 

Manual 
decision 

Correct recognition rate 90.77 % 91.55 % 91.54 % 

 

Next, HMM topology was decided by the proposed method. Table 2 shows that the number of models 

generated was increased about 2.5 times with our method, compared to the single model HMM (an 

average of 2.5 models per class). The total number of states was also increased by a factor of about 2. 

However, the state-tying method reduced them to about a half. As a result, the number of free parameters 

for the observation distributions becomes almost the same as that of the single model setting. 

 

Table 2. Increased parameters by the proposed method 

 Single model MPP-HMM MPP-HMM after tying 
Number of models  107 258 258 
Number of different states 577 1070 598 

MPP-HMM : Multiple Parallel-Path HMM 

 

Two kinds of tests were performed for evaluation of the performance of the proposed method. First, to 

examine how well each grapheme HMM was trained, recognition tests were performed for grapheme 

training data: 83,151 isolated initial consonants of 19 classes, 83,536 vowels of 21 classes, and 49,431 

final consonants of 27 classes. The second column of Table 3, labeled ‘Grapheme test’, shows the 

recognition rates of these tests. Note that the use of the state duration model gives remarkable 

performance improvement, i.e., about 40 % error reduction. This improvement is due to the durational 

difference among confusing graphemes. Next, Hangul character recognition test was performed by the 

test data set of Hangul characters. The third column of Table 3, labeled ‘Character test’, shows the 

recognition results. About 19 % of recognition errors were reduced by the proposed method compared to 

the single model setting. Note that state-tying did not degrade the recognition accuracy. 

 

Table 3. Correct recognition rate (%) of grapheme and character recognition 

 Grapheme test Character test 
Single Model 93.85 % 91.55 % 
MPP-HMM 93.21 % 92.04 % 
MPP-HMM + D 96.56 % 93.11 % 
MPP-HMM + D + T 96.30 % 93.16 % 

D : external duration model,  T : structural state-tying 

 

Table 4 shows the increment of time complexity due to multiple models. Since search space of the 

recognition network broadened by the multiple model setting, average time for character recognition was 

increased about 2 times. 
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Table 4. Increased time complexity by multiple model setting (in SUN SPARC-II workstation) 

 Single model MPP-HMM 
Avg. recognition time 0.10 (sec/char) 0.19 (sec/char) 

5. CONCLUSION 

A data-driven systematic design method of HMM topology for on-line handwriting recognition was 

proposed. The number of models in each class and the number of HMM states in each model were 

determined by the structurally simplified sequences of the straight-line segments and their clusters. As a 

result, different handwriting styles were modeled by multiple HMMs, and their states were forced to 

correspond to the line segments  of the target pattern in time sequential order. The multiple models in a 

class were combined in parallel to form the structure of the multiple parallel-path HMM, and then it 

behaves as a single HMM. States with structural similarity were tied, hence the number of HMM 

parameters were reduced. For the practical application of the system, the external states  duration 

modeling was applied. The experiments to on-line Hangul handwriting recognition showed that the 

proposed method reduced about 19% of the error rate compared to the intuitive design methods. 
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