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Tunable geometric phase of Dirac fermions in a topological junction
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We predict a tunable and nonadiabatic Berry phase effect of Dirac fermions, which is an electronic analog
of the Pancharatnam phase of polarized light. The Berry phase occurs as a scattering phase shift in a single
scattering event of transmission or reflection of Dirac fermions at a junction with a spatially nonuniform mass
gap, unveiling the topological aspects of scattering of chiral Dirac fermions. This geometric phase plays different
roles in solids as compared with the Pancharatnam phase in optics. It provides a unique approach of detecting
the Chern number of the insulator side in a metal-insulator junction of Dirac fermions, implying a different type
of bulk-edge correspondence at the boundary between a metal and an insulator. This phase also modifies the
quantization rule of Dirac fermions, suggesting geometric-phase devices with nontrivial charge and spin transport
such as a topological waveguide and a topological transistor.
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I. INTRODUCTION

Polarized light acquires a geometric phase when it passes
through a series of polarizers.1 This phase, known as the Pan-
charatnam phase,1–4 is a topological phenomenon of geometric
origin in a Poincaré sphere, a graphical tool representing light
polarization on its surface; see Fig. 1. This phase was useful for
generalizing the quantum geometric phase, known as the Berry
phase,5,6 from an adiabatic cyclic evolution of quantum states
to discontinuous or noncyclic changes2,3,7 such as projective
measurement. It has attracted much attention in optics and is
used in various optical devices.3

Electron spin can be considered as a counterpart of light
polarization. It acquires Berry phase along a closed trajectory
on the Bloch sphere, the object equivalent to a Poincaré
sphere.8 This analogy may motivate us to search for the
effects of electrons corresponding to the Pancharatnam phase
of polarized light, as such analogies between electronics and
optics have often led to finding new interesting phenomena.
However, the electron analog of the Pancharatnam phase of
light has not been studied.

On the other hand, electrons in graphene9 and on a surface
of topological insulators10–12 behave as Dirac fermions (DFs).
They have the interesting property of spin-momentum locking
that their spin rotates following the change in direction of the
spatial momentum; in graphene, the pseudospin representing
sublattice states behaves as the spin. Massless DFs acquire the
Berry phase of π in spatial motion along a closed trajectory
on a plane, as the their spin rotates along a great circle on
the Bloch sphere. This special value π causes topological
phenomena13–17 such as the half-integer quantum Hall effect
and weak antilocalization. When DFs become massive, they
can have the other possible values of Berry phase of spin 1/2.
The continuous values of Berry phase cause the modification
of the known effects of Berry phase π .18–20 They may
also result in new interesting effects, together with unusual
transport17,21–24 of DFs.

In this work, we theoretically show that DFs acquire Berry
phase as a scattering phase shift in a single nonadiabatic
scattering event of reflection or transmission at a junction with
mass gap. This phase is an electron version of Pancharatnam
phase, and the junction provides a platform for studying

Pancharatnam phase in solids, as the phase can be tuned
to an arbitrary value by junction control. This phase causes
interesting effects. It has the information of the Chern number
of the insulator side of a metal-insulator junction of DFs.
This implies a type of bulk-edge correspondence for the
boundary between a metal and an insulator, which is different
from the conventional version of the correspondence with
gapless edge states between two insulators with different
Chern numbers. The phase also modifies the quantization rule
of DFs, suggesting geometric-phase devices with nontrivial
charge and spin transport such as a topological waveguide and
a topological transistor.

II. BERRY PHASE OF DIRAC FERMIONS IN A JUNCTION

For illustration, we consider DFs in a two-dimensional (2D)
step junction (xy plane) in Fig. 1(b). Their Hamiltonian is H =
h̄vF (kxσx + kyσy) + V (x) + �(x)σz, where (V (x),�(x)) =
(Vl,�l) for x < 0 and (Vr,�r ) for x > 0; a step junction is
realized when the length scales over which V (x) and �(x)
spatially vary are shorter than the Fermi wavelength of the
DFs. They have Fermi velocity vF , charge e, and the locking
�k · �σ of momentum �k = (kx,ky) and Pauli spin operators
σx,y,z. In experiments, the electrostatic potential V (x) is tuned
by gates, and the mass gap �(x) is created in topological
insulators by magnetic doping19,20,25,26 or a ferromagnetic
insulator.27,28

Pancharatnam phase Pp equals the Berry phase along a
geodesic polygon p on the parameter space,2 Pp = i

∮
p

d�k ·
〈�k|∇�k|�k〉 = −�p/2, where �p is the solid angle of p. We
find that Pp appears in the scattering of an incoming plane
wave |I 〉 at the step junction. In Fig. 1(b), |I 〉 is reflected
to state |R〉 or transmitted to |T 〉. |i = I,R,T 〉 has spin
χi and satisfies the wave continuity |I 〉 + α|R〉 = β|T 〉 at
the interface x = 0, equivalently, χI + αχR = βχT , with
reflection (transmission) coefficient α (β). By using χT̄ (χĀ

being the spin state orthogonal to χA), we obtain the reflection
phase (see Appendix A) as

arg α = π − arg(χ †
I χR) + PI T̄ R, PI T̄ R = −�IT̄ R

2
, (1)
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FIG. 1. (Color online) Pancharatnam phase of light and Dirac
fermions. (a) Light with initial polarization Z1 acquires Pancharatnam
phase −�Z1Z2Z3/2 after passing through polarizers with polarization
axes Z2, Z3, and Z1. (b) Dirac fermions acquire Pancharatnam phase
PI T̄ R = −�IT̄ R/2 in a scattering event at a 2D step junction with
mass gap. χI , χR , χT , and χT̄ denote the spin states involved in
the scattering. �ABC is the solid angle of the geodesic polygon on
the Poincaré (Bloch) sphere which sequentially connects the vertices
representing polarization (spin) states A, B, C (see arrows).

where χ
†
i χj denotes the inner product of spin states. In addition

to the shift π by reflection and the gauge-dependent term
of arg(χ †

I χR), arg α has Berry phase Pp=I T̄ R , which can be
considered as a Pancharatnam phase whose geodesic polygon
p = I T̄ R connects χI , χT̄ , χR on the Bloch sphere and has
a solid angle �IT̄ R . Similarly, another Pancharatnam phase
PI R̄T contributes to the transmission phase as

arg β = − arg(χ †
I χT ) + PI R̄T , PI R̄T = −�IR̄T

2
. (2)

The relations (1) and (2) reveal that the scattering, a
noncyclic and discontinuous event “projectively measuring”
spin, has geometric nature. Pp is gauge invariant and hence,
physically observable. For example, one observes PI T̄ R by
measuring arg α, with tuning |T 〉 but keeping arg(χ †

I χR)
unchanged. As discussed later, one can also observe it by
studying resonances of DFs, since it modifies the quantization
rule of DFs. Contrary to usual Berry phases of spin 1/2 in
solids, Pp is acquired by a single scattering event of DFs and
is experimentally tunable to arbitrary values ∈ (0,2π ). Also,
�p provides an intuitive graphical understanding of Pp. When
DFs are massless everywhere [i.e., �(x) = 0], Pp = 0 or π .

The above findings change only quantitatively in a smooth
junction where V (x) and �(x) spatially vary smoothly around
x = 0. In this case, the scattering of DFs at the junction and
the resulting spin rotation become more adiabatic; hence, Pp

is not necessarily obtained from a geodesic polygon but from
a closed path following the spin rotation on the Bloch sphere.
Note that Pp is considered as Pancharatnam phase only when
p is a geodesic polygon. Except for this, our findings about Pp

are common for both a smooth junction and a step junction.

III. BULK-EDGE CORRESPONDENCE
BY GEOMETRIC PHASE

Pp plays significant roles in solids, which are different from
those of the Pancharatnam phase in optics. For example, Pp

can be used for detecting the Chern number29 that characterizes
the topological order of a DF insulator with mass gap.

To see this, we consider a metal-insulator step junction with
�l = 0 and �r �= 0. The Chern number C of the insulator is
related to the energy-gap parameter �r of the insulator as C =
−[1 + sgn(�r )]/2. In this case, a plane wave |I 〉, propagating
from the metal l to insulator r with incidence angle φ, is
reflected to |R〉 via an evanescent state |E〉 of the insulator; its
energy ε is inside the gap �r , and φ = 0 at normal incidence.
Then, one finds that Pp=I ĒR appears in the reflection phase

arg α of the wave, arg α = π − arg(χ †
I χR) + PI ĒR , where |E〉

replaces |T 〉 in Eq. (1) and Fig. 1.
We show that the Chern number C of the insulator is

identified byPI ĒR . In Fig. 2(a) we find the topological property
that the direction of the spin χE of |E〉 depends on C. For any
|E〉, the xy component of χE aligns parallel (antiparallel) to the
junction interface when C = −1 (C = 0). Namely, C represents
the winding number of χE along insulator edges. This property
is recognized by PI ĒR . For example, for φ = 0±, 0+(−) being
positive (negative) infinitesimal, we find (see Appendix B) that
PI ĒR covers different domains for different C [see Fig. 2(b)]:

C < sφ cosPI ĒR(ε,φ = 0±) < 1 + C. (3)

The sign factor sφ = sgn[sin(2φ)] results from the intrinsic
property30 of Pancharatnam phase that PI ĒR jumps by Berry
phase π at φ = 0. For φ �= 0, PI ĒR also recognizes C

FIG. 2. (Color online) Spin of evanescent states and Chern
number. (a) Spin direction (arrows) of evanescent states in an edge of
an insulator (xy plane), whose energy and momentum tangential to
the edge are denoted as ε and k‖, respectively; its xy (z) component is
drawn parallel to the k‖ (ε) axis and depends on the Chern number C of
the insulator energy band (shade). When C = −1 (C = 0), the xy spin
component aligns parallel (antiparallel) to the edge (see the insets).
(b) Pancharatnam phase PI ĒR(ε) for different C and φ. It detects
the spin alignment. At φ = 0+, PI ĒR(ε) covers different domains for
different C, regardless of junction details.
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via another inequality (see Appendix C). We remark that
inequality (3) is independent of the junction details of ε, Vl,r ,
and |�l,r |.

This finding shows a different version of bulk-edge cor-
respondence for Z2 insulators of DFs, PI ĒR , a geometric
phase occurring at a metal-insulator junction, recognizing
C, another geometric phase characterizing the energy-band
topology of the insulator side. It is interesting to compare this
with the conventional version of bulk-edge correspondence,29

which states gapless metallic edge states in a junction of two
insulators with different Chern numbers. We will discuss later
the equivalence between the two versions.

There are implications from the above. First, the existence
of Pp in a metal-insulator junction is related to the bulk-edge
correspondence and hence may be topologically guaranteed,
regardless of junction details [such as the spatial dependence of
V (x) and �(x)]. Second, a similar bulk-edge correspondence
may also exist for general metal-insulator junctions of non-
DFs. For example, one considers the situation that two-
dimensional electrons form a junction of a metal and a quantum
Hall insulator, where an external magnetic field is applied only
to the quantum Hall region, and focuses on the scattering phase
shift of an electron plane wave incoming from the metal and
reflected by the insulator. The phase shift is caused by the
phase accumulation along the cyclotron motions, which form
evanescent states in the insulator. This phase corresponds to
the Pancharatnam phase of the DF case and has the information
of the filling factor of the quantum Hall insulator.

IV. CONTRIBUTION OF GEOMETRIC PHASE
TO QUANTIZATION

We discuss another property that Pp modifies the quan-
tization rule. Equation (1) leads to the Bohr-Sommerfeld
semiclassical rule for a closed trajectory with length d and
k = |�k|,

kd + mpπ + Pp = 2πn, n = 0,1,2, . . . , (4)

which has dynamical phase kd and π shift at each of mp

reflections in the trajectory. Pp is the new contribution from
the geodesic polygon p connecting the states (propagating
χkj

or evanescent χej
) involved along the trajectory in

sequential order. For the bound state in Fig. 3(a), we find
p = k1ē1k2ē2k3ē3k4ē4. The geometric contribution of Pp is
obtained by adding up the reflection phases arg α from the
reflection events along the trajectory. It should be mentioned
that all the terms, including the second gauge-dependent
term of Eq. (1), contribute to Pp, since the gauge-dependent
terms occurring in the reflection events of a closed trajectory
together constitute a geodesic polygon on the Bloch sphere,
thus becoming gauge invariant. The geometric contributionPp

to the quantization rule can be detected by observing bound
states with tuning χej

’s, or from its unusual implications with
regard to interference, resonance, and quantum transport.

As an example, we consider a topological waveguide g

with width w, sandwiched between two insulators l,r with
mass gaps �l and �r , and Chern numbers Cl and Cr [see
Fig. 3(b)]. The waveguide has propagating states and is tuned
by gate voltage Vg . The quantization rule for the waveguide

FIG. 3. (Color online) Contribution of Pancharatnam phase to
quantization. (a) A bound trajectory in a metallic box surrounded by
insulators. Its quantization is affected by Pancharatnam phase from
the geodesic polygon (see Bloch sphere) connecting the scattering
states (kj ,ej ) involved along the trajectory. (b) Electron conductance
G(Vg) along a topological waveguide g with width w, sandwiched
between two insulators j = l,r with band gap �j=l,r and Chern
number Cj=l,r ; εF is inside the gaps �j=l,r . Inside the guide g, gate
voltage Vg is applied and there is no gap (�g = 0). For Cl = Cr

(Cl �= Cr ), conductance jumps by e2/h appear only within the shaded
(white) domains of Vg . The examples of G(Vg) are drawn for the
cases of Cl = Cr (blue solid line) and Cl �= Cr (red dashed).

states is

2kxw + PAĒlBĒr
= 2πn, (5)

where PAĒlBĒr
= PAĒlB + PBĒrA. PAĒlB occurs in the reflec-

tion from state A of momentum (−kx,ky) in waveguide g to the
state B of momentum (kx,ky) via an evanescent state |El〉 of
insulator l, while PBĒrA from B to A via an evanescent state
|Er〉 of insulator r . Contrary to usual nontopological cases
without Pp, the quantization rule in Eq. (5) depends on ky ,
as PAĒlBĒr

is a function of ky . Electron conductance G(Vg)
along the waveguide g jumps by e2/h as Vg varies whenever
an additional channel satisfies Eq. (5).

When w → 0, Eq. (5) becomes PAĒlB + PBĒrA = 0,
namely, χEl

= χEr
. Its solution exists when Cl �= Cr , describ-

ing edge states along the interface between insulators l and
r . However, it never exists when Cl = Cr ; one can see this
by analyzing �AĒlBĒr

. Hence, our bulk-edge correspondence
based on Pp leads to the conventional version29 based on
edge states. The converse may be also true. The conventional
version indicates that the waveguide with Cl �= Cr has more
states than that of Cl = Cr . This implies the existence of the
correspondence for a metal-insulator junction that the right
half of the whole system, which is the junction of metal g and
insulator r , has some dependence on Cr such as Eq. (3).

When w is finite, the waveguide shows another topological
feature of G(Vg) [see Fig. 3(b)]. When its Fermi energy
εF satisfies εF (Vg − εF ) � 0, the jumps of G(Vg) by e2/h
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occur within the domains of Vg that have no overlap between
the cases of Cl = Cr and Cl �= Cr . The jumps occur within
the domains of |Vg − εF |w/(πh̄vF ) ∈ (n,n + 0.5) for Cl =
Cr , while |Vg − εF |w/(πh̄vF ) ∈ (n + 0.5,n + 1) for Cl �= Cr ;
n = 0,1,2, . . . . The origin is that the winding direction of p =
AĒlBĒr is opposite between the two cases (see Appendix D).
Hence, the topologically different cases of Cl = Cr and Cl �= Cr

are distinguished by the conductance jumps. This feature is
useful for detecting Pp.

V. GEOMETRIC-PHASE DEVICE

The above features of Pp suggest geometric-phase devices
with new functionality. In Fig. 4 we consider a Fabry-Pérot
resonator; it has the same setup as the waveguide, but Fermi
energy εF is located above the gaps �l,r . The transmission
probability of a plane wave through the resonator is well known
but modified by the quantization rule in Eq. (5) as

τ = |βlβr |2
1 + |αlαr |2 − 2|αlαr | cos

(
2kxw + PAĒlBĒr

) , (6)

where |αi=l,r |2 (|βi |2) is the reflection (transmission) proba-
bility at the interface between regions i and g, and |Ei〉 now
means the propagating state of region i. Note that Fabry-Pérot
resonators of DFs have been studied in different contexts from
Pp in literature.21,22,31

FIG. 4. (Color online) Geometric-phase device. (a) Topological
Fabry-Pérot resonator, consisting of three regions j = l,g,r with gap
�j=l,r and gate voltage Vj=l,g,r . (b) Transmission probability τ (φ)
of a plane wave, incoming from the left region l (see left panel)
or right region r (right panel) with incidence angle φ, through the
resonator with �l = −�r and Vl = Vr . The results for different Vg

are drawn by curves of different style. (c) Multiterminal field-effect
transistor based on the resonator in a Y junction; region r now has
two drains, D1 and D2, which are mirror-reflection symmetric. In
the right panel, �G(Vg) ≡ (G1(Vg) − G2(Vg))/(G1(Vg) + G2(Vg))
is drawn as a function of Vg at zero temperature in the zero-bias limit,
where G1 (G2) is electron conductance from source S to D1 (D2).
While G1 = G2 is always satisfied for �1 = �2, �G is generally
nonzero for �l = −�r , although the setup has the mirror reflection
symmetry. For the details of this figure, see Appendix E.

Figure 4(b) shows τ (φ) for a plane wave with en-
ergy εF incoming from the left region l with incidence
angle φ ∈ (−π/2,π/2) or from the right region r with φ ∈
(−π,−π/2) ∪ (π/2,π ). The plane wave can pass through
the resonator only near the resonance angles of φ satisfying
2kxw + PAĒlBĒr

= 2nπ , which is controllable by Vg . Interest-
ingly, the occurrence of the resonance is (more) asymmetric,
τ (φ) �= τ (−φ) with respect to φ = 0 for (larger) PAĒlBĒr

�= 0.
And τ (φ) �= τ (φ + π ), causing the possibility that when a
state from region l resonantly passes through the resonator to
a state |Er〉 of region r , the time-reversed state of |Er〉 cannot
pass to l. This is because the two processes are affected by
different PAĒlBĒr

. Conventional resonators do not have these
topological features.

In Fig. 4(c) we consider a multiterminal transistor based
on the resonator and study electron conductance Gi from
source S to drain i (D1 for i = 1 and D2 for i = 2). When
�l = �r , G1 = G2 is always satisfied, since PAĒlBĒr

= 0,
and by tuning Vg , one switches on and off current to D1 and
D2 simultaneously. In contrast, when �l �= �r , G1 �= G2 in
general, since τ (φ) �= τ (−φ). Using Vg , one controls �G ∝
(G1 − G2)/(G1 + G2), and switches on and off G1 and G2

separately. Moreover, since τ (φ) �= τ (φ + π ), this device also
behaves as a diode where current from S to D1 or D2 (from D1
or D2 to S) is switched on (off). This example demonstrates
that combined with the unusual transport of DFs,17,21–24 Pp

will open a unique way to topological electronics, as it is
acquired in local scattering of propagating DFs and tunable to
arbitrary values.

VI. DISCUSSION

To summarize, DFs acquire Berry phase Pp, an electronic
analog of the Pancharatnam phase of polarized light, in a
nonadiabatic scattering event at a junction with mass gap.
It leads to a type of bulk-edge correspondence for a metal-
insulator junction and this phase also contributes to the
quantization rule of DFs and leads to geometric-phase devices.

We note that Pp will ubiquitously appear, with some
modification, in various systems, including one-dimensional
(1D) zigzag edges of graphene, nonplanar 2D surfaces,32,33

bilayer graphene with mass gap, and photonic crystals.34 For
example, a plane wave of DFs acquiresPp in a scattering event
by the zigzag edge while it does not in an armchair edge.35

In nonplanar 2D surfaces, massless DFs can acquire Pp since
their spin does not lie on a 2D plane. Bilayer graphene is
of special interest, as the mass gap of its DFs is tuned by
electrostatic gates.36
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APPENDIX A : DERIVATION OF EQS. (1) AND (2)

To derive Eq. (1), one starts with the continuity of the
waves, |I 〉 + α|R〉 = β|T 〉, at the junction interface x = 0.
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It is rewritten as χI + αχR = βχT . By applying χ
†
T̄

to this and

using χ
†
T̄
χT = 0, one finds α = −(χ †

T̄
χI )/(χ †

T̄
χR). Next, one

uses the geodesic rule2,37 of arg(χ †
aχb) = i

∫
b→a

dsχ
†
s ∇sχs ,

where s : b → a is the geodesic line from χb to χa on
the Bloch sphere. By combining the rule and PI T̄ R ≡
arg[(χ †

I χR)(χ †
RχT̄ )(χ †

T̄
χI )], one obtains Eq. (1). In the same

way, one can derive Eq. (2).

APENDIX B : TOPOLOGICAL PROPERTY OF χE IN FIG. 2

The dependence of χE on C is obtained as follows. χE is rep-
resented as χ

†
E = (cos θ

2 , − is sin θ
2 ), with s = sgn(�rκx) and

θ ∈ [0,π ]. Here κx comes from the purely imaginary momen-
tum kx = iκx of |E〉 in x̂ direction (toward the insulator), and
it satisfies h̄vF κx = [�2

r + (ε − Vl)2 sin2 φ − (ε − Vr )2]1/2; ε

is the energy measured relative to the energy at �k = 0 of the
insulator side, and θ satisfies tan θ

2 = | h̄vF κx+|ε−Vl | sin φ

�r+ε−Vr
|. The

sign factor s of χE gives the property that the component of
χE tangential to the insulator edge is parallel or antiparallel to
the edge, depending on C.

We note the details of Fig. 2(b). In the figure we choose
Vl = 0 and Vr = 0.5|�r |, and ε is measured relative to the
energy at �k = 0 of the metal.

APPENDIX C : DERIVATION OF INEQUALITY (3)

Here we derive the inequality (3). The case of φ = 0± is
useful for understanding PI ĒR , as �IĒR has simple depen-
dence on |E〉. In this case, one finds the analytic expression of

PI ĒR(ε,�r,φ = 0±) = −sgn(�r )θ (ε,�r ) − sφπ/2,

where sφ = sgn[sin(2φ)]. This leads to Eq. (3).
The first term of the above equation shows that PI ĒR is

directly related to the angle θ of χE and sgn(�r ). Because of
the term sgn(�r ), PI ĒR recognizes the topological order or C.
The dependence on θ and sgn(�r ) results in the domain of the
inequality (3). The second term of sφπ/2 is originated from
the fact that when φ = 0, PI ĒR is ill defined and jumps by
π ; notice that χI is orthogonal to χR and parallel to χT when
φ = 0. The π jump is the intrinsic topological property of Pp

(Ref. 30) that the jump corresponds to Berry phase π by the
2π rotation of spin 1/2, equivalently, to the net solid angle 2π

by PI ĒR(φ = 0+) − PI ĒR(φ = 0−).
The inequality (3) is the case of the normal incidence of

φ = 0±. We below provide another inequality for φ �= 0,

C < sφsV sin[PI ĒR(ε,−φ) − PI ĒR(ε,φ)] < 1 + C,

where sV = sgn(Vr − Vl). This inequality shows that at finite
φ �= 0, PI ĒR also recognizes C, manifesting its asymmetric
nature with respect to φ = 0. This inequality is also indepen-
dent of junction details as inequality (3). The derivation of this
inequality requires some lengthy algebra of sinusoid functions,
as no simple expression of PI ĒR for φ �= 0 is available. We
do not provide the details of the derivation here. Instead, we
mention that the asymmetric nature of PI ĒR with respect to
φ = 0 in the inequality originates from the dependence of the
winding direction of the geodesic polygon I ĒR on sgn(φ).

We mention about the case of Vr = Vl in the above
inequality. When Vr = Vl and φ is finite, PI ĒR(ε,−φ) −
PI ĒR(ε,φ) = ±π ; hence, sin[PI ĒR(ε,−φ) − PI ĒR(ε,φ)] = 0.

APPENDIX D : DERIVATION OF THE TOPOLOGICAL
PROPERTY AND DETAILS OF FIG. 3(b)

Figure 3(b) shows the topological property that for εF (Vg −
εF ) � 0 (i.e., for εF � 0,Vg or εF � 0,Vg), the conductance
jumps by e2/h at the value Vg,n of the gate voltage Vg ,

|Vg,n − εF |w
πh̄vF

∈ (n,n + 0.5] for Cl = Cr ,

(D1)|Vg,n − εF |w
πh̄vF

∈ (n + 0.5,n + 1] for Cl �= Cr ,

where n = 0,1,2, . . . . The domains have no overlap between
the two cases of Cl = Cr and Cl �= Cr .

We derive this property below. First, we find the relation
between the energy dispersion of the waveguide in Fig. 3(b)
and the winding direction of the geodesic polygon p =
AĒlBĒr . The dispersion is (ε − Vg)2 = (h̄vF )2(k2

y + k2
x), and

Pp=AĒlBĒr
is derived as

tan(|kx |w) = −t tan

[
1

2
PAĒlBĒr

(t,kx,ky)

]

= (Sl + Sr )h̄vF |kx |
(Sl − Sr )h̄vF ky + (ε − Vg)(1 − SlSr )

, (D2)

where ε is the energy of the waveguide states, t =
sgn(ε − Vg), Sl = h̄vF (κl − ky)/(�l + ε), Sr = h̄vF (κr +
ky)/(�r + ε), and h̄vF κl,r = [�2

l,r + (h̄vF ky)2 − ε2]1/2. To
see the relation between the dispersion and the wind-
ing direction of p = AĒlBĒr , we rewrite the disper-
sion, using Eq. (D2), as (ε − Vg)2 = (h̄vF )2{k2

y + [(nπ −
tPAĒlBĒr

/2)/w]2}, where n is an integer. Then, for t =
sgn(ε − Vg) = −1, one finds that (h̄vF )2[k2

y + (nπ/w)2] <

(ε − Vg)2 < (h̄vF )2{k2
y + [(n + 0.5)π/w]2} in the case of

Pp ∈ (0,π ), while (h̄vF )2{k2
y + [(n − 0.5)π/w]2} < (ε −

Vg)2 < (h̄vF )2[k2
y + (nπ/w)2] in the other case of Pp ∈

(−π,0). Similar inequalities are found for t = 1. This shows
that the bottoms of the energy bands (at which the conductance
jumps) appear in energy domains that have no overlap between
the cases of Pp ∈ (0,π ) and Pp ∈ (−π,0) with different
winding directions of p.

Next, we connect the winding direction of p = AĒlBĒr

with the difference between Chern numbers Cl and Cr .
For ε(Vg − ε) � 0, we derive sgn[PAĒlBĒr

(s,kx,k
n
y )] = −t

sgn(�l�r ), where kn
y is the value at which the group velocity

of dε/(h̄dky) is zero and the conductance jumps. This relation
shows that the winding direction of p = AĒlBĒr is opposite
between the two cases of Cl = Cr and Cl �= Cr . Combining
this relation and the energy dispersion discussed in the last
paragraph, one can prove the property of the topologically
distinct domains in Eq. (D1).

The above connection between the winding direction of
p = AĒlBĒr and the difference of Cl − Cr [hence the property
in Eq. (D1)] is not always valid when ε(Vg − ε) > 0. It is
because Pp=AĒlBĒr

depends not necessarily only on �r and
�l (i.e., Cl and Cr ), but also on states A and B of the waveguide.
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We remark that in Eq. (D1), the domain boundaries of
|Vg,n − εF |w/(πh̄vF ) = n and |Vg,n − εF |w/(πh̄vF ) = n +
0.5 occur atPp=AĒlBĒr

= 0 andPp=AĒlBĒr
= π (equivalently,

−π ), respectively.
The curves in Fig. 3(b) are drawn with parameters of

|�l| = |�r | = 10 meV, εF = −7.5 meV, w = 62.8 nm, and
vF = 5 × 105 m/s. The blue solid line is drawn for �l = �r ,
while the red dashed one is for �l = −�r . The overall features
of Fig. 3(b) do not depend on the details of the parameters.

APPENDIX E : DETAILED INFORMATION
OF FIGS. 4(b) AND 4(c)

Figure 4(b) is drawn with parameters of �l = −�r =
50 meV, Vl = Vr = 0, vF = 5 × 105 m/s, ε = 50.001 meV,
and w = 200 nm. Different values of Vg are selected as Vg =
42.02 [see τ (φ) drawn by the blue solid curve in Fig. 4(b)],
42.15 (green dashed), 42.33 (red dashed-dot), and 42.37
(yellow dashed-dot-dot) in units of millielectronvolts. We note
that the result in Fig. 4(b) satisfies τ (φ) = τ (π − φ), which
is valid only for the specific case of �l = −�r and Vl = Vr .
The overall features of Fig. 4(b) do not depend on the details
of the parameters.

In the Y junction of Fig. 4(c), we consider electron
flow from source S to drain D1 or D2. Conductance Gi

from the source to the ith drain (D1 for i = 1 and D2
for i = 2) is obtained at zero temperature in the zero-bias
limit as

Gi = G0

∫ π/2

−π/2
dφ Ti(φ) cos φ, i = 1,2, (E1)

where G0 = (e2/h)(Wk/π ), W is the lateral width of region
l of the waveguide, and k =

√
ε2 − �2

l /(h̄vF ). Ti(φ) is the
probability that an electron incoming from S with incident
angle φ to the resonator moves to the ith drain. It can be
approximately written as Ti(φ) � τ (φ)pi(φ), where τ (φ) is
the transmission probability through the resonator and pi

is the probability with which an electron moves to the ith
drain after passing through the resonator. We compute pi

in a semiclassical way, with the parameters used in the
computation of Fig. 4(b). Although this computation is not
exact, it is enough to demonstrate that the asymmetry property
of G1 �= G2 occurs and that the asymmetry measure �G =
(G1 − G2)/(G1 + G2) can be controlled by the gate voltage
Vg applied to the resonator.
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