Recognition of Logic Diagrams by Identifying Loops and
Rectilinear Polylines

S. H. Kim , J. W. Suh and J. H. Kim
Dept of Computer Science and Center for Al Research
Korea Advanced Institute of Science & Technology
Daejon 305-701, Korea

Abstract

Proposed is a system that recognizes logic symbols
and theiwr inter—connections on logic diagrams. Input
diagram, digitized by scanner, is converted into a set
of line segments through a sequence of picture pro-
cessing operations. Then symbols and connections are
extracted by identifying loops and rectilinear polylines
uttlizing model-base in which symbols are graphically
described.

Erperiment with a number of logic diagrams shows
that the system correctly recognizes more than 96 % of
logic symbols and connections on Aj-size diagram with
an average complexity within 15 seconds on a worksta-
tion.

1 Introduction

A system for the recognition of schematic diagrams
can be evaluated by the three criteria of recognition
accuracy, flexibility, and efficiency. Most systems re-
ported in the literature [1, 3, 6] imposed severe re-
strictions on the input diagrams to improve the recog-
nition accuracy, and are very sensitive to the change
of domain knowledge while taking little care to the
efficiency. Such restrictions degrade the applicability
of those systems. Futhermore modifying of domain
knowledge may require rewriting the recognition pro-
gram. Even worse, they are quite inefficient for prati-
cal diagrams with low quality images of large size.

In this paper we propose an automatic system
which recognizes logic diagrams by identifying logic
symbols and their interconnections. A degree of recog-
nition accuracy has been reached through the identi-
fication of loops and rectilinear polylines. The frame-
based description of symbol models makes our system
highly flexible. A significant improvement of compu-
tational efficiency has been obtained by the use of
contour-based picture processing operations. Exper-

iment with a number of logic diagrams shows the su-
periority of our system.

2 Preprocessing

The preprocessing module consists of a sequence of
picture processing operations: separation of text and
graphics, extraction of line structures, and line seg-
mentation. Digitized logic diagram is converted into
a set of line segments for representing the structural
information of lines and regions. Before all the oper-
ations, a chain is generated for every closed contour,
the outermost layer of the object in the image. These
chains are referred by individual operations to reduce
the amount of time for locating object pixels and com-
puting shape features of each object.

The preprocessing module runs fast due to elimina-
tion of the time consuming search on the entire image,
except for the initial contour tracing, and having con-
stituent operations use two bits per pixel for storage.

2.1 Separation of text and graphics

We have devised a simple algorithm for the sepa-
ration of text from graphics in digitized line drawing
images based on the shape features of individual ob-
jects and some thresholds. The shape features, —
such as width, height, elongatedness, and complexity
— are computed from the object boundaries and the
variances of the projections along the two principal
axes of the object (see Figure 1).

Large-sized or elongated objects are regarded as
graphics. We can ever separate text strings whose
character components are attached to each other by
Objects
which correspond to text have relatively large values

considering the elongation of the objects.

of complexity while objects corresponding to a part of
graphics have smaller values.

Most texts of various languages, fonts, and orienta-
tions are successively separated by the classifier if they

&N\
AN

Figure 1: Bounding box and projection of an object

do not overlap with the graphics. The separated tex-
tual data is supposed to be processed by a character
recognition system.

2.2 Extraction of line structures

To convert the separated graphical objects into a
form that 1s suitable for further processing, those ob-
jects are reduced into single-pixel wide line structures.
Thin lines should be represented by their medial lines
or skeletons while thick regions are represented by
their boundaries or contours.

We have utilized the contour generation method in
Kwok’s thinning algorithm [5]. Given an object con-
tour, the new contour which will be exposed to the
background when the current contour is removed is
constructed. A set of case—by—case rules are used for

the generation.

(a) (b) ()

Figure 2: (a) initial contour (b) contracted contour (¢)
line skeletons and region boundaries

The contour generation in itself contracts an ob-
ject into the inside of the object along its boundaries.
Since it distinguishes the object interior from the back-
ground with the chain direction of the boundaries, we
can adapt the method to exzpand the object toward the
background by reversing the direction of the chain.

The proposed algorithm utilizes the fact that a few

iterations of contour generation are sufficient to ob-
tain the skeletons of thin lines. Thick regions which
have been contracted by the iterations can be restored
by the expansion. Figure 2 illustrates the algorithm
in operation. When no region is found in the input
image, the algorithm just acts as Kwok’s thinning al-
gorithm.

2.3 Line segmentation

Because of pool quality of input drawings, there
may exist some errors in the line structures: noisy
spurs, small gaps, and deformations around junctions.
Noisy spurs are simply removed and small gaps are
filled by examining the neighborhood area of each end-
point. Deformed junctions are corrected by deleting
and modifying relevant edges.

After correcting errors, each edge is approximated
with lines by the use of the iterative end-point fit al-
gorithm [2]. The resulting lines are represented by a
graph, where vertex corresponds to an end of line and
edge represents a line segment.

3 Symbol recognition

The symbol recognition module extracts logic sym-
bols and connections from the preprocessed logic dia-
grams. Among various logic symbols and connections,
we confine our attention to loop-symbols and rectilin-
ear connections. Four orientations (left, right, up, and
down) are permitted for a symbol, but the size and po-
sition are free. A set of input/output terminals is as-
sociated with each symbol. The connection is neither
self-crossed nor a closed polygon. Two connections, if
they meet, cross each other orthogonally.

3.1 Symbol models

The entire recognition process is guided by model—
base which consists of a set of symbol models, each of
which is described graphically with a frame-like tem-
plate. With a such scheme for symbol description, it
is easy to create, delete and modify symbols. Figure
3 shows an example.

Here we define some terms. A characteristic loop of
a symbol model is the largest primitive loop in the
symbol. A symbol class is a set of symbol models
having the same characteristic loop. A characteris-
tic window is the bounding rectangle of the image of
the union of all the symbols in that class, where all the
characteristic loops coincide. In our implementation,
17 loop-symbols are grouped into 6 classes.

begin {symbol}
name (Nand-Gate)
0| width (132)
height (90)

X begin {graphical object}

line (0,0) (67.0)

0,0) (0,90)

line (0,90) (67,90)
e-arc (67,45) (45) (45) (-90) (180)

circle (122,45) (10) (empty)
end {graphical object}
begin {input terminal}

on (line (0,0) (0,90)) (left)
end {input terminal}
begin {output terminal}

at (132,0) (right)
end {output terminal}

fine

|ooo| |

<

end {symbol}

Figure 3: Graphical description of a predefined logic
symbol

3.2 Recognition algorithms

Given a preprocessed logic diagram, we first find the
primitive loops whose shapes coinside a characteristic
loop of a symbol model. We conclude two loops coin-
cide if they differ only by a combination of translation,
scaling, and change in size. Starting from a matched
primitive loop, loop-symbol is isolated by excluding
the connections around the loop. The isolated sym-
bol is then tested whether its shape coincide to one
of the symbol models belonging to the symbol class
associated with the matched characteristic loop.

To test shape identity, we adopt the features which
are invariant under the affine transformations: Fourier
descriptors [7] for loops and the moment invariants [4]
for symbols, respectively.

L

Figure 4: A matched loop and related window

Loop matching: Given a graph of line segments
which represents the preprocessed logic diagram, a
primitive loop is detected , and its Fourier descriptor ,
a ten-tuple vector is computed. The loop 1s identified
as one of the characteristic loops that has the mini-
mum Manhattan distance from the Fourier descriptor
vector, which is less than a preset threshold.

When a primitive loop 7 matches with a character-
istic loop &, a window W, for v is obtained by trans-
forming the characteristic window W; of ¢ according
to the pose of v. Figure 4 shows an example W, placed
on the graph. There are 15 line segments which are
totally enclosed by W, and three lines crossing the

window.

Extraction of connections: The window W, has
been determined to completely enclose any symbol
containing the loop y. We can regard each line cross-
ing the window as a part of connection due to the
assumption of rectilinearity of connections. Starting
from such a line segment [;, we extract a rectilin-
ear polyline from the graph by merging adjacent lines
which meet collinearly or orthogonally with ;. Merg-
ing is repeated iteratively until both the two ends of
the current polyline can not be extended any more.

As an illustration, Figure b presents the rectilinear
polylines extracted from the graph of Figure 4. By
excluding those lines belonging to the extracted con-
nections, a symbol is isolated within the rectangular
window.

Figure 5: Extracted rectilinear polylines

Symbol matching: Once a loop-symbol is isolated,
a six-tuple moment vector is computed from the con-
stituent line segments. The symbol would be one of
the models in the symbol class (associated with the
matched characteristic loop) if the Euclidean distance
between the corresponding moment vectors is less than
a preset threshold.

4 Experimental results

The system has been implemented in C program-
ming language on a SPARC-2 workstation. The input
logic diagrams are digitized at a resolution of 150 pix-
els per inch.

Figure 6 shows a graph of line segments generated
by the preprocessing module for a 800x 1248 image of
a logic diagram. All the matched loops along with
their rectangular windows are also presented. In Fig-
ure 7, the recognized symbols are replaced with the
corresponding models and the connecting polylines are
aligned to beautify their appearances. The misrecog-
nized (or rejected) objects remain in their line seg-
ments.

Processing time for the test drawing is 6.1 seconds:
4.9 seconds for preprocessing and 1.2 seconds for sym-

bol recognition. We have observed that an A4-size
(210x297 mm) logic diagram with an average com-
plexity can be processed within 15 seconds.

Comparing the results with respect to the input
logic diagram, 1 of 31 symbols and 1 of 53 connec-
tions are rejected. Another experiment with a set of
logic diagrams shows that more than 99 % of sym-
bols and more than 96 % of connections are correctly
recognized.

5 Conclusion

We have proposed an automatic system which con-
verts paper-based logic diagrams into a computer rep-
resentation in terms of symbols and connections. The
proposed system achieves a degree of recognition accu-
racy, efficiency, and flexibility. It can recognize about
99 % of loop-symbols and more than 96 % of recti-
linear connections from a logic diagram. The prepro-
cessing part of the system runs very fast with two
bits per pixel for storage. In addition, prior knowl-
edge about the input diagrams can be easily modified
without rewriting the recognition program.

References

[1] H. Bunke, “Experience with Several Methods for
the Analysis of Schematic Diagrams,” Proc. 6th
ICPR, pp. T10-T12, 1982.

[2] R.O. Duda and P.E. Hart, Patiern Classification
and Scene Analysis, John Wiley, 1973.

[3] Y. Fukada, “A Primary Algorithm for the Un-
derstanding of Logic Circuit Diagrams,” Patlern
Recognition, Vol. 17, pp. 125-134, 1984.

[4] M.K. Hu, “Visual Pattern Recognition by Mo-
ment Invariants,” IRE Trans. Information The-

ory, Vol. 8, pp. 179-187, 1962.
[5] P.C.K. Kwok, “A Thinning Algorithm by Con-

tour Generation,” Communications of the ACM,

Vol. 31, pp. 1314-1324, 1988.

[6] A. Okazaki, et al., “An Automatic Circuit Dia-
gram Reader with Loop-structure-based Symbol
Recognition,” IEEE Trans. PAMI, Vol. 10, pp.
331-341, 1988.

[7] C.T.Zhan and R.Z. Roskies, “Fourier Descriptors
for Plane Closed Curves,” IEEE Trans. Comput-
ers, Vol. 21, pp. 269-281, 1972.

"

Figure 6: Preprocessed logic diagram

I O B e

Figure 7: Recognition results

