
Dynamic Pull-Down Menu Organization in Run-Time by Analyzing Menu 
Selection Behaviors 

 
 

YoungJin Ro, Ho-Jin Choi, Dan Hyung Lee, and In-Young Ko 
School of Engineering, Information and Communications University, Daejeon, Korea 

{ryj8516, hjchoi, danlee, iko}@icu.ac.kr 
 

 
Abstract 

 
Event-based self-adaptation of user interface (UI) is 

introduced in this paper as an approach to solving 
problems in current static and dynamic UI approaches. 
Our approach does not require extra information 
about the user or the context, but uses events which 
can be gathered easily. Our approach adopts the 
concept of an agent to make externalization of UI 
adaptation, that is, no need to make intensive 
modification of the internal logic of an application. At 
the current stage of research, this paper focuses only 
on the menu organization aspect of UI design, where 
menu categorization and ordering can be 
accomplished dynamically based on user’s menu 
selection behaviors. The outcome of the approach is to 
show enhanced job performance by reducing time for 
menu search and occurrence for false selection. It is 
expected that many menu-driven systems can improve 
the usability by adopting our approach. 
 
1. Introduction 
 

Nowadays most software organizations recognize 
the importance of the user interface (UI) design in 
making software products. No matter how good ‘zero 
defect’ software products they are, it should be 
regarded as the failure if users do not wish to use them 
because of bad design. There are several ways to 
improve the UI of a software product, and evolutionary 
prototyping has been one of the popular traditional 
methods to get a relevant UI. However, this approach 
has limitations due to its “static” nature, and more 
“dynamic” approach to UI design has been introduced 
recently to overcome the limitations of the traditional 
approach. 

Dynamic UI represents a new paradigm of UI 
design, that is, a concept of such UI that can be 
changed (semi-)automatically while the software is in 
use based on the analysis of user’s pattern of actions. 
In short, different users may see different UI’s adapted 

to each individual. This paper investigates an approach 
to dynamic UI based on events. In our approach, events 
are extracted to recognize user’s behaviors and, based 
on the information with these events, the UI adapts 
itself to the user dynamically. This research is in its 
infancy, hence in this paper we focus only on the menu 
organization aspect of dynamic UI. 

The paper is organized as follows. The motivation 
to and the basic concept for dynamic UI are described 
in sections 2 and 3, respectively. Our approach is 
introduced in section 4, where the aim is to provide a 
guideline towards dynamic menu organization. Section 
5 evaluates the potential usefulness of this approach, 
and section 6 concludes. 
 
2. Motivation 
 

There are many dialog styles such as filling-in-
forms, questioning and answering, and command 
languages. Each dialog style is used differently and 
each one has its own strengths and weaknesses – for 
example, menu-driven interfaces are easy to learn, but 
inefficient and inflexible. In this paper we begin our 
research towards dynamic UI by focusing on menu 
organization since menus provide a convenient UI even 
for novice users. By allowing the menu organization to 
enhance itself dynamically, this approach can be used 
to improve a menu-driven system’s usability 
substantially. 

When using pull-down menus, menu selection 
errors can degrade the performance of a job. Menu 
selection errors are known to be caused by problems 
such as improper categorization, overlapping 
categories, and vague category titles. Some research 
reports that search time was saved by 10% to 37%, and 
task errors were reduced up to 53% by correcting 
selection errors in the UI. 

Figure 1 shows examples of improper 
categorization errors of Microsoft Word 2003 and 
Microsoft Power Point 2003. Three examples are 
shown in the figure. First, users should select header 

978-1-4244-2358-3/08/$20.00 © 2008 IEEE CIT 2008730

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:12:17 EDT from IEEE Xplore.  Restrictions apply. 



and footer in View category instead of Insert category 
although users select this menu to insert header and 
footer. Second and third examples are similar with the 
first example. It is difficult to decide that page setup is 
categorized as File or Format and Master is categorized 
as View or Format. Since users cannot easily recognize 
correct categorization, users would make mistakes and 
it can degrade performance. However, it is not 
appropriate to claim that improper categorization errors 
are made by every user because some people agree 
with the original categorization. 

 

 
Figure 1. Examples of improper categorization 

errors 
 

Categorization is not a simple task for a UI designer 
as he/she should provide a reliable menu categorization 
for many different users. One popular approach to 
categorization of menus is Hayhoe’s approach. In this 
approach, at least 50 users make grouping items into 
self-defined categories. Then the frequency with which 
users place pairs of items together in a group is 
calculated, resulting in similarity measures. However, 
this approach has weaknesses. First, too many users are 
needed. Hayhoe argued that at least 50 subjects are 
needed. Research with 50 subjects is not an easy work 
for open software developers. Second, it does not 
guarantee to produce optimal menu categories. In fact, 
it is not possible to make categorization that all people 
satisfy. For these reasons, it seems difficult to reach a 
good solution for static categorization of menus, hence 
we aim to seek solutions using dynamic UI approach. 

 
3. Dynamic UI 
 

Dynamic UI is a new paradigm. This approach was 
introduced to overcome limitations of static UI, but 
still dynamic UI is not used for many applications. In 
dynamic UI, system tries to predict user’s immediate 
actions and change the dynamic part of the UI 
frequently in the anticipation of the next action. Also, 
it is expected that less effort will be required to 
communicate with users compared with static UI since 
system automatically changes UI based on user’s 
acting patterns. Users can get specialized UI without 

continuous complaining to designers about the 
uncomfortable UI if system automatically reflects 
user’s patterns of actions. For example, system can 
find why a user has some difficulty to accomplish a 
specific task and fix it until the user does not show any 
problem. Therefore, it is able to make user centered 
design without high cost as like static UI. 

The approach of dynamic adaptation based on user 
information takes information from users then tailor UI 
by this information. An example of this approach is 
dynamic interaction generation (DIG), which was 
introduced to make dynamic user interaction. The DIG 
research prototype, called DIGBE (DIG for building 
environments), was also implemented. DIGBE 
converts a building management configuration 
database into a dynamic, adaptive user interface. The 
framework takes the user privileges, the roles of the 
interaction participants, the specific task, the objects of 
interest, and the values and types of data for making 
dynamic UI adaptation. 

While Penner and Steinmetz [2] focused on the 
adaptation based on user information such as operator 
role or task model, Menkhaus and Pree [3] concerned 
about multi platform access and contexts. Due to 
appearance of new devices, which are able to access 
Web applications, such as mobile phones and handheld 
computers, making interactive services becomes more 
difficult. As an example for dynamic adaptation based 
on contexts, MUSA (multiple user interfaces, single 
application) prototype was introduced to support multi 
platform and tailor UI properly. First, it can be easier 
to develop UI for a variety of computing devices by 
making an abstract description of a UI. Also, MUSA 
tries to adapt to the context in which it is used. 
Tailoring of the interface design includes the capability 
of adaptation of content delivery to various devices, 
while preserving consistency and usability of the 
service. 

Although the approaches above seem convincing in 
special circumstances, they have weaknesses to be 
used widely. First, they usually support only pre-
defined user types or contexts, limited for supporting 
various and anonymous users in the Web environment. 
Second, adaptation cannot be made flexibly because 
these approaches provide multiple UI for single 
application,. Third, they have weaknesses in adapting 
to existing applications since UI should be made from 
the start. Finally, they require user’s intervention to 
provide specific information such as the user’s role and 
access level to make dynamic UI adaptation. 
 

 

731

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:12:17 EDT from IEEE Xplore.  Restrictions apply. 



4.1. Event-based self-adaptation 
 

Our approach uses an agent. An agent perceives its 
environment using sensors and acts on the environment 
using actuators. Figure 2 shows the schematic diagram 
of a simple reflex agent which is used in our approach. 

 
Agent

Sensors

Interpret Input

Condition-Rule 
Analyze

Actuator

Condition
-Rule

Application

UI Component

 
Figure 2. Schematic diagram of the system 

 
The concept of agent is useful for self-adaptation of 

UI because the structure is appropriate for monitoring 
UI events and acting to change UI element properties 
externally. An agent is placed in the outer side of the 
application, then it will be possible to adapt in any 
application since the internal logic of applications does 
not depend on the agent. By externalization of UI 
evolution, there will be no need to make application-
specific agent, and adaptation of existing applications 
will require less cost. Therefore, the agent approach 
can be a solution to overcome weaknesses of current 
dynamic UI approaches. 

Using UI events for self-adaptation has strong 
points. First, in most applications, UI events can be 
extracted easily. There are several applications that log 
events (e.g., Web applications) and UI events can be 
gathered without additional equipments. Moreover, 
gathering UI events does not depend on user types or 
contexts. Especially, menu selection events can be 
gathered easily when the system has hierarchical 
menus. 
 
4.2. Preparation of designers 
 

First, designers make basic menu design. For menu 
organization, for example, designers should allocate 
area for pull-down menu and menu bar using common 
sense. At least, designers can make basic menu design 
with random order or alphabetic order. 

Second, designers set up conditions and rules for 
dynamic adapt ion of UI. In case of menu organization, 
designers can decide such parameters following: 

 

 When does a sub-menu need to be moved for 
modifying categorization? 

 When does a sub-menu hide? 
 Which is more important between frequency of 

use and order of use? 
 
4.3. Sensing events 
 

The event-based self-adaptation approach allows us 
to collect usability information by analyzing UI events. 
Although the agent only perceives low-level events 
such as shifts in input focus, key or mouse events, the 
events can be abstracted and filtered. By analyzing 
each event, it is possible to make counts and statistics 
to provide measurable data to the system. Later the 
counts and statistics can be used for usability 
improvement. For example, if Nielsen’s model is used, 
which provides usability factors such as learnability, 
efficiency, memorability, errors, and satisfaction, the 
measurement of usability factors can be accomplished 
like table 1. Although satisfaction is one of the most 
important factors of usability, there is no way to record 
satisfaction automatically without any user 
intervention. Therefore, without user intervention to 
give scoring about satisfaction, system cannot 
automatically analyze satisfaction information from 
events. The table shows an example to gather usability 
information from counts and statistics, but by 
characteristics of systems, the way of gathering 
usability should be tailored. 
 
Table 1. Gathering usability from counts and 

statistics 

Learnability 

Time TotalPast 
Time TotalCurrent  

Task / TimePast 
Task / TimeCurrent  

Task / TimePast 
Task / TimeCurrent  

Efficiency Total Time 
Time / Task 

Memorability Time IdlePast 
Time IdleCurrent  

Events Filteredfor  TimePast 
Events Filteredfor  TimeCurrent  

Errors Number of Errors 
 

These steps of events extraction and interpretation 
help gathering usability information for the system to 
handle the data automatically as above. When a system 
has complex functionalities and UI, however, it is not 
simple to extract events correctly. Accordingly, it is 
not easy to determine how lower level events are 

4. Event-based dynamic pull-down menu 
organization 

732

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:12:17 EDT from IEEE Xplore.  Restrictions apply. 



abstracted and how to decide filtered events since the 
system cannot know user’s objectives. 

While this paper focuses on menus, the challenge 
becomes much easier. It is clear to recognize user’s 
objectives since selecting appropriate menus are the 
final goals of users always. For example, users do not 
select font menu for printing, inserting a picture, or 
drawing table. Users only click font menu to adjust 
font format. Also, it is easy to determine filtered events 
since menu selection events are simple enough. 
Assume that font is categorized as format. Then, if a 
user select help category first, and select format to 
select font later, selecting help category can be 
classified as a filtered event. By recording what menus 
are selected finally, system can recognize filtered 
events. 

In this paper, mainly three different data can be 
extracted by the system. In addition, first two counts 
and statistics can be classified as menu selection 
events. First, the framework accepts selection events 
such as moving mouse pointer to specific menu or 
category. Also, when a user clicks a menu or category, 
then it would be recorded as a selection event. Second, 
search time can be used meaningfully. Search time 
means spent time for selecting a menu. These events 
can be sensed when any menu search event is made. 
Finally, the last data is frequency of use of menu. It 
concerns how often a user uses the menu. It could be 
calculated by the delay between two identical menu 
search events. For example, if user A attempts to select 
menus in every 1 minute while user B attempts to 
select menus in every 30 seconds, A can be evaluated 
with low frequency of use. The usage of different 
counts and statistics will be explained in next sections. 
 
4.4. Dynamic menu categorization 
 

The menu categorization can affect the performance. 
However, since the paper deals a menu which can be 
classified as ‘Sets of Lists’, next section also describes 
about the dynamic menu ordering; sets and lists are 
that sets do not much concern about the order, but in a 
list, specific order is often meaningful, so for lists, 
dynamic menu ordering is necessary. 

The basic approach for the dynamic categorization 
is as follows. If a user selects a category more 
frequently and spent more time for the category than 
other categories to select a menu, then system modifies 
menu category. For the dynamic menu categorization, 
the system should keep data such as category selection 
information, spent time, number of categories. As an 
example, a scoring for each category can be following: 

 
C[i] * Time[i] /  NumMenu[j] 
C: Category selection 

Time: Spent time 
NumMenu: Number of menus 
 
After the system makes scoring for every category 

as above, if one score exceeds other categories’ scores 
at least as much as defined threshold, then the menu 
categorization should be modified. 

This initial approach has a problem. That is, order of 
selection path does not affect to categorization. For 
example, among selected categories, first selected 
category should be treated with bigger score than later 
selected categories. Therefore, the scoring should be 
modified as following: 

 
 Original score = C[i] * Time[i] /  NumMenu[j] 
 Adjusted score = Original score * (TotalPath – 

PathOrder[i] + 1 / TotalPath) 
 
By this adjustment, each category can have different 

weight although several categories are selected. But 
there remain more problems. First, the approach 
assumes that user makes blind moves to find a menu. 
Second, the approach ignores learning ability of user. 
After user learning menus and categories, changing 
categorization can make confusing. 

In fact, users do not make blind move when they 
cannot find appropriate menus. Users find next 
category by seeing title of categories. Then, dynamic 
categorization should consider about influence of each 
title. That is, certain weight should be multiplied with 
scoring. Here, designer’s common sense can be used to 
establish influence of each title. It is not recommended 
however because dynamic menu organizations focuses 
on the user-oriented menu design. Instead of designer’s 
common sense, user’s grouping research information 
can be used for setting up the weights since 
personalized grouping is often inferior no matter who 
makes the grouping. Table 2 represents an example of 
weighting for each category. 
 

Table 2. Example of weighting 
 File Format Tools 

No. of users 
select to make 

grouping 
50 30 20 

Weight 50 / 100 
= 0.5 

30 / 100 
= 0.3 

20 / 100 
= 0.2 

 
The second problem was ignoring user learning. In 

fact, users can learn where a menu is located after 
several trials and errors. Users can also disable 
adjusting categorization. If a user disables dynamic 
menu categorization, there will be no confusing 
anymore due to unwanted changing. When users 

733

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:12:17 EDT from IEEE Xplore.  Restrictions apply. 



disable dynamic categorization, all menus cannot be 
categorized anymore. It could be a problem if users can 
want to configure only few menus. Therefore, the 
approach should consider frequency of use of menu 
that can be gathered automatically. The system records 
previous selection and current selection of menu and 
when frequency of use of a certain menu is high, then 
it can have higher threshold to adjust categorization. 
Especially, clear information about categorization of 
menus can be remembered about 30 seconds since 
human short term memory lasts less than 30 seconds. 
Therefore, if a menu is selected in every few seconds, 
it is not effective to modify categorization. 
 
4.5. Dynamic menu ordering 
 

Dynamic menu ordering is simpler than dynamic 
menu categorization. It uses relative scoring for order 
of use and frequency of use. Remaining challenge is 
how to make a combination of order of use and 
frequency of use. For considering two ordering ways 
together, scores are adjusted for fair comparison. In 
this paper, all values should be adjusted to be located 
in the range from 0 to 1. For example, 3 can be 
adjusted to 0.875 since the original range of scoring is 
from -4 to 4. Figure 3 shows the example of adjusting 
scores. In this figure, left table is used for scoring order 
of use and right table is used for scoring frequency of 
use. When the order of use is counted, a positive 
number means column menu is executed former than 
row menu. Also In the scoring order of use, a positive 
number means column menu is executed more time 
than row menu while a negative number indicates 
column menu is executed less than row menu. 
 

 
Figure 3. Example of adjusting scores 

 
Finally, the order of use and frequency of use can 

be combined with two weights: p, and q. p indicates 
order of use weight that a user or designer gives, and q 
indicates frequency of use weight. The default values 
of p and q can be 0.5 and 0.5. 
 

 

For evaluation of the proposed approach, 5 different 
subjects were chosen. Then, a set of 25 menus and 5 
different categories were established. Each subject 
could make grouping with the menus and categories, 
then a final categorization was made based on 
summarizing 5 different categories of each subject. 
Then, the hit ratio of each user’s categorization 
compared with generated menu categorization was 
calculated as figure 4. 

 
Hit Ratio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

User 1 User 2 User 3 User 4 User 5 Average

Hit Ratio

 
Figure 4. Hit ratio of each user 

 
In this figure, the average hit ratio is about 73%. 

When a user tries to select a menu, the user has 27% 
probability of miss selection. In this case, the frequent 
miss selection can bring huge performance degrading. 
The hit ratio of categorization will be much higher in 
general cases, since the menus which are used for this 
experiment were examples of ambiguous menus such 
as page setup. Since the objective of the evaluation 
could be confirming the performance improvement 
when users make selection errors, it is more effective 
to use ambiguous menus to see clear performance 
improvement. 

Next, 25, 50, and 100 random menu selections are 
generated. If there is an expert who knows exact 
locations of all menus, then the expert can make only 
50 selection events for accomplishing 25 menu 
selections because it requires 25 category selections 
and 25 menu selections since sub-menus cannot be 
selected without selecting specific categories. In the 
best case, only 100 and 200 menu selection events are 
needed for executing 50 and 100 random menus. When 
a user makes blind moves, the user cannot find the 
exact category that menu is contained. In the worst 
case, the user can select a menu after select 5 different 
categories. Therefore, the number of selection events 
was much bigger than the best case. Even the gap 
between the best case and the result became bigger 
when more random menu selections were made. 
Although the experiment deals the title-based move, 
there is a gap between the best case and the result. By 
adopting dynamic menu categorization, the number of 
false selection events is reduced dynamically. The 

5. Evaluation 

734

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:12:17 EDT from IEEE Xplore.  Restrictions apply. 



performance of searching menu is increased. Figure 5 
and 6 show the average number of selection events 
with blind moves and title-based moves in both of 
static and dynamic menus. 

 
Average Number of Selection Events with Blind Move

0

50

100

150

200

250

300

25 50 100

Random Events

N
u
m

b
e
r 
o
f 
S
e
le

c
ti
o
n
 E

ve
n
ts

Static Menu

Dynamic Menu

Expert

 
Figure 5. Average number of selection events 

with blind moves 
 

Average Number of Selection Events with Title-based Move

0

50

100

150

200

250

25 50 100

Random Events

N
u
m

b
e
r 
o
f 
S
e
le

c
ti
o
n
 E

ve
n
ts

Static Menu

Dynamic Menu

Expert

 
Figure 6. Average number of selection events 

with title-based moves 
 
6. Conclusion 
 

This paper proposed an event-based self-adaptation 
of UI as an approach to solving problems in existing 
dynamic UI approaches. At the current stage of 
research, our work focuses only on the menu 
organization aspect of UI design, where menu 
categorization and ordering can be accomplished 
dynamically based on user’s menu selection behaviors. 
Our approach does not require extra information about 
the user or the context, but uses events which can be 
gathered easily. Our approach adopts the concept of an 
agent to make externalization of UI adaptation, that is, 
no need to make intensive modification of the internal 
logic of an application.  

To show the validity of the proposed approach, we 
conducted a preliminary experiment for enhanced job 
performance by reducing time for menu search and 
occurrence for false selection. It is expected that many 
menu-driven systems can improve the usability by 
adopting our approach. 
 

7. Acknowledgement 
 

This research was supported by the MKE(Ministry 
of Knowledge Economy), Korea, under the 
ITRC(Information Technology Research Center) 
support program supervised by the IITA(Institute of 
Information Technology Advancement). (IITA-2008-
C1090-0801-0032) 
 
8. References 
 
 [1] K. Gajos, R. Hoffmann, and D.S. Weld, “Improving User 
Interface Personalization”, Proceedings of UIST, Vol. 4. 
 
[2] R.R. Penner and E.S. Steinmetz, “Dynamic User Interface 
Adaptation Based on Operator Role and Task Models”, IEEE 
International Conference on Systems, Man, and Cybernetics, 
Vol. 2, 2000. 
 
[3] G. Menkhaus and W. Pree, “User Interface Tailoring for 
Multi-platform Service Access”, Proceedings of the 7th 
international conference on intelligent user interfaces, ACM 
Press, New York, USA, 2002, pp. 208-209. 
 
[4] E.S. Lee and D.R. Raymond, "Menu-Driven Systems", 
Encyclopedia of Microcomputers, Vol. 11, 1993, pp. 101-127. 
 
[5] D. Bäumer, W.R. Bischofberger, H. Lichter, and H. 
Züllighoven, “User Interface Prototyping—Concepts, Tools, 
and Experience”, Proceedings of the 18th international 
conference on software engineering, IEEE Computer Society 
Washington DC, USA, 1996, pp. 532-541. 
 
[6] D.J. Mayhew, Principles and Guidelines in Software 
User Interface Design, Prentice-Hall, NJ, USA, 1991. 
 
[7] S.J. Russell and P. Norvig, Artificial Intelligence: a 
Modern Approach, Prentice-Hall, NJ, USA, 1995. 
 
 

735

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:12:17 EDT from IEEE Xplore.  Restrictions apply. 


