
Refining Schizophrenia via Graph Reachability in Esterel

Jeong-Han Yun Chul-Joo Kim

Division of Computer Science

KAIST

Daejeon, Korea

jeonghan.yun / chuljoo.kim@gmail.com

Sunae Seo

Samsung Advanced Institute of Technology

Samsung

Yongin, Korea

sunae.seo@samsung.com

Taisook Han Kwang-Moo Choe

Division of Computer Science

KAIST

Daejeon, Korea

han@cs.kaist.ac.kr / choe@kaist.ac.kr

Abstract—Esterel is an imperative synchronous language for
control-dominant reactive systems. The combination of imper-
ative structures and the perfect synchrony hypothesis often
result in schizophrenic statements. Previous studies explain the
characteristics of schizophrenia as the instantaneous reentrance
to block statements: local signal declarations and parallel
statements. In practice, however, most instantly-reentered block
statements do not cause any problems in Esterel compilation.
In this paper, we refine schizophrenic problems in terms of
signal emissions, and suggest an algorithm to detect harmful
schizophrenia using reachability on control flow graphs (CFGs)
in Esterel. Our algorithm performs well in analyzing practical
programs. Moreover, it can be easily applied to existing
compilers.

I. INTRODUCTION

Synchronous languages [1], [2] with the perfect synchrony

hypothesis [3] help in the design of reactive real time sys-

tems. Because synchronous languages abstract asynchronous

physical clocks to synchronous logical clocks, hardware

timing issues can be easily managed.

Esterel [4]–[8] is an imperative synchronous language.

Unlike dataflow synchronous languages [1], [2], [9], [10],

Esterel supports useful imperative constructs that describe

control-dominant systems; these include sequences, loops,

suspensions, preemptions [11], exceptions, and declarations

of signals and variables. These imperative constructs are also

useful to specify software.

In Esterel, a loop statement terminates and restarts in

the same instant. Hence a statement that is executed at a

loop terminating instant can be re-executed when the loop

restarts. This is called a schizophrenic statement [5], [12]–

[14]. To avoid various problems [5] caused by schizophrenic

statements, Esterel compilers must cure schizophrenic state-

ments.

Several techniques have been proposed to cure

schizophrenic problems [5], [12]–[16]. The basic concept

of the existing techniques is based on code replications

(or loop unrolling). Some optimized solutions [12]–[16]

replicate only a part of the loop body that can be executed

in the loop starting instant. The code replications, however,

necessarily increase the compiled code size. Even worse,

many compilers apply curing techniques to all loop

loop

trap DATA in

signal IS_DATA in

[await immediate iclk;

pause;

present IS_DATA then

emit data_val;

pause;

emit data_val

end;

exit DATA

||

await immediate idata;

sustain IS_DATA

]

end

end;

emit data_ready;

await immediate [not iclk];

end

Figure 1. A loop statement in atds100 of Estbench Esterel Benchmark
suite [17]

statements without checking whether each loop has

schizophrenic statements.

The static analysis [18] investigates whether local signal

declarations or parallel statements terminate or exit, and

restart in the same instant. The key concept of the analysis is

detection of instantaneous terminations using abstract inter-

pretation [19]. Without considering the signal information,

the method of Tardieu and Simone checks instantaneous

paths structurally based on simple abstract semantics [18].

This analysis helps to reduce the size of cured results [13]

by decreasing the number of statements to be replicated.

In some practical situations, however, the schizophrenic

statements detected by Tardieu and Simone’s approach [18]

may not cause problems during compilation [20]. Figure I is

an example of harmless schizophrenic signal declarations1.

Since the “signal IS_DATA in ... end” block can

be reentered in an instant, this statement is considered

1This example code is examined again in Section VI.

nothing no operation

pause time consumption

emit S signal emission

p;q sequence

present S then p else q end signal test

loop p end nonterminating loop

p||q parallel execution

suspend p when S suspending program

signal S in p end local signal decl.

trap T in p end exception decl.

exit T exception raise

Figure 2. Kernel statements of Pure Esterel

as schizophrenic according to Tardieu and Simone’s ana-

lyzer [18]. However, the signal “IS DATA” emitted by the

statement “sustain IS_DATA”2 cannot reach the signal

test statement “present IS_DATA” in the same instant,

because the “pause” statement consumes one instant.

From the viewpoint of Esterel semantics, we have ob-

served that harmful behaviors of schizophrenic statements

originate from signal emissions and variable assignments

in the block statements: local signal declarations and par-

allel statements. To distinguish harmless statements from

schizophrenic statements more precisely, we refine the char-

acteristics of the following schizophrenic problems: (i) the

wrong signal test caused by old and new instances of a local

signal, and (ii) multiple execution of an “emit” statement

during an instant. We have developed an algorithm that de-

tects harmful schizophrenic statements by graph reachability

on CFGs of Esterel programs based on our observation.

The proposed algorithm is readily applicable to existing

compilers.

The paper is organized as follows. In Section II,

we introduce Esterel briefly. In Section III, we discuss

schizophrenic problems. Focusing on actual problems that

schizophrenic statements may cause, we refine characteris-

tics of schizophrenic problems in Section IV. In Section

V, we present our detection algorithm based on the refined

characteristics. Experimental results are shown in Section

VI. Finally, Section VII concludes the paper, and discusses

our future work.

II. ESTEREL SYNTAX AND SEMANTICS

We use the kernel language of Pure Esterel [4]–[7]. The

kernel language has four unit statements – nothing, pause,

emit S, and exit T – and seven block-structured constructs

– signal test, loop, sequence, parallel, suspension, local

signal declaration, and exception declaration. Figure II lists

the syntax and the intuitive meanings. The non-terminals

2For a signal S, “sustain S” means a loop statement “loop emit

S; pause end”.

p and q denote statements, S signals, and T exceptions,

respectively.

For each input event, Esterel programs react in an instant.

Except for the “pause” statement, other statements do not

change instants. After one instant passes, all signals are reset.

We explain the informal semantics of Esterel syntax:

“nothing” does nothing. “pause” consumes one clock tick.

“emit S” emits the signal S. “p;q” runs p and q sequentially.

“present S then p else q end” tests the presence of the

signal S, and one of the sub-statements p or q executes

according to the test result. “loop p end” denotes the infinite

loop in Esterel. “p||q” simultaneously executes p and q

with the global clock. The parallel execution terminates

when both p and q terminate. “suspend p when S” is a

construct for preemption between threads. When the signal

S is present, p is suspended until S is absent. The scope

of a local signal is determined by “signal S in p end”.

“trap T in p end” defines a new exception and its scope,

and “exit T” in p raises the exception T. When the

exception T arises in p, p instantly exits to the end of the

corresponding “trap” statement.

III. SCHIZOPHRENIC PROBLEMS

In general, a statement is schizophrenic if its sub-

statements are executed more than once in a single instant

[12], [14]. In Esterel, schizophrenia can be classified into

schizophrenic signal declarations and schizophrenic parallel

statements [5], [13]. In the following we further investigate

problems of schizophrenic statements.

A. Schizophrenic Signal Declarations

When a signal declaration statement is reentered in an

instant, two instances of the local signal exist at the same

time: an old instance and a new instance [20]. The main

problem of schizophrenic signal declarations is a scoping-

rule; a signal test of the new (resp. old) instance must not

use the old (resp. new) instance of the signal.

Tardieu and Simone focused on the instantaneous ter-

mination of statements at the front and the rear of signal

declarations. According to their characterization [13], (a),

(c)3, (d), and (e) in Figure 3 are schizophrenic signal

declarations.

As the signal declaration of (b) cannot restart structurally,

Tardieu and Simone’s static analyzer [18] determines that

(b) is not schizophrenic. It states that (f) is schizophrenic

due to neglecting signal information on signal I, but in fact

(f) is not schizophrenic, because all actual paths in the rear

of signal declaration in (f) consume an instant.

(a) is a typical example of schizophrenic signal declara-

tions; the old instance of signal S in “emit S” can meet the

new instance of signal S in “present S then emit O

end”. There are no signal tests for the new instance of signal

3Figure I is similar to (c) in Figure 3

loop

signal S in

present S then

emit O

end;

pause;

emit S

end

end

loop

signal S in

pause;

present S then

emit O

end;

pause;

emit S

end

end

loop

pause;

signal S in

present S then

emit O

end;

pause;

emit S

end

end

(a) (b) (c)

loop

signal S in

emit O;

pause;

emit S

end

end

loop

signal S in

present S then

emit O

end;

pause;

emit S

end;

present I then

pause

end;

present I else

pause

loop

signal S in

present S then

emit O

end;

pause;

nothing

end

end

pause

end

end

(d) (e) (f)

Figure 3. Candidates of Schizophrenic Signal Declarations

loop

[present I then

pause

end;

V:=V+1]

||

pause

end

loop

[present I then

pause

end;

nothing]

||

pause

end

loop

[present I then

pause

end;

emit O]

||

pause

end

(a) (b) (c)

loop

[present I then

pause

end;

pause]

||

pause

end

(d)

loop

[present I then

pause;

pause

end;

V:=V+1]

||

pause

end

(e)

loop

[present I then

pause

end;

V:=V+1]

||

[pause;

pause]

end

(f)

Figure 4. Candidates of Schizophrenic Parallel Statements

S in (c) and (d) during the instant when the signal declaration

is restarted, and no signal emission of S’s old instance in (e)

during the instant when the signal declaration is terminated.

Therefore, (a) is the only harmful schizophrenic statement

among (a), (c), (d), and (e).

B. Schizophrenic Parallel Statements

If a statement, such as a variable assignment or valued

signal emission, is executed more than once in an instant,

the statement’s reaction may be unstable. We must consider

“what statement” is executed “how many times” in an

instant.

When a loop body can instantly terminate, the loop is

called an instantaneous loop [18]. The body of an instanta-

neous loop can be executed infinite times in an instant, and

the reaction of the instant does not finish. This erroneous

loop statement is rejected by Esterel semantics [5], [21].

A parallel statement in a loop sometimes leads a state-

ment to be executed finitely many times in an instant.

Like schizophrenic signal declarations, schizophrenic par-

allel statements are defined by the reentrance to parallel

statements [13]. Each parallel statement in Figure 4 can be

reentered during the same instant when its loop terminates

and restarts. Therefore, every example in Figure 4 has a

schizophrenic parallel statement according to the previous

definition.

Code (a) in Figure 4 is an example of a schizophrenic

parallel statement, given in [13]. If the input signal I is

present at the first instant and absent at the second instant,

then “V := V + 1” is executed twice.

“emit O” is executed twice in case of (b), and “nothing”

is executed in the case of (c). If the signal O is a pure signal

[5], double emissions may cause no problems. Moreover, no

sub-statements of the parallel statement in (d) are executed

more than once in the same instant.

In (e) and (f), we change the number of instants for each

thread’s termination. If the input signal I is present at the first

instant and absent at the third instant, “V := V + 1” in (e)

is executed twice. Case (f) is different from (e). The thread

having “V := V + 1” in (f) always terminates before the other

thread does, and “V := V + 1” in (f) cannot be executed in

the loop-terminating instant due to early termination of the

thread. Thus, any sub-statement of (f) cannot be executed

more than once in the same instant.

IV. REFINING SCHIZOPHRENIA

In [13], Tardieu and Simone focused on the reentrance to

block statements: signal declarations and parallel statements.

However, the reentrance may not cause any problems during

compilation of Esterel programs. In short, it is a necessary

but not a sufficient condition for schizophrenic problems.

In Pure Esterel, a reaction of a program consists of only

signal emissions. Therefore, we refine the characteristics of

schizophrenia from the viewpoint of signal emissions in this

section. Our refinements can be easily extended to additional

features of full Esterel.

A. Refining Schizophrenic Signal Declarations

Definition 1: A signal declaration statement is called a

schizophrenic signal declaration if

1) the signal declaration terminates or exit, and restarts

during the same instant; and

2) a signal test of the local signal’s new (resp. old)

instance and a signal emission of the local signal’s

old (resp. new) instance is executed during the same

loop
…
signal S in
…
present S then

…

pause;
emit S;
…

end
…

end

loop
…
signal S in

end
…

end

(a) Tardieu’s Definition (b) Our Definition

loop
…
signal S in
…
emit S;

…

pause;
present S then
…

end
…

end

…

Figure 5. Definitions of schizophrenic signal definitions

loop
…

…
end

| |

(a) Tardieu’s Definition (b) Our Definition

loop
…

…
end

emit

| |

Figure 6. Definitions of schizophrenic parallel statements

instant.

Condition 1) of Definition 1 is the same as Tardieu and

Simone’s definition [13]. We add condition 2) to describe

actual problems noted in Section III.A. Figure 5 illustrates

the characteristics of our definition.

The first condition is already a known condition for

schizophrenic signal declaration. After investigating the

falsely-estimated examples, we add the second condition,

which necessarily distinguishes accurate schizophrenic sig-

nal declarations.

B. Refining Schizophrenic Parallel Statements

Definition 2: A parallel statement is called a

schizophrenic parallel statement if a signal emission

statement in the parallel statement terminates and restarts

during the same instant.

The reentrance to parallel statements is a source of wrong

reactions, not a wrong reaction in itself. We investigate

whether an emit statement is executed more than once in

an instant. Parallel statements are necessary conditions for

an “emit” statement to be executed finitely many times4.

For full Esterel, we can easily extend the definition

by considering additional features: valued signal emission,

variables, assignment, and so on. Figure 6 compares the

previous definition with ours.

V. DETECTING SCHIZOPHRENIA ON CFGS

Without loss of generality, we assume that all signal

names are distinct in an Esterel program. This assumption

simplifies our detection algorithm. We implement a unique-

naming function and apply it to target programs before the

analysis.

A. Control Flow Graph of Esterel

We briefly introduce our CFG construction of Esterel

programs. Our CFG representations for Esterel are presented

in Figure 7.

When constructing CFGs of Esterel programs, it is nec-

essary to treat two statements specially: suspend statement

and trap statement. We can translate other statements to

CFGs with a simple constructive method.

In suspend p when S, the signal S must be tested at the

successors of every pause node in p. Therefore, a test(S)
node is inserted at the next place of every pause node in a

suspend-block.

In trap T in p end, special consideration is necessary

for a statement exit T in a parallel statement. A parallel

statement consists of two threads in Pure Esterel. Suppose

a parallel statement has two threads, named P and Q. When

thread P of the parallel statement exits, thread Q must exit

together. If thread P has an exit(T) node, the potential exit

points of thread Q are the predecessors of pause nodes,

exit nodes themselves, and the predecessor of the parallel-

end node in thread Q. We insert additional edges, so-called

may-exit edges, from those nodes to the trap-end node for

potential exits. May-exit edges are depicted as dashed lines

in Figures 7 and 8. In particular, if thread P has an exit(T)
node and thread Q has an exit(U) node, then the may-

exit edge from the exit(U) node to the trap-end(T) node

is omitted when trap U is located outside of trap T .

To add may-exit edges, we over-approximate for exiting

a parallel statement. To exit from parallel statements, we

assume that all combinations of potential exit points are

possible between two threads in a parallel statement. In

Figure 8, our approximation inserts a may-exit edge from the

emit(A) node for the “exit U” statement. However, since

4The following is a proof idea on kernel statements. Consider an “emit”
statement that is not contained in any “parallel” statement. After the
“emit” statement is executed, there must be a “pause” statement that
cannot be executed at the first time and then must be executed later.
This selectively executed “emit” statement must be contained in some
“present” statement. Since the after-parts of the “emit” statement are
executed several times in an instant and each signal has unique status in
an instant, all of the signal tests have to make the same decisions in every
execution, and selective execution of a “pause” statement is impossible.
This is contradiction.

nothing

nothing pause emit S

p; q

present S then p else q end loop p end

p || q

suspend p when S

signal S in p end

trap T in p end

pause emit(S)

test(S)

test-end(S)

p q

parallel-start

loop-start

loop-end

p

signal-start(S)

p

q
suspend-start(S)

suspend-end(S)

P

pending

trap-start(T)

P

exit(T)test(S)

parallel-start

parallel-end

pending

…

parallel-end

p q

signal-end(S)

p

trap-end(T)

may-exit edge

Figure 7. CFG as statements

trap(U)

trap-end(U)

parallel-start

parallel-end

pause

emit(A) emit(B)

pause

trap(T)

trap-end(T)

exit(T) exit(U)

trap U in

trap T in

emit A; pause; exit T

||

emit B; pause; exit U

end

end

trap-end(U)

Figure 8. CFG example: exiting parallel statement

“exit U” and “emit A” cannot be executed simultaneously,

the may-exit edge from the emit(A) node is unnecessary in

real environments. The combination of emit(B) and exit(T)
falls into the same situation.

B. First-surfaces and Last-surfaces of Loops

Intuitively, the surface of a statement means the sub-

statements that are executed in the starting instant of the

statement. This term is widely used in [5], [12]–[14], [16].

When a loop statement terminates and restarts in an

instant, the surface of the loop statement is the only can-

didate that can be re-executed in the same instant, and

schizophrenic problems can occur in it. Based on this

observation, some curing techniques [12]–[16] replicate the

surface of loop statements.

In this paper, we name the surface of a loop statement the

first-surface of the loop statement in order to distinguish the

sub-statements that are executed in the terminating instant

of the loop statement, which are named the last-surface

of the loop statement. We define the first-surfaces and the

last-surfaces of loop statements on CFGs.

Definition 3: The first-surface of a loop statement is the

set of nodes in the CFG that are reachable in the instant

when the loop statement starts.

The first-surface of a loop refers to the set of nodes that

the loop-start node can reach without passing pause nodes.

Figure 10 is an example of a first-surface.

Figure 9 is an algorithm to compute the first-surface of a

loop statement. For parallel-statements, lines 15∼19 reflect

that a parallel statement cannot terminate until two threads

terminate. To exit a trap statement in a loop starting instant,

there must exist an exit node that is instantly reachable

from the loop-start node. Hence we do not follow may-exit

edges at line 27 in Figure 9.

Require: loop is the set of nodes in the target loop’s CFG.

loop start node is the target loop’s starting node.

1: // initialization

2: for all node ∈ loop do

3: if node is a parallel end node then

4: // a parallel statement consists of two threads

5: node.thread num := 2;

6: end if

7: end for

8: // start to compute first surface

9: worklist := {loop start node};

10: first surface := ∅;

11: while worklist 6= ∅ do

12: node := pop(worklist);

13: if node is not a pause node then

14: add worklist := false;

15: if node is a parallel end node then

16: node.thread num := node.thread num-1;

17: if node.thread num = 0 then

18: first surface := first surface ∪ {node};

19: add worklist := true

20: end if

21: else

22: first surface := first surface ∪ {node};

23: add worklist := true

24: end if

25: if add worklist = true then

26: for all edge: (node→target) ∧ target∈ loop do

27: if target 6∈ first surface

∧ edge is not a may-exit edge then

28: worklist := worklist ∪ {target};

29: end if

30: end for

31: end if

32: end if

33: end while

34: return first surface

Figure 9. The algorithm to compute first-surface

Definition 4: The last-surface of a loop statement is the

set of nodes in the CFG that are reachable in the instant

when the loop statement terminates.

The last-surface is the opposite case of the first-surface.

The last-surface and the first-surface of a loop statement are

executed simultaneously when the loop is terminates and

restarts.

We ignore the case where target loop statements are

instantaneous loops5. Therefore, a loop terminating instant

5We can detect potential instantaneous loops using first-surfaces. If the
first-surface of a loop statement includes the loop-end node, the loop
statement may be an instantaneous loop. This detection technique ignores
the signal information as the previous technique [18] does.

loop

[present I then

pause

end;

present J then

emit X;

pause

end;

emit O]

||

pause

end

loop-start

parallel-start

test(I)

pause

test(J)

emit(X)

pause

pause

test-end(I)

test-end(J)

loop-end

parallel-end

emit(O)

Figure 10. First-surface: an example

must begin from some pause nodes inside the loop.

Figure 11 is an algorithm to compute the last-surface of a

loop statement. The algorithm is comprised of two phases. In

the first phase, the algorithm identifies pause nodes that are

instantly reachable to the loop-end node, and marks the pass-

through nodes while backward-searching the pause nodes

from the loop-end node. This process is a backward version

of the algorithm to compute first-surfaces. In the second

phase, instantly reachable nodes from the selected pause

nodes are chosen from among the nodes marked during the

first phase.

Figure 12 presents an example. In the first phase, our

algorithm selects all pause nodes in the program, and marks

emit(O), test-end(J), test(J), test-end(I), and test(I) nodes.

Even though there is a forward-path from a selected pause

node to the emit(X) node, we can exclude the emit(X)
node from the last-surface, because the emit(X) node is not

marked in the first phase. In addition, because the test(I)
node, which is marked in the first phase, is not instantly

reachable from any selected pause node, our algorithm does

not add the test(I) node to the last-surface.

C. Detecting Schizophrenic Signal Declarations

Schizophrenic Signal Declaration detection procedure

1) Construct the CFG of a loop statement.

2) Compute the first-surface and the last-surface of the

loop statement on CFG.

3) If a) the first-surface has a test(S) node and the

signal-start(S) node of the local signal S and b)

the last-surface has an emit(S) node, then the signal

declaration of the local signal S is a schizophrenic

signal declaration.

Require: loop is the set of nodes in the target loop’s CFG.

loop end node is the target loop’s ending node.

1: // initialization

2: for all node ∈ loop do

3: node.visited := false

4: if node is a parallel start node then

5: node.thread num := 2;

6: end if

7: end for

8: // first phase: gather loop-terminating pause nodes

9: worklist := {loop end node};

10: pause set := ∅;

11: while worklist 6= ∅ do

12: node := pop(worklist);

13: add worklist := false;

14: if node is a pause node then

15: pause set := pause set ∪ {node};

16: else if node is a parallel start node then

17: node.thread num := node.thread num - 1;

18: if node.thread num = 0 then

19: add worklist := true;

20: end if

21: else

22: add worklist := true;

23: end if

24: if add worklist = true then

25: node.visited := true;

26: for all edge: (source→node) ∧ source∈ loop do

27: if source.visited = false then

28: worklist := worklist ∪ {source};

29: end if

30: end for

31: end if

32: end while

33: // second phase: compute last-surface

34: worklist := pause set;

35: last surface := ∅;

36: while worklist 6= ∅ do

37: node := pop(worklist);

38: if node.visited = true then

39: last surface := last surface ∪ {node};

40: end if

41: if node is a pause node ∨ node.visited = true then

42: for all edge: (node→target) ∧ target ∈ loop do

43: if target 6∈ last surface

∧ target.visited = true then

44: worklist := worklist ∪ {target};

45: end if

46: end for

47: end if

48: end while

49: return last surface

Figure 11. The algorithm to compute last-surface

loop

[present I then

pause

end;

present J then

emit X;

pause

end;

emit O]

||

pause

end

loop-start

parallel-start

test(I)

test-end(I)

pause

test(J)

test-end(J)

emit(X)

pause

pause

loop-end

parallel-end

emit(O)

Figure 12. Last-surface: an example

loop
…
signal S in
…
present S then
…
pause;

…
pause;
…
emit S;
…

end
…

end

first-surface

last-surface

Figure 13. Detecting Schizophrenic Signal Declarations

With the refined schizophrenic signal declaration, we

detect local signal emissions of the old instance that affect

the local signal tests of the new instance. Figure 13 depicts

a case of schizophrenia with our detection procedure.

Suppose a signal S is declared. If the signal-start(S) node

is in the first-surface, we know that the signal declaration

of signal S is in the loop. In case of exiting the signal

declaration, the signal-end(S) node may not be in the last-

surface. However, from our unique-naming assumption, we

know that S means the local signal without having to check

where the name S is.

According to the definitions of the first-surface and the

last-surface, the nodes of the last-surface may be executed

in the loop terminating instant and the nodes of the first-

surface may be executed in the loop starting instant. When

the target loop statement terminates and restarts during the

same instant, an emit(S) node in the last-surface is the

emission of the signal S’s old instance and a test(S) node

loop
…

…
end

stmt;

| |

first-surface

last-surface

Figure 14. Detecting Schizophrenic Parallel Statements

in the first-surface is the test of the signal S’s new instance.

Because nodes of the last-surface and nodes of the first-

surface are executed in the same instant, the emit(S) node

can affect the test(S) node. Therefore, if both conditions a)

and b) are true, we state that the signal declaration of signal

S may be a schizophrenic signal declaration.

D. Detecting Schizophrenic Parallel Statements

Schizophrenic Parallel Statement detection procedure

1) Construct the CFG of a loop statement.

2) Compute the first-surface and the last-surface of the

loop statement on CFG.

3) If a) the loop-end node is not in the first-surface and b)

a signal emission node is in the intersection of the first-

surface and the last-surface, then the parallel statement

may be a schizophrenic parallel statement.

In accordance with our refined schizophrenic parallel

statement, our detection criterion is whether a signal emis-

sion statement is executed more than once in an instant.

Figure 14 shows our detection algorithm of schizophrenic

parallel statements. For Pure Esterel, we only check signal

emission nodes.

We can detect instantaneous loops by examining whether

the first-surface contains the loop-end node. Condition a) of

step 3) checks if a target loop is an instantaneous loop. If a

loop violates condition a), it is not cured, but rather rejected

[22].

Condition b) of step 3) reflects the refined characteristics

of schizophrenic parallel statements. Suppose a node is

contained in the intersection of the first-surface and the last-

surface. Because the node is in the last-surface, the node

may be executed in a loop-terminating instant. Because the

node is in the first-surface, the node may be executed again

when the loop restarts during the same instant.

If both conditions a) and b) of step 3) are true, the

target loop may not be an instantaneous loop, and a signal

emission node can be executed more than once in an instant.

Therefore, we can detect schizophrenic parallel statements.

VI. EXPERIMENTAL RESULTS

We implemented the proposed detection algorithm based

on first-surfaces and last-surfaces in OCaml. Our detector

Figure 3 Reentrance Our result Manual check

(a) yes yes yes
(b) no no no
(c) yes no no
(d) yes no no
(e) yes no no
(f) yea yes no

Table I
EXAMPLES: SCHIZOPHRENIC SIGNAL DECLARATIONS

Figure 4 Reentrance Our result Manual check

(a) yes yes yes
(b) yes no no
(c) yes no no
(d) yes no no
(e) yes yes yes
(f) yes yes no

Table II
EXAMPLES: SCHIZOPHRENIC PARALLEL STATEMENTS

works as follows:

1) inlining of submodules using Columbia Esterel Com-

piler [23], [24],

2) parsing and translating additional language features to

kernel language referring to [7], and

3) constructing CFG of a target program and analyzing

each loop.

For Tables I, II, and III, the column “Reentrance” states

whether target block statements can be reentered6. The col-

umn “Our result” indicates whether our detector says it is a

schizophrenic statement. The column “Manual check” shows

whether corresponding examples cause actual problems as

stated in Section IV. To obtain precise results, we counted

the exact numbers of “Manual check” by hand.

In Figure 3 of Section III.A, there are some candidate

schizophrenic signals. Table I compares the results. Because

we do not consider signal information, similar to Tardieu

and Simone’s approach [18], our algorithms for first-surfaces

and last-surfaces cannot analyze present statements of (f)

in detail.

Table II presents the analysis results for the examples

in Figure 4. Our algorithm computes last-surfaces based-

on backward reachability on CFGs. It assumes that both

threads of a parallel statement may terminate simultaneously.

That is, the V:=V+1 node is contained in the last-surface

by our algorithm. However, the first thread of (f) in Figure

4 always terminates before the second thread does. Thus,

the V:=V+1 statement cannot be executed when the loop

statement terminates.

6We check whether a target block statement can be reentered in an instant
using the first-surface and the last-surface. If the start node of the target
block statement is in the first-surface of a loop and any node of the block
statement is in the last-surface of the loop, the target block statement can
terminate or exit and restart during the same instant. This analysis is similar
to that of Tardieu and Simone [18].

Programs
Lines of
code

Num. of
loops

Schizophrenic Signal Declarations Schizophrenic Parallel Statements
Num. of
Candidates

Reentrance
Our
result

Manual
check

Num. of
Candidates

Reentrance
Our
result

Manual
check

atds100 622 55 16 9 5 0 18 7 5 5
mca200 5,354 138 0 0 0 0 0 0 0 0
mejia 361 21 0 0 0 0 5 0 0 0
tcint 357 32 1 1 0 0 2 2 1 1
ww 360 83 1 1 1 1 6 1 1 1
dlx 334 37 5 5 0 0 5 5 0 0
fbus 285 76 0 0 0 0 3 0 0 0

Total 7,673 442 23 16 6 1 39 15 7 7

Table III
OUR EXPERIMENTS

loop

trap DATA in

signal IS_DATA in

end

end;

emit data_ready;

await immediate [not iclk];

end

await immediate iclk;

pause;

present IS_DATA then

emit data_val;

pause;

emit data_val

end;

exit DATA

| |
await immediate idata;

sustain IS_DATA

Figure 15. Our false alarms in atds100

Table III shows the results for benchmark programs7. We

count the lines of submodule-inlined codes. The column

“Num. of loops” is the number of loop statements and

repeat statements [7]. The column “Num. of Candidates”

of schizophrenic signal declarations (or schizophrenic par-

allel statements) is the number of loops that have signal

declarations (or parallel statements).

In spite of naive CFGs, our detection algorithm performs

well in analyzing the benchmark programs. The only false

alarms happen in atds100: the code of Figure I. Figure

15 shows that “present IS_DATA then” is in the last-

surface and “sustain IS_DATA” is in the first-surface.

However, they are not executed simultaneously in real envi-

ronment.

After examining the benchmark codes manually, we can

identify two programming patterns for exiting parallel state-

ments depicted in Figure 16. These patterns are natural in

designing hardware. Each thread works after obtaining some

information, like (a) of Figure 16, or performs its own work

repeatedly, like (b). Because these coding patterns can make

all pending combination of two threads possible, they reduce

the inaccuracy of computed last-surfaces caused by may-exit

7The programs of atds100, mca200, mejia, tcint, and ww are
in the Estbench Esterel benchmark suite [17]. The programs of dlx and
fbus are Ramesh’s case-studies [25].

trap T in
await A; …

||
await B; …; exit T

end

trap T in
loop … end

||
loop …; exit T end

end

(a) (b)

Figure 16. Coding Patterns for exiting parallel statements

edges.

VII. CONCLUSION

Imperative constructs in a synchronous language often

cause schizophrenic problems. Esterel compilers must cure

schizophrenic problems.

The existing schizophrenia detection algorithm [18] uses

over-approximation based on abstract interpretation. Al-

though the result decreases the number of statements to be

cured dramatically, some harmless statements are regarded

as schizophrenic. In practice, the inaccuracy is due to the

roughly inferred characteristics of schizophrenic problems.

They do not have sufficient information to distinguish harm-

less statements from harmful schizophrenia.

In this paper, we refine the characteristics of schizophrenic

problems in terms of signal emissions in Pure Esterel, and

develop a schizophrenia detection algorithm on CFGs of

Esterel programs. Our key contributions are 1) observations

about schizophrenic problems and 2) a detection algorithm

using graph reachability. Our detector can distinguish most

harmless statements from schizophrenic statements in prac-

tical programs in spite of naively-designed CFGs. As our

algorithm utilizes simple graph reachability on CFGs, it can

be easily applied to existing compilers.

Compilers generate some control signals [5] on circuit

synthesis, and sharing the control signals [26] may cause

other problems, especially in the synthesis of parallel

statements [5]. We will extend our work to schizophrenia

of synthesized circuits.

ACKNOWLEDGMENT

This research was supported by the MKE(Ministry of

Knowledge Economy), Korea, under the ITRC(Information

Technology Research Center) Support program supervised

by the IITA(Institute of Information Technology Advance-

ment) (IITA-2009-C1090-0902-0020) and the Engineering

Research Center of Excellence Program of Korea Ministry of

Education, Science and Technology(MEST) / Korea Science

and Engineering Foundation(KOSEF), grant number R11-

2008-007-02004-0.

REFERENCES

[1] N. Halbwachs, Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers, Dordrecht, 1993.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone, “The synchronous lan-
guages 12 years later,” Embedded Systems, Proceedings of
the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[3] A. Benvenistre and G. Berry, “The synchronous approach
to reactive real-time systems,” Another Look of Real Time
Programming, Proceedings of the IEEE, vol. 79, no. 9, pp.
1270–1282, 1991.

[4] G. Berry, The Esterel Primer, 1998.

[5] ——, The Constructive Semantics of Pure ESTEREL. Draft
book available at http://www.inria.fr/meije/esterel/esterel-
eng.html, 1999.

[6] ——, “The foundations of esterel,” Proof, Language and
Interaction: Essays in Honour of Robin Milner, pp. 425–454,
2000.

[7] D. Potop-Butucaru, S. Edwards, and G. Berry, Compiling
ESTEREL. Springer, 2007.

[8] Esterel-Technologies, The Esterel v7 Reference Manual Ver-
sion v7.30 . initial IEEE standardization proposal, Esterel-
Technologies, 679 av. Dr. J. Lefebvre 06270 Villeneuve-
Loubet, France, November 2005.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language lustre,” Pro-
ceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.

[10] P. L. Guernic, T. Goutier, M. L. Borgne, and C. Maire, “Pro-
gramming real time applications with signal,” Proceedings of
the IEEE, vol. 79, no. 9, pp. 1321–1336, 1991.

[11] G. Berry, “Preemption in concurrent systems,” in Proceedings
of the 13th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science. London, UK:
Springer-Verlag, 1993, pp. 72–93.

[12] K. Schneider and M. Wenz, “A new method for compiling
schizophrenic synchronous programs,” in Proceedings of the
2001 international conference on Compilers, architecture,
and synthesis for embedded systems(CASES’2001). New
York, NY, USA: ACM, 2001, pp. 49–58.

[13] O. Tardieu and R. de Simone, “Curing schizophrenia by
program rewriting in esterel,” in Proceedings of the Second
ACM and IEEE International Conference on Formal Methods
and Models for Codesign(MEMOCODE’2004), 2004, pp. 39–
48.

[14] K. Schneider, J. Brandt, and T. Schuele, “A verified compiler
for synchronous programs with local declarations,” Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 153,
no. 4, pp. 71–97, 2006.

[15] A. Poigne and L. Holenderski, “Boolean automata for imple-
menting pure esterel,” Arbeitspapiere der GMD 964, GMD,
Sankt Augustin, 1995.

[16] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil, “Saxo-
rt: Interpreting esterel semantic on a sequential execution
structure,” vol. 65, no. 5. Elsevier, 2002, pp. 80–94.

[17] S. Edwards, “Estbench esterel benchmark suite,”
http://www1.cs.columbia.edu/∼sedwards/software/estbench-
1.0.tar.gz.

[18] O. Tardieu and R. de Simone, “Instantaneous termination
in pure esterel,” in Proceedings of the 10th International
Static Analysis Symposium(SAS’2003), ser. LNCS, vol. 2694.
Springer Verlag, 2003, pp. 91–108.

[19] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in The 4th ACM Symposium
on Principles of Programming Languages. Los Angeles,
CA.: ACM Press, 1977, pp. 238–252.

[20] O. Tardieu, “Loops in esterel: from operational semantics to
formally specified compilers,” These de doctorat, Ecole des
Mines de Paris, 2004.

[21] ——, “A deterministic logical semantics for pure esterel,”
ACM Transactions on Programming Languages and Systems,
vol. 29, no. 2, pp. 1–24, 2007.

[22] O. Tardieu and R. de Simone, “Loops in esterel,” Transactions
on Embedded Computing Systems, vol. 4, no. 4, pp. 708–750,
2005.

[23] S. Edwards, “Cec: The columbia esterel compiler,”
http://www1.cs.columbia.edu/∼sedwards/cec/.

[24] S. Edwards and J. Zeng, “Code generation in the columbia
esterel compiler,” EURASIP Journal on Embedded Systems,
vol. 2007, pp. 1–31, 2007.

[25] S. Ramesh, “Ramesh’s homepage,”
http://www.cse.iitb.ac.in/∼ramesh/.

[26] A. Su, Y. Hsu, T. Liu, and M. Lee, “Eliminating false loops
caused by sharing in control path,” ACM Transactions on
Design Automation of Electronic Systems, vol. 3, no. 3, pp.
487–495, 1998.

