Design and Implementation of Secure Tapping
Alert Protocol

Gookwhan Ahn and Kwangjo Kim

IRIS(International Research center for Information Security),
ICU(Information and Communications University),
58-4, Hwaam-Dong, Yusung-Ku, Taejon, 305-732, Korea
{tachyon,kkj}@icu.ac.kr

Abstract. This paper proposes an improved protocol of original TAP[1],
which detects if any computer is eavesdropping on the network. When
tapping is detected, TAP alerts the network users on the danger of tap-
ping. The improved TAP can additionally detect tapping on a remote
computer of the remote network across routers.

An underlying model is revised for an attacker who sniffs the net-
work and breaks down the improved protocol, and the requirements on
the protocol in terms of security and functionality are defined. We also
describe how to detect if a network interface card on a remote computer
is in the sniffing mode. The proposed protocol employs cryptographic
primitives to guarantee not only authentication of the code which moni-
tors tapping operation, but also integrity and confidentiality of the data
being sent.

This protocol should also use tamper-proof device to securely store
the private key and session key. To achieve this, the protocol can employ
a secure token such as smart card, iButton, etc. Finally, we verified that
the proposed protocol can protect authorized users from illegal eaves-
dropping on the network.

1 Introduction

With the wide spread use of the Internet, numerous techniques have been de-
vised such that attackers can break into the network, and then steal, forge, and
destroy data in the target computer system. Tapping is one of the most popular
network attacking methods appeared since early 1980s. In this paper we propose
an improved protocol of TAP[1], which protects the system from tapping. Upon
detection, it alerts the network users on the danger of tapping that can leak
the information of the users. Tapping called by several different terminologies
- snooping, sniffing or eavesdropping etc, in Local Area Network(LAN) is rela-
tively easy since Ethernet is a shared network and all the packets on the network
are broadcast in a network. When someone eavesdrops on a session of a connec-
tion while data are transferred between the computers, the person can easily
extract the data. In addition, if the user-ids and its corresponding passwords are
extracted through tapping, the eavesdropper can even break into the computer

2 Gookwhan Ahn, Kwangjo Kim

system. Due to this, tapping has been one of the most popular and easiest ways
to penetrate a computer system. A number of sniffing programs on the Internet
have been developed, and many attackers have used them for breaking into com-
puter systems and networks. Tapping can be done by taking advantage of the
promiscuous mode of network interface. Promiscuous mode is a condition when
the Network Interface Controller (NIC) of a computer system passes all frames
up to the higher network layers regardless of the destination address. Normally,
a network controller passes up only the frames having the destination address to
that device. However, when it is in promiscuous mode, the destination address is
not checked. In other words, if an NIC is set to the promiscuous mode, it means
that the computer is running the sniffing or tapping program [4]. Fortunately,
there are some countermeasures developed to avoid tapping as follows[4]:

— Do not use the NIC that supports promiscuous mode.

Use one-time password for connection.

Encrypt a user’s connection by using SSH (secure shell) program, etc.

— Use a switching hub so that an attacker cannot tap the network easily.

Use tools such as “CPM” to detect the promiscuous mode of NIC on a local
computer [15,16].

In fact, since the tapping program can work in fully passive mode on the
network, it is difficult (sometimes impossible) for other computers to detect if
the programs are running on LAN. Nonetheless, there are also some methods to
detect the tapping on a remote computer within LAN as follows[2]:

— OS kernel test : To exploit a weakness in the TCP/IP stack implementation
of some OS (i.e. Linux, Windows 95/98/NT)

— DNS query test : To observe that a computer performs DNS queries to
translate IP addresses of the captured packets.

— Network and machine latency tests : To create a large amount of network
traffic for a short period of time.

In most cases, however, the sniffing program can be evasive about these
methods, and they can not even detect the sniffing program where the computer
lies on remote network across routers. For this reason, it is necessary to find out
a specific method to discover the status of NIC on even remote network, not
being evaded by the sniffing attack.

For this reason, we propose an improved method of original TAP[1] for de-
tecting the promiscuous mode even on remote network. The new method, called
also TAP-v2, uses cryptographic schemes [5,6] in order to provide authentica-
tion of checking module and integrity of data. To hide sensitive data like keys
for encryption and decryption, secure token is also used.

This paper is organized as follows: Section 2 discusses the fundamental is-
sues related to tapping. In this section, we summarize the previous methods for
detecting the tapping program. The security requirements and message formats
for the proposed protocol are described in Section 3. In Section 4, the proposed

Design and Implementation of Secure Tapping Alert Protocol 3

protocol is presented, which prevents the computer systems and users from be-
ing tapped by any attacker, and the detailed description of the protocol is given.
We explain how TAP-v2 is implemented, and analyze the protocol with respect
to security and performance, and compare with the known detecting tools in
Section 5. Finally, conclusions are given in Section 6.

2 Methods of Detection

This section reviews some techniques to detect when tapping is running on the
computer and network. Some tools are known about how to detect the tapping on
the local computer and on the remote computer in a network segment. However,
as our motivation, we also describe that if these detecting methods are used,
there are some ways that the tapping program can evade as described.

2.1 Detecting tapping on the local computer

If the OS of a computer is Unix, an attacker who has once gained root privilege
can run a tapping program in order to obtain useful information from your
network (for example, to retrieve passwords to other hosts on the network). In
general, it is difficult to detect a process of sniffing, because the process name
can be disguised as something normal. It can even be a Trojan horse program.
The only way to detect the tapping program in this case is to check if the NIC
is in promiscuous mode.

Here we present how to detect if an NIC under Unix is in promiscuous mode.
The following C code describes the routine for NIC running in SunOS 4.x and
Linux[15]. If the value of the if-statement surrounded by a box is true, then the
NIC is in promiscuous mode.

int fd, itf;
struct ifreq buf [MAXINTERFACES];

if (!'(ioctl(fd, SIOCGIFFLAGS, (char *) &buf[itfl))){

| it (buf[itf].ifr flags & IFF PROMISC) { |

/* This NIC is in promiscuous mode */

By using above subroutine, one application program of checking that NIC is
in promiscuous mode is CPM (Check Promiscuous Mode).

Another method is to use a following command: ’ifconfig -a’. All Unix sys-
tems provide a command ’ifconfig’ to offer similar characteristics above. This

4 Gookwhan Ahn, Kwangjo Kim

command displays the available NICs, and shows all the configuration informa-
tion about them. The word PROMISC means that the NIC is in promiscuous
mode. Running the command: ‘ifconfig -a | grep PROMISC” will be non-empty
if one of the NICs is in promiscuous mode.

2.2 Detecting tapping on the remote computer

In practice, a network sniffer (tapping program) is totally passive and an in-
teresting thing in TCP/IP stack of NT and Unix, makes most of workstations
behave differently when a tapping program is running. Due to this, it is possible
to detect the tapping even though the tapping program is running on the re-
mote computer not the local computer. The followings explain how the tapping
program is detected on the remote computer [2].

OS Kernel Tests(Linux,Windows95/98 /NT). Under normal situations the
NIC filters and discards packets that are not addressed to the machine MAC ad-
dress or the broadcast Ethernet address. If the packet is destined to the machines,
actual Ethernet address or broadcast Ethernet address are copied and passed up
to the kernel for processing. When a NIC is placed in promiscuous mode, every
packet is passed on to the OS to analyze and/or process.

This weakness in the implementation of TCP /IP stack of some Linux kernels
is exploited to discover Linux-based sniffers. The data inside the Ethernet frame
would consist of an IP packet with the correct IP address of the computer or
the broadcast address of the network. Various Linux kernels could see only the
IP address in the packets, in order to determine whether the packets should be
handed to the kernel stack for processing inside the local system. To exploit this,
the tool creates a packet with MAC address that is not destined to any particular
NIC, but contains a valid IP packet with the correct IP address of destination
hosts. Vulnerable Linux kernels with the NIC in promiscuous mode examine the
IP address and pass the packet to the appropriate stack. By creating an ICMP
echo request containing the fake Ethernet frame, the vulnerable systems respond
when the NIC is in promiscuous mode, but, correctly ignore the packet when the
NIC is not in this monitoring state. Thus, it means the status of the machine is
exposed.

Various NetBSD kernels and Windows95/98 /NT have exhibited similar char-
acteristics to the above Linux.

DNS query tests. The DNS query tests operate on the premise that many
of network data gathering tools perform IP address to name inverse resolution
to provide DNS names in place of IP addresses. Therefore, the tapping program
will perform DNS queries to translate IP addresses of the captured packets. To
check for this, fake packets are transmitted, containing a fake IP address as the
destination address of the packet, and being watched for DNS queries to the
IP address. The computers that perform a DNS query to the IP address, are
watching the packets that are not sent to themselves, and therefore are probably

Design and Implementation of Secure Tapping Alert Protocol 5

in promiscuous mode. This comes from the fact that the computers do not need
to perform a DNS query for fake packets when NIC is not in promiscuous mode.
Due to this, the status of NIC is also observed on the remote computer.

Network and Machine Latency Tests. The computers that monitor all
incoming traffic must process all the information on the network, causing a
heavy load on the computer. One of detecting methods of the tapping program
on the remote computer can be done by measuring the average response time
of the computer, then flooding the network with useless traffic, and measuring
the response time again. A computer that monitors all network traffic, must be
busier than the other computers, therefore the computer takes time to respond.
To obtain more accurate result, this procedure should be performed a few times
repeatedly, using different measuring methods. This is the most powerful method
to spot computers on the LAN that are in promiscuous mode regardless of their
OS. The important point to which that we must pay attention is that this method
has the potentiality to create a large amount of network traffic for short periods
of time.

Evading the detecting of tapping. There are some applications that detect
the tapping program on the remote computer by using these characteristics just
mentioned before. They are called Antisniff and Neped.

These tools work against most common sniffing tools because of using men-
tioned characteristics, but these tools are not perfect. Some methods are already
suggested to evade the detection of tapping program on the remote computer, to
hide the tapping programs, and to make them undetectable. Normally, the at-
tacks are from legitimate computers on the network, and usually using standard
sniffing tools. But even those standard tools can be hidden from the methods to
detect the tapping program as follows[3]:

— Use a modified kernel or IP stack that does not suffer from the mentioned
characteristics (Linux kernel 2.2.10 works correctly and drops incoming pack-
ets not destined for this Ethernet address.) Then, the tapping program run-
ning on this kernel will not be detected by OS Kernel Tests.

— Don’t perform DNS query (most of tapping programs have this feature).
This will pass DNS query Tests.

— Stop the tapping program when the network traffic exceeds a certain rate,
passing Network and Machine Latency Tests.

As mentioned above, there exist some methods to evade the detecting meth-
ods on a remote computer in a network segment. This is our motivation. In
Section 3, we will propose the new protocol to solve these problem. That is to
say, it is to be capable of detecting the tapping program on a remote computer
on LAN as well as on a remote network, and not being evaded by the tapping
program.

6 Gookwhan Ahn, Kwangjo Kim

3 Security Requirements and Message Formats

In this section, possible attacks and security requirements against this new pro-
tocol are presented. Also, message formats for the protocol are defined, and the
protocol description explains how it works.

3.1 Requirements

Here we do not consider how to prevent the root privilege from being com-
promised. There are many techniques protecting a computer from the attack
on the root privilege through Internet. Under this assumption, we consider the
possible attacks and the requirements on the protocol in terms of security and
functionality. This protocol basically requires 2 properties:

— To detect the tapping program on remote network across routers.
— No method to be evaded by the tapping program.

The following describes the mentioned properties in rather detail.

Possible Attacks. It is assumed that the attacker obtains the root privilege in
order to eavesdrop on the network or stop the protocol inside computer systems
since there is no tapping method without the root privilege.

When a protocol handling tapping is installed on a network, an attacker may
tackle it in the following ways:

1. Routine interruptability: The attacker stops the routine running on memory.
If an attacker wants not to send the result when the NIC is in promiscuous or
not to the request computer or network, the routine will stop while running.

2. Routine forgeability: The attacker forges the routine checking the NIC. If an
attacker wants to deceive the network users and computer system, it replaces
the original checking routine with a forged one. The forged one conducts as
the original one does, and the network users and computers will misjudge it
to be a legitimate one.

3. Data forgeability: The attacker forges the data transmitted to other com-
puters. Here if an attacker wants to provide the network with the routine
checking the NIC and wants it to run normally but still wants to deceive the
network users and computers, it forges the data being sent.

Security requirements.

— Authentication: If legitimate routines are needed to run normally and they
are not to be forged, authentication is necessary.

— Integrity: If the data transferred through the network are not to be forged,
integrity is necessary.

— Confidentiality: If the session key between two entities and private key for
each entity are stored in a secure place, confidentiality is also necessary.

Design and Implementation of Secure Tapping Alert Protocol 7

Functionality requirements.

— Remote detect: This protocol must provide the method to detect the promis-
cuous mode on remote network across routers. Therefore, if TAP-v2 is used
in the Internet, everyone can check out the NIC of target computer to dis-
cover the sniffing mode.

3.2 Notations and Message Formats

Notations. We employ the following notations to represent the messages used
in the proposed protocol.

I Concatenation of messages.
I Initiator, who sends a message.

R Responder, who responds to a message.

A=B:M Entity A sends a message M to entity B.

DECx() Decrypt data with the private key of entity X.

ENCx() Encrypt data with the public key of entity X.

K =g"v Session key by Diffie-Hellman Key agreement.

hi() Keyed hash function.

IPaddrx IP address of entity X.

MachineTypesx A kind of OS and CPU (Linux, Solaris, AIX, etc.)
of X.

PKx Public key of entity X.

SKx Secret key of entity X.

Signx() Signature data with the private key of X.

Routine() The program checking the promiscuous mode

of an NIC on the main memory.

TimeStampx TimeStamp of entity X.

Y’ or ‘N’ ‘Y’ means that the computer is in sniffing mode, but
‘N’ means it is not.

Message Formats. We design a set of message formats as follows:
— msg, : Messages transmitted among the entities.

msg1=(hk (Routine(TimeStampr)) || Num of Tap. || MachineTypesg
msge= Num of Tap. || TimeStampg || MachineTypesy

— TAPinit: This message is first sent to R to build a session key using the
Diffie-Hellman key exchange setting between two entities, I and R.

(‘TAPinit’ || ¢%)

— TAPack: This is used for precluding man-in-the-middle attack against build-
ing the session key as a shared key.

8 Gookwhan Ahn, Kwangjo Kim

(‘TAPack’ [| g¥ [| ¢* [| hr(g¥ | g%))

— TAPagree: This is used as the final step to setup a session key. As this
message is sent to R which is one of the two entities on the key agreement
protocol, it is said that two entities share a session key without any attack.

(‘TAPagree’ || he(g* || g¥))

— TAPreq: Request message to check the status of Responder, which may be
running a sniffing program.

(‘TAPreq’ || ENCk (TimeStampr))
— TAPreply: Response message of the checking routine to TAPreq.
(‘TAPreply’ || ENCk(msg1))

— TAPalert: Advertisement message for alerting the hosts on the danger of
sniffing. This message is advertised by using the broadcast IP address on
LAN.

(‘TAPalert’ || Signr(msgs) || msgs)

4 Proposed Protocol

This section proposes a new protocol called TAP-v2, which is designed to en-
hance the shortcomings which the sniffing program may evade detecting on a
remote computer within a network segment, as is stated in Section 2. This pro-
tocol can also offer the detecting method on remote network across routers.

4.1 Overview

Basically, this protocol is designed to communicate between two entities where
one entity is called TAPserver(or Responder) and the other is called TAP-
client(or Initiator). We must also consider even that more than 2 computers
are working on the network. Figure 1 shows that the TAP runs on the comput-
ers in LAN to detect whether any computer is in sniffing mode. It is assumed
that the TAP-v2 has been installed on all the computers in the network. If a
computer does not support the TAP-v2 and thus it cannot reply to the TAP-v2
messages when other computers requests it, it is recognized as compromised one.
Assume that the computer named as TAP; wants to know whether any com-
puter from T AP, to TAP, is in sniffing mode. We assume also that a sniffing
program is running in T'AP;, which is marked by a bomb symbol. Here T AP,
sends a request message to all other computers one by one in order to detect
the sniffing computer as the solid line arrows indicate. All other computers do
the same operation as TAP;. Here the check operation by T AP,, for example,
is shown by the dotted line arrows. The requested computers should send the
reply message to the initiator of the TAP-v2.

Desi

gn and Implementation of Secure Tapping Alert Protocol

TAP1 DNH D
| i
TAP2 ‘T__AP':";
b
B,

E
=
=%
[=]
%

=) TAP request
ssecssensscesp Next TAP request

Fig. 1. Behaviors of TAP-v2

DTAPinit @ ReceiveTAPinit

¥

@ETAPack

@ Send TAPack

S TAPagree

(@ Send TAPagree

L 4

rapuodsayy

+ Compute & store
a session key,

a private ke
@ TAPreq @ Check TAPreq.msg, E,}msg2 Y

v

& TAPreply . & Send TAPreply

F Y

& TAPalert (Broadcasting) & Send TAPalert

<

Fig. 2. The flow of TAP-v2 messages including smart card

10 Gookwhan Ahn, Kwangjo Kim

4.2 Description without smart card

We here present the procedure employed for the TAP-v2. Figure 2 illustrates
the flow of the messages with the TAP-v2.

STEP 1: Initialization

I—R : TAPinit (1)
R—1 : TAPack (2)
I —-R : TAPagree (3)

This step is for establishing a session key between two entities, I and R, as a
three-pass variation of the basic Diffie-Hellman key agreement protocol[5] called
STS using MAC[11]. The detailed actions are as follows:

(1) I generates a secret random number z and sends R ‘TAPinit’.

(2) R generates a secret random number y and computes the shared key K =
g”¥. R hashes the concatenated exponents ordered as in ‘TAPack’, and
sends ‘TAPack’ to L

(3) I computes the shared key K = ¢*¥, and uses K to verify the received
value as the hash value on the cleartext exponent received and the exponent
sent in ‘TAPinit’ message. Upon successful verification, I accepts that K
is actually shared with R, and sends ‘TAPagree’ to R. Finally, R verifies
I'’s hash value. If ok, R accepts that K is actually shared with I.

This step allows the establishment of a shared secret key between two entities
with mutual authentication and explicit key authentication. Due to this, the
communication of the two entities is protected from eavesdropping.

Without this step, in the case that NIC is in promiscuous mode we may
have an opinion to give out the TAP-v2 alert message to the network. This idea
constitutes routine-interruptability where R(or TAPserver) is stopped not to
eject ‘TAPalert’ from the computer or anything else. Thus this step must be
necessary.

Finally, it is assumed that the shared key is put in a private area of the entity
such as smart card.

STEP 2: Request and reply

I —-R : TAPreq 4)
R—1 : TAPreply (5)

(4) If I wants to check the promiscuous NIC of R, I sends ‘TAPreq’ to R. The
‘TAPreq’ message is sent to each other one by one periodically. R should
reply with ‘TAPreply’.

Design and Implementation of Secure Tapping Alert Protocol 11

(5) If R receives ‘TAPreq’ message, R should reply to the I with ‘TAPreply’.
Since the checking routine has a shared secret key with I, the routine can
encrypt the checked result with the shared secret key after the routine
hashes itself. Next, the routine sends ‘TAPreply’ to R. If R does not send
‘TAPreply’ to I within a predetermined time limit or R sends an invalid
‘TAPreply’ to I, then I recognizes that R is running a sniffing program.

In case that R does not reply with ‘“TAPreply’, we should consider the
following two cases:

Casel The computer does not reply since it is dead.
Case2 The computer is compromised.

To distinguish two cases above, ‘ping’ command is used. We can also dis-
tinguish two cases through examining the return value after sending ‘TAPreq’.
When the ‘TAPreply’ gets fraudulent, I broadcasts ‘TAPalert’ to the network
about the fact that a computer is compromised.

‘TAPreply’ message also constitutes to provide the detecting method on
even the remote network. As this message is verified, it is possible to detect
the tapping program on the remote network. From this reason, ‘TAPreply’ is
encrypted with the session key to provide confidentiality for the communication
session.

STEP 3: Alert

R — Local Network : TAPalert (6)

(6) If any message format is invalid or any computer identifies a promiscuous
NIC, the computer advertises the ‘TAPalert’ message on LAN by using the
broadcast IP address or by using IP addresses of the requested computers.

In this step, a signature function is used for protecting data-forgery attack.
If all the formats are valid and all the computers identify no promiscuous NIC,
no ‘TAPalert’ message is broadcast on the network. Suppose that a computer
has already received ‘TAPreply’ with ‘Y’, which means that a sniffing pro-
gram is running. If the computer also receives ‘TAPreply’ message with ‘N’
which means that a sniffing program is not running, the computer advertises the
‘TAPalert’ message including ‘N’ on the network.

STEP 4: Verification

R— O TAPalert (7)

(7) O means other computers, which receives 'TAPalert’ from R. TAPalert’
includes R’s signature.

12 Gookwhan Ahn, Kwangjo Kim

This is the step for verifying that ‘TAPalert’ is not forged. If ‘TAPalert’
has been forged, this step will detect it and alert the users on the compromised
R. 1t is possible to check out if this message is forged as verifying R’s signature.
‘TAPalert’ is used only on LAN.

In addition, TAP-v2 possesses the following properties:

— If a computer wants to check the promiscuous NIC on the remote network,
TAP-v2 can be processed by the same procedure. An attentive point is that
I (or TAPclient) can not receive ‘TAPalert’. Thus ‘TAPreply’ is used to
identify the computer in promiscuous mode.

— In case that a user does not want to receive tapping alert message, it can
turn off TAP-v2 by using the program supporting TAP-v2. However, the
computer must still be capable of transmitting ‘TAPreply’.

— The initiation time of each computer can be changed manually or automat-
ically in order not to congest the network with the TAP-v2 packets.

— TAP-v2 of each computer collects the host information with respect to host
address automatically in a timely manner.

4.3 Description with smart card

In this section, we present the procedure employed for TAP-v2, with a smart
card to make the shared session key secure. Figure 2 illustrates the flow of the
messages using the smart card at responder-side. TAPclient (or I) does not
employ the smart card because any computer on the remote network as well as
LAN can become TAPclient.

STEP 1: Initialization

I —R : TAPinit

R — SC TAPinit (1)
SC — R : TAPack (2)
SC — R : TAPagree (3)
R—1 : TAPack

I —R : TAPagree

This step describes that a shared session key is built using a smart card. In
the smart card, the computed session key is stored and keeps secure against the
possible attacks discussed. Hereafter, SC denotes a smart card.

(1) R sends g of I to SC in order to build a shared session key between I and
R.

(2) SC computes the session key K = ¢g*¥ using g* and computes hv; = hi (g¥ ||
g*). SC gives out ¢g¥ and hv to R to envelope them into ‘TAPack’. Of
course, R will transmit ‘TAPack’ to I. Finally, the session key and private
key are stored and made secure in SC.

(3) SC sends hvy = hi(g” || g¥) to R. This hvs is compared with ‘TAPagree’
from I so that the session key can be confirmed.

Design and Implementation of Secure Tapping Alert Protocol 13

STEP 2: Request and reply

I—R : TAPreq

R — SC TAPreq, msgr (4)
SC — R TAPreply (5)
R—1I : TAPreply

In this step, we describes how to use the session key stored in the smart card
so that the encrypted message can be decrypted with the session key. To make
up ‘TAPreply’, msg; is also encrypted with the session key in the smart card.

(4) R sends ENCgk(TimeStampr) to SC to be decrypted with the session
key. Of course, the decrypted TimeStampy is returned to R. To make up
‘TAPreply’, msg; is also sent to and encrypted in SC. msg- is sent to and
signed in SC

(5) SC sends the encrypted msg; back to R. After making up ‘TAPreply’,
this message is transmitted to I.

STEP 3: Alert

SC — R : TAPalert (6)
R — Local Network : TAPalert

This step describes ‘TAPalert’ is signed with the private key stored in smart
card.

(6) SC sends the signed Signgr(msg,) back to R. After making up ‘TAPalert’,
this message is broadcast to the LAN.

5 Implementation and Analysis

5.1 Overview

TAP-v2 has been implemented on Redhat LINUX version 7.0, kernel 2.2.17 in
programming language C, using compiler gcc version 2.96.

To provide cryptographic primitives, a library libicuc.a programmed by the
authors is used. To complete the implementation, some functions such as El-
Gamal crypto primitives for signature function, Rijndael the winner of AES
competition for block cipher, HMAC function and SHA for keyed hash function,
etc., are prepared to this library.

Basically, the structure of TAP-v2 programs is divided into a client and a
server. The client side is called TAPclient and the server side is called TAPserver.
But only TAPclient works alone to provide the detecting method on the remote
network. TAPserver does not work alone, but always works with TAPclient. That
is to say, if TAPserver is on a computer, it means the computer has TAPclient
together.

In this section, we present the TAP-v2 implemented on LINUX, not using
smart card. The behavior of TAP-v2 is explained, and the server and client of
TAP-v2 are also described in detail.

14 Gookwhan Ahn, Kwangjo Kim

5.2 Module description

Behaviors. As mentioned before, the program model for TAP-v2 employs
Client/Server model, which is the most commonly used paradigm in constructing
distributed systems. For this reason, in order to provide the detecting method
for all the computer on LAN;, it is extremely natural that TAP-v2 programs
should be installed on all computers.

Like the sniffing programs, TAP-v2 program, specially TAPserver, must also
use the related functions to NIC for checking if the NIC is in promiscuous mode.
Due to this, TAP-v2 program must be run by those ones to the root privilege.

Client Server
—
[Collecting [Connecting

P !
[Connecting [NIC-checking]

v v
[Time-checking 2 | Waiting ‘
I

Not vet

Fig. 3. Behaviors of TAP server/client

At the beginning of running TAP, to be divided into two roles as server and
client, it calls fork() function that creates a new process (child process), which
is an exact copy of the calling process (parent process). Next, to perform a role
as tapping alert protocol, the following subsections explain how TAPclient and
TAPserver behave on running, as shown in Figure 3.

TAPclient module

1. Collecting step. TAP-v2 start collecting the information of hosts on LAN
such as host addresses, TAPserver working status on remote computer,
etc. To collect the information from the network, tap_get_servinfo() is pro-
grammed using the return value of connect() call and ioctl() system call.

2. Connecting step. TAP-v2 tries to connect to other TAPservers through the
list of host addresses gathered. If a TAPserver on a computer of the list is
working, it checks if the computer is in sniffing mode through the secure
communication session.

Design and Implementation of Secure Tapping Alert Protocol 15

TAP D

client

[l_

TAP server

Fig. 4. TAPclient program working on a remote network

3. Time-checking. If it is the time to collect the host information, then the flow
goes to the collecting step again. Otherwise, then runs from step matching
step.

As shown in Figure 4, it is necessary to provide the detecting method on a
remote network across routers or the Internet. Therefore, we have independently
partitioned TAPclient from TAPserver and modified it into one program, per-
forming a role as client on LINUX shell prompt. This program can be used to
discover the status of NIC and needs host addresses as arguments.

TAPserver module

1. Connecting step. If TAPclient requests connecting for discovering the status
of NIC, TAPserver should reply to the requests within the predetermined
time, otherwise TAPclient consider this computer to be compromised.

2. NIC-checking step. TAPserver checks the status of NIC to discover if it
is in promiscuous mode or not. This status is transmitted to TAPclient
through the secure session. In this implementation, we have made the func-
tion check nic() using ioctl() system call to see the status of NIC.

3. Waiting step. After the end of checking, TAPserver enters waiting step to
receive other requests for connecting.

Unlike TAPclient, TAPserver always works with TAPclient when TAP-v2
operates on a computer system. In addition, TAPserver module must be run by
the root since it should check the status of NIC.

5.3 Analysis

Security analysis. After TAP-v2 is initialized, suppose that an attacker wants
to stop the routine. In this case a computer will send ‘TAPalert’ out on the
network. Other computers in the network will then recognize that the computer
is malicious, and thus alert the users.

16 Gookwhan Ahn, Kwangjo Kim

An attacker may want to forge the routine so that the forged routine can
conduct as the original one. Note, however, that even though the attacker may
be aware of the hash value of R, the attacker cannot generate the signature value
if it does not know the shared secret key of I and R. Due to this, any attacker
cannot forge the routine.

If any attacker also wants to forge the data from the checking routine, the
attacker should get the shared secret key of I and R because the data is en-
crypted with a shared secret key. Since the shared secret key of I and R is put
in a private area like smart card, it is very difficult for the attacker to get the
key. Therefore, the attacker can hardly forge the data being sent.

Comparisons. IDS (Intrusion Detection System) [18,17] is a famous system
which detects any intrusion on the network. In comparison with the TAP-v2,
IDS does not check the NIC on the remote computer but analyzes the packets
on the network. Therefore, IDS cannot check the promiscuous mode of the NIC
on a remote computer.

Unlike the proposed TAP-v2, IFStatus [16] and CPM [15] provide the method
to discover if NIC is in promiscuous mode inside local computer only. For check-
ing NIC, these tools show the result similar to a built-in Unix command ’ifconfig’.

To our knowledge, the tools to have the ability that checks the status of NIC
are known as Antisniff and Neped. Unfortunately, they does not provide the
checking method to discover the status of NIC on the remote network across
routers.

In comparison with these tools, Table 1 displays the TAP-v2 is much better
except the fact that TAP-v2 must be installed on all the computers. The TAP-v2
allows a system to check if a sniffing program is run on a remote network as well
as on a remote computer within a network segment. It was previously impossible
to check if a sniffing program is run in a remote network. Unlike other tools -
Antisniff and Neped, TAP-v2 is not affected by OS kernel patch and does not
create a large amount of network traffic similar to DoS(Denial of Service) attack.
If TAP-v2 is also used, there is no method to be evaded by any sniffing program
since the security features of cryptographic primitives make the TAP-v2 secure.
In the meanwhile, if other tools like Antisniff and Neped are used, there exist
a few methods to be evaded. Therefore, we think that TAP-v2 is much more
powerful mechanism compared to others in detecting the tapping.

Table 1. Comparisons with other tools - Antisniff, Neped

| Classifications |TAP-V2|Others|
Applicability on remote network| Yes No
Sensitivity to OS kernel patch No Yes
Possibility of DoS attack No |Maybe
Possibility of evasion No Yes
How many computers to install?| All One

Design and Implementation of Secure Tapping Alert Protocol 17

Traffic Overhead. Since additional packets are generated periodically for sup-
porting TAP-v2 on the network, this may slightly degrade the network perfor-
mance if the network bandwidth has already been fully utilized for regular traffic.
This is the only overhead incurred in the implementation of TAP-v2. For this
reason, here we measure the traffic overhead of TAP-v2.

The number of packets is proportionally generated to n?,where n is number
of hosts on a network. When a host is waiting until the next TAP is performed
on the host, it is called waiting time, following a uniform distribution. Thus,on
the network, the number of packets is given by the following equation [19]:

n2

p= HT (1)

,where p is the number of packets, ¢ is waiting time and x is a proportional
constant. If t is given in second and k in bytes/second, then p is in unit of
bytes/sec. To get a constant k, we need to refer to Table 2 and the processing
time from ‘TAPinit’ to ‘TAPalert’. Practically, the processing time is known as
10 seconds on a computer with 800MHz CPU. If the header length of TCP /IP[7,
8] is included, k becomes 92.2 = (646 + 276)/10. Therefore, we can obtain the
the following equation:

2
p= 92.2”T (2)

TAP-v2 has been implemented based on TCP|8] as a network communication
protocol. If UDP[9] instead of TCP is employed, k gets 85.0 = (646 + 204)/10.
The traffic overhead caused by TAP-v2 can be slightly reduced on the network
by using UDP.

Table 2. The length of TAP messages

|TAP messages|Length(Bytes)]

TAPinit 74
TAPack 158
TAPagree 30
TAPreq 26
TAPreply 42
TAPalert 40
| Total | 646]

Figure 5 shows the traffic overhead depending on the number of hosts on
the network. It appears naturally that the more the waiting time, the less the
number of packets.

18 Gookwhan Ahn, Kwangjo Kim

350000

500000

250000

200000 17

.
H\\\/
|

150000

Va
-

Packets (byte/second)

L LSS L P LRSS LSS5

Waiting time {zecond)

Fig. 5. Traffic overhead for TAP

6 Conclusions

In this paper, we have presented the design and implementation of a new protocol
that provides the network with the capability of checking if the NIC in a local
or remote computer. This protocol is also designed to provide the method that
can check the status of NIC even the computer on remote network.

The protocol is based on the cryptographic primitives with authentication,
integrity and confidentiality. To hide the session key and private key, smart card
is also employed, which has the built-in CPU and memory independently. Due
to these, it is very difficult for an attacker to forge the checking routine and the
data being sent. In addition, although the checking routine is stopped, the other
computers on the network can recognize the computer has been compromised.

In comparison with other tools like Antisniff and Neped, TAP-v2 has the
good properties where this protocol is not affected by OS kernel patch, is not
called DoS attack, and it is no way to evade this protocol.

If you, however, want the computer to be protected from sniffing attack on
the network, TAP-v2 must be installed on all the computer which you want to
protect. Otherwise, the rest computers that TAP-v2 is not installed on should
be recognized as being compromised.

In fact, we have not implemented TAP-v2 using a smart card, just describes
the design for the smart card. Therefore, we need to add the smart card to our

Design and Implementation of Secure Tapping Alert Protocol 19

implementation. In addition, we think that our current implementation should
be much updated to raise the running performance.

Finally, if TAP-v2 should be installed on most of computers in the Internet,
sniffing or tapping attack in the network based on TCP/IP will be disappeared.

References

1.

10.

11.

12.
13.
14.
15.
16.
17.

18.

19.

G.W. Ahn, K.K. Kim, and H. Y. Youn, “Tapping Alert Protocol”, Proc.
of WET-ICE2000 Workshop on Enabling Technologies, NIST, USA, IEEE
Computer Society, June, 2000.

“Antisniff”, http://www.10pht.com/antisniff/

“AntiSniff finds sniffers on your local network”
http://www.securiteam.com/tools/.

“CERT Advisory CA-1994-01 Ongoing Network Monitoring Attacks”,
http://www.cert.org/advisories/ CA-1994-01.html, Feb., 1994.

W. Diffie, M. Hellman, “Directions in Cryptography”, IEEE Transactions
on Information Theory, 22, pp. 44-654, 1976.

FIPS 180-1, “Secure Hash Standard”, NIST, US Department of Commerce,
Washington D.C., April 1995.

J. Postel, “Internet Protocol”, RFC 760, USC/Information Sciences Insti-
tute, Jan. 1980.

J. Postel, “Transmission Control Protocol”, RFC 761, USC/Information
Sciences Institute, Jan. 1980.

J. Postel, “User Datagram Protocol”, RFC 768, USC/Information Sciences
Institute, Aug. 1980.

R. Ankney, D. Hohnson and M. Matyas, “The Unified Model”, contribution
to X9F1, October 1995.

S. Blake-Wilson and A. Menezes, “Unknown Key-Share Attacks on the
Station-To-Station (STS) Protocol”, Technical report CORR 98-42, Uni-
versity of Waterloo, 1998.

C.P. Schnorr, “Efficient signature generation by smart cards”, Journal of
Cryptology, pp161-174, April 1991.

J. Daemen and V. Rijmen, “AES proposal: RIJNDAEL”, NIST publica-
tions, March 1999.

U. Hansmann, M.S. Niclous, and ez. al., “Smart Card Application Devel-
opment Using Java”, Springer Verlag, 2000.

“Check Promiscuous Mode”, ftp://ftp.uu.net/pub/security /cpm/cpm.1.2.tar.gz
ftp://coast.cs.purdue.edu/pub/unix/tools/ifstatus/ifstatus.tar.gz

B. Mukherjee, L. T. Heberlein and K. N. Levitt, ” Network Intrusion Detec-
tion”, IEEE Network Volume: 83, pp. 6-41, May-June 1994.

G.G. Helmer, J.S.K. Wong, V. Honavar and L. Miller, ”Intelligent Agents
for Intrusion Detection”, IEEE Information Technology Conference, pp.121-
124, 1998.

A. Leon-Garcia, “Probability and Random Processes for Electrical Engi-
neering”, Addison Wesley, pp. 101.

