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Structural Identification Using Substructural
and Neural Network Techniques
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Abstract

A method is presented for estimating unknown parameters of offshore structures using a backpropa-
gation neural network. Several techniques are employed to overcome the issues associated with a large
number of degrees of freedom. They are the substructural identification and the submatrix scaling fac-
tor. The modal data such as natural frequencies and mode shapes are used as input to the neural
network for effective element-level identification particularly for the case with incomplete measurement
of modal data. A numerical example analysis on a jacket-type offshore structure is presented to il-
lustrate the proposed procedure and to demonstrate the effectiveness of the method.

Keywords | neural network techniques, substructural identification, submatrix scaling factor, noise injec-
tion learning

1. INTRODUCTION

In relation to the problems of damage dete-

ction and maintenance of old structures, esti-
mation of element-level stiffness parameters
becomes an increasingly important issue (Na-
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tke and Yao 1986, Hong and Yun 1993, Gha-
nem and Sinozuka 1995). In recent years, the
pattern matching techniques using neural net-
works have drawn considerable attention in
the field of damage assessment. Several re-
searchers have dealt with neural network ap-
proaches for damage estimation of structural
models with a small degrees-of-freedom (Wu
et al 1992, Tsou and Shen 1994, Pandey and
Barai 1995). Although their results look prom-
ising, some issues related to a large number
of degrees of freedom have to be resolved,
before it can be a truly viable method for
structural identification. In this study, the
neural network-based approach is extended to
the estimation of structural parameters of a
complex structural system such as a jacket-
type offshore structure. Several techniques,
such as substructural identification (Koh et al
1991; Oreta and Tanabe 1994; Yun and Lee
1995), submatrix scaling factor (Lim 1990},
and modal strain energy (Lim 1991) are em-
ployed to overcome the issues associated with
a large number of unknowns. A numerical ex-
ample analysis on a jacket-type offshore
structure is presented to demonstrate the ef-
fectiveness of the proposed method.

2. NEURAL NETWORK-BASED STRUC-
TURAL IDENTIFICATION

Studies on neural networks have been moti-
vated to imitate the way that the brain oper-
ates (Haykin 1994). It has recently drawn
considerable attention in various fields of sci-
ence and technology, such as character recog-
nition, electro-communication, image process-
ing, and industrial control problems. Many re-
searchers have developed various neural net-
work models for different purposes (Hush and
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Horne 1993). In this study, a model called ba-
ckpropagation neural network (BPNN) is used
for structural identification. The basic strate-
gy for developing a neural network-based ap-
proach to identification of a structural system
is to train the BPNN to recognize the element
-level structural parameters from measurement
data on the structural behavior, such as natu-
ral frequencies and vibration mode shapes.

2.1 Substructural Identification and Su-
bmatrix Scaling Factor

For the identification of a structure with
many unknowns, it is not practical to identify
all of the parameters in the structure at a
time, because most of the identification tech-
niques require expensive computation that
would be prohibitive as the number of un-
known parameters increases. Several resea-
rches were reported on identification of a
part of a structure so as to reduce the size
of the system under -consideration. Those
works were based on the reasoning that the
expected damage of a structure occurs at
several critical locations, hence it is more rea-
sonable to concentrate the identification at
critical locations of the structure.

The local-identification method is generally
based on substructuring, in which the struc-
ture is subdivided into several substructures
and the identification is carried out on a sub-
structure at a time. In the present study, a
substructure to be identified is called the in-
ternal substructure, while the others are called
the external substructures as shown in Fig 1.
Since the parameters to be estimated are lim-
ited to a substructure, it is expected that the
numerical problems such as divergence or
falling into local minima may be avoided. An-
other advantage is that this approach requires



measurement data only on the substructure of
interest, instead of on the whole structure.

The number of parameters to be estimated
are kept reasonably small for successful iden-
tification of a structure. Reduction of parame-
ters improves the results of the identification
and minimize the required measurement data.
For the purpose of efficient parameterization
of the structure, the submatrix scaling techni-
que is adopted in this study (Lim 1990).
Using the submatrix scaling technique, the
stiffness matrix of the system can be de-
scribed by introducing the submatrix scaling
factors (SSF) corresponding to the element
level stiffness matrices as

K= ils,K;’ (1)

where K is the stiffness matrix of the struc-
ture in the present condition, K; is the Jth
reference value of the stiffness submatrix for
the Jjth element transformed into the global
coordinates, which means the undamaged
stiffness submatrix or the stiffness submatrix
estimated by the previous identification, s, is
the jth SSF, and p is the total number of su-
bmatrices. Since the submatrix can represent
a single element or a group of elements of
the structure with the known geometry, mate-
rial properties, and boundary conditions, a
significant reduction of the unknown parame-
ters can be achieved by grouping the structu-
ral elements with the same stiffness characte-
ristics. Then, the identification of the stiffness
matrix is performed by estimating the subma-
trix scaling factors instead of all of the stiff-
ness matrix coefficients. Direct identification
of the stiffness matrix coefficients may face
characteristics which violate the basic proper-
ties of the stiffness matrix; such as symmetry

and positive definiteness. However, the use of
the SSF’s described in Eq. (1) can avoid such
problems.

2.2 Modal Data as Input to Neural Net-
works

A way of choosing the patterns representing
the characteristics of the structure, which will
be used as input to the neural network, is
one of the most important subjects in this
approach. Several researchers have used the
various input patterns suitable for their pur-
pose. For example, Wu et al. used the freque-
ncy spectrum for each DOF of the example
structure for damage estimation (Wu et al
1992). This input has an advantage that does
not need the modal parameter identification
from measurements. Nonetheless, to character-
ize these spectral properties, tremendous
amount of sampling data is required. Accord-
ingly, a large number of input nodes is need-
ed, which may reduce the efficiency and ac-
curacy of the training process. Tsou and Shen
used the dynamic residual vector that can be
obtained from the modal data (Tsou and Shen
1994). It provides a simple and effective way
to detect the damage and the length of the
input pattern can be reduced significantly
compared with the spectrum data. However, it
still has the restriction that the modes should
be measured at every finite element DOF’s. In
reality, the modes obtained from a typical
modal survey are generally incomplete in the
sense that the mode vector coefficients are
available only at the test DOF’s. Therefore, it
is desirable to use the input patterns which
are more suitable for the case with partial
measurement data

Using the substructuring technique and re-
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ferring to Fig. 1, the mode shape matrix can
be partitioned as

o !
o
o o

o = (2)

where the subscripts 1, 2, and 3 denote sub-
structures, substructure 2 being the internal
substructure ; and the superscripts L and H
represent lower and higher modes, where only
the lower modes are generally used for the
structural identification. Rewriting the ith
mode in the partitioned modal matrix &% as
@ for simplicity, the input pattern can be de-
fined as

Input PatternVector =

(flv Gri D t)y i=1, .., m} (3)

where f is the ith natural frequency, @: de
notes the jth component of which is normali
zed as @'@=1, n, n is the number of DOF’s
for Substructure 2, and m is the number of
modes to be included in the identification.

A useful relationship between the submatrix
for the element stiffness and the modes may
be obtained by examining the strain energy of
each submatrix with respect to the modes
(Lim 1990). The modal strain energy distribu-
tion among the stiffness submatrices for the
ith mode can be evaluated as

Internal-
Substructure

External-
Substructure 2

External-
Substructure 1

Fig. 1. Substructuring for localized identifica-
tion.
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where 8, is the modal strain energy (MSE) co-
efficient of submatrix K, in the ith mode, K,
is the stiffness submatrix for the jth element
transformed into global coordinates, ¢ is the
ith mode shape, and w: is the ith circular nat-
ural frequency. The submatrices containing
large values of the MSE’s for a mode indicate
that the corresponding structural elements are
major load carrying elements for the particu-
lar mode. Stiffness changes in those elements
will cause significant changes in the frequency
and mode shape. Hence, detection of the
stiffness changes may be more effective by
examining the modal data for those elements.
On the other hand, the structural elements
having negligible MSE’s reflect that it would
be difficult to detect the stiffness changes in
those elements using the corresponding modal
data. They are used to determine which
modes have better information for structural
identification.

2. 3 Generation of Training Patterns

Since the neural network-based structural
identification is highly dependent on the
training patterns, it is very important to pre-
pare well-examined data sets. Consequently, it
is required that the number of training pat-
terns must be large enough to represent the
structural system properly. However, for com-
putational efficiency, it must be reasonably
small, because most of the computational time
for this method is required for preparing the
training patterns and training the network.
When the number of the unknown parameters
is N and each parameter has M sampling
points, the size of whole population is M~ A-



ccordingly, a sparse sampling algorithm such
as Latin hypercube is introduced in this study
(Press et al 1992). The Latin hypercube sam-
pling makes the required number of samples
reduced from M"Y to M.

The training patterns for the proposed
neural network-based method consist of the
modal data as input and the corresponding
SSF’s as output. To generate training patterns,
a series of eigen analyses is to be performed.
However, iterative computations of eigenvalue
problems for complex structures may be very
expensive. Thus, the fixed-interface-compo-
nent-mode-synthesis (CMS) method incorpo-
rating the substructuring technique is emplo-
ved in this study (Craig 1968).

3. ILLUSTRATIVE EXAMPLE
A jacket-type offshore structure as shown

in Fig. 2 is chosen to demonstrate the appli-
cability of the proposed technique for struc-
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Fig. 2 Example structure

tural identification problems. The mass density
and the elastic modulus of all members of
baseline are 8000kg/m?* and 2.1 X 10''"N/m. The
areas and the moments of inertia of the cross
-sectional areas of vertical, diagonal and hor-
izontal members are (0.4m* 0.12m*, (0.1m?%
0.03m*, and (0.02m? 0.002m?*, respectively. It
is assumed that the unknown SSF's for the
elements of the structure are between 0.5 and
1.5. The mode shapes are assumed to be mea-
sured only at 10 test DOF’s, which include
the displacements in x- and y-directions at 5
nodes of the internal-substructure; note that
the rotational displacements are not included.

3.1 Input Patterns to BPNN

For an efficient training process, an appro-
priate number of modes as input to BPNN are
selected. It is assumed that the first six modes
of the internal-substructure at test DOF’s are
available in this study. The natural frequencies
and mode shapes of the reference structure,
in which all the SSF’s are unity, are shown in
Fig. 3. The fractional MSE distribution in the
first six modes calculated for the reference
state are shown in Fig. 4. Fig. 4 shows that
the vertical elements such as 2 and 7 are
carrying large fractions of the strain energy
especially. It means that the modes contain

I

(09Hz) (27Hz) (38Hz) (441lz) (46Hz) (51Hz)
model mode2 mode3 moded modeS mode6

Fig. 3 First six mode shapes of example struc-
ture
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Fig. 4 Fractional modal strain energy distribu-
tion (%) of the reference structure

more information concerning the vertical ele-
ments than the others. On the other hand,
the MSE coefficients for the horizontal eleme-
nts 1 and 8 are relatively small for all the
modes, which indicates that the SSF estima-
tion for the horizontal elements may not be
effective.

3.2 Training Patterns and Testing Pat-
terns

For generation of training patterns using
the Latin hypercube sampling, 21 sampling
points are selected between 0.5 and 1.5 with
an equal interval of 0.05 for each SSF in the
internal substructures, assuming each SSF 1s
uniformly distributed, while 11 sampling points
between 0.5 and 1.5 are taken with an inter-
val of 0.1 for the SSF’s in the external sub-
structures. Finer sampling has been taken for
the internal substructure than the external
substructure, since the purpose of this study
is to identify the SSF’s in the internal sub-
structure. Consequently, the number of possi-
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ble sample cases is 231(=21x11), which is
not judged to be enough to represent the
system adequately. Hence, eight iterations of
the sampling process are taken, which results
in 1848 sample cases. The elapse time for
generating whole training data set is about 80
sec by the DEC Alphastation 200**%, For the
cases of testing patterns, the sampling points
for the internal substructure are taken as the
same to the training data, however the num-
ber of the sampling points for the external
substructures is taken to be 10 in the range
between 0.55 and 1.45 with an interval of 0.1.
The difference in sampling is imposed, be-
cause the real testing patterns are not neces-
sarily the same with the training patterns.
Thus, the number of possible sample cases for
testing is 210(21 X 10).

The patterns are generated by computing
the natural frequencies and mode shapes usi-
ng the CMS method. The training and testing
data set for the noise-free and the 3% noise
cases are prepared. The training data set is
shown in Table 1.

3.3 Learning of Neural Network

It is important to choose the proper net-
work size. In general, it is not straight for-
ward to determine the best size of the net-
works for a given system. It may be found
through trial and error process using knowl-
edge about the system. A four-layer neural
network as shown in Fig. 5 is selected for the
present example. The numbers of neurons in
the input, the first hidden, the second hidden
and the output layer are 32, 20, 13, and 8§,
respectively. Numerical investigations show
that small changes in the numbers of the
neurons in the hidden layers have little effect
on the estimation results.
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Table 1 Training data set

Input pattern without noise (f;, Eo,,,)
0.878 0.530 0.509 0434 | ... 0.104 -0.068
2.608 0.460 0.458 0457 | ... -0.023 0.028
3.736 -0.011 0.085 0036 | ... -0.452 -0.403
4.250 0.068 0.070 -0.262 | L. 0.205 -0.237

Pattern 1 Input pattern with 3% noise in RMS
0.891 0.550 0.504 0428 | ... 0.102 -0.066
2772 0.4649 0.450 04568 | ... -0.024 0.027
3.793 -0.011 0.083 0.03 | ... -0.455 -0.407
4.166 0.063 0.072 026500 | L 0.203 -0.241

Output pattern (SSF's)

0.60 1.60 0.50 1.25 1.75 0.60 1.35 1.35

[nput pattern without noise (f;, ;p},,)
0.884 0.520 0.512 0429 | ... 0.106 -0.069
2.618 0.449 0.459 0450 | . -0.022 0.029
3.744 -0.012 0.076 0.041 | .. -0.452 -0.402
4.273 0.003 0.088 -0.295 L. 0.218 ~0.277

Pattern Input pattern with3% noise in RMS

1848
.866 0.498 0.520 0462 | .. 0.108 -0.072
2.576 0.437 0.462 0456 | ... -0.021 0.027
3.802 -0.012 0.077 0.040 | ... -0.430 -0.403
4.102 0.003 0.087 0294 | L 0.223 -0.283
Output pattern (SSF's)
1.10 1.40 0.80 0.75 1.00 1.20 1.50 1.45
Sll Szl eoo Sg Output layer (8 nodes) The four-layer neural network is trained

using 1,848 training patterns by the standard
BP algorithm. The training process took about

Hidden layer IT ( 13 nodes) 2,000 iterations (epochs) to learn the pattern

Z$\
QL ‘omo_'o_)gl Hidden layer I ( 20 nodes)

representation within tolerance accuracy, in

which the elapse time is about 675 sec by an

Alpastation computer system. One epoch

means that all the 1,848 training patterns are

Input layer (32 nodes)

ﬁ (pl,l (Pz,l
Fig. 5 Backpropagation neural network

(‘510_4 used once for training. The tested outputs are

listed in Table 2. Fig. 6 shows the averages of
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Table 2 Testing data set

Input pattern (f, (2,,.) with 3% noise

0.9056 0.512 0.517
2.616 0.416 0.450
3.898 -0.018 0.034
4.393 0.119 0.056

0.440
0.473
-0.003
-0.224

0.087
-0.029
-0.360

0.279

-0.105

0.034
-0.458
-0.275

Pattern 1

Actual output

1.10 0.90 1.38 1.31 0.89 1.40 1.21 1.07

Target output, (SSF's)
1.20 0.80 1.35 1.30 0.95 1.40 1.15 1.00

Relative error™ (%))
8.61 12.67 1.89 1.08 6.29 0.02 4.99 6.52

Input pattern (f;, (5,,,) with 3% noise

0.816 0.613 0.520
2.625 0.439 0.470
3.393 -0.020 0.065
4.082 0.065 0.184

0.440
0.461

0.029
-0.204

0.111
-0.009
-0.434

0.277

-0.070
0.027
-0.379
-0.234

Pattern
201

Actual output

0.98 1.13 1.31 0.67 0.99 0.93 0.84 1.05
Target output (SSF’s)
0.85 1.10 1.30 0.60 0.85 0.90 0.80 0.80

Relative error (%)
152 294 0.83 12.3 165 3.51 4.53 31.1

Average relative errors of each element
for all the testing patterns
236 102 932 123 17.2 14.1 10.1 29.3
Average error for 8 elements = 1576 %

*Note : Relative error

0y — |Atual ouput—Target out|
(76) =100 Target output

the relative errors in the estimated SSF's for
various cases with different number of modes
included in the input patterns. It can be
found that the accuracy of the estimation im-
proves with increasing number of the modes
included until the 6™ modes.

Table 3 and Fig. 7 show the tested results
for three cases with different noise levels in
the training and testing data set. The average
relative error of the tested outputs for the
noise-free testing data, after the network is

368 metmzast MR HAS (1998 22

trained using the noise-free training data set,
is 12.9%. But, the error for the 3% noise
testing data using the same network is 23.3%.
The result implies that the measurement error
causes deterioration in the estimation. On the
other hand, when the network is trained using
the 3% noise training data set, the average rel-
ative error of the tested outputs for the 3%
noise testing data is obtained as 15.8%, which
is smaller than the average error of the test
output (23.3%) using the noise-free training
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Fig. 6 Average estimation errors(%) for diffe-
rent modes used in input patterns (for
testing data set without noise)

Table 3 Estimation errors(%) for different
noise injection

Noise levels in testing data
in RMS 0% 3% 59
in 0% 2.9 23.3 33.4
training 3% 15.2 15.8 17.6
data 5% 15.6 16.8 16.9
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Fig. 7 Estimation error (%) for different noise
injection learning
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data. Fig. 8 is the learning curves to depict
how the noise injection learning works. It is
found that average relative error for the
training case with 3% noise is smaller than
that for the case without noise injection. This
indicates that it is desirable to use the 3%
noise data for training, if the measurement
error is expected to be 3%. As anticipated in
the previous section, the estimation errors of
horizontal elements 1 and 8 are larger than
those of the others.

4. CONCLUSIONS

For the assessment of structural integrity,
the neural network-based structural identifica-
tion is applied to the estimation of the para-
meters of offshore structures. The substructu-
ring technique and the concept of submatrix
scaling factor are employed to reduce the
number of unknown parameters for local
identification. The proposed neural network-
based method does not require any complicat-
ed formulation. Particularly the conventional
approaches can not apply to substructural
identification directly without any model redu-
ction of a system. This approach depends

100
~ Without noise injection
””” in training data set
80 —
9 ] )
T With 3% noise injection
£ 60 | in training data set
O
2
°
©
o 40—
o
<
>
<
20 -
0 -1 T T T T
1 10 100 1000

Cycle of epochs

Fig. 8 Learning curves without and with noise
injection levels.
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upon how well and how compactly the train-
ing patterns represent the relationship be-
tween structural parameters and modal infor-
mation. The Latin hypercube sampling and
the fixed-interface-component-mode-synthesis
(CMS) method provide a simple way to obtain
such a training set.

A numerical example analysis on a jacket-
type offshore structure is presented to dem-
onstrate the effectiveness of the method. The
average relative estimation error for the case
with 3% noise testing data set is found to be
about 16%. Tt has been found that the esti-
mated results for the elements with larger
MSE coefficients are better than those associ-
ated with smaller MSE coefficients.
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