
Reversible Data Hiding Giving Priority to the Use of Edges and
Textures

YONGJIAN HU1,2, HEUNG-KYU LEE1, JIANWEI LI2

1Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology, Daejeon, Korea

2College of Automation Science and Engineering
South China University of Technology, Guangzhou, P.R. China

 Email: hklee@mmc.kaist.ac.kr; eeyjhu@scut.edu.cn

Keywords: digital watermarking, reversible data hiding,
lossless watermark, difference expansion embedding, JBIG
compression.

Abstract

We propose a new difference expansion (DE) embedding
based reversible data hiding algorithm for digital images.
Unlike other current DE-based algorithms that are primarily
interested in using small pixel-pair differences (i.e., flat image
regions) for data hiding, our algorithm gives priority to the
use of image edges and textures. The experiments prove that
our algorithm can produce visual image quality more suitable
for human visual characteristics.

1 Introduction

Difference expansion embedding is a popular technique for
reversible data hiding/watermarking algorithms to achieve
large embedding capacity. Most of DE-based reversible data
hiding algorithms (e.g.: [1-5]) prefer choosing small pixel-
pair differences for embedding. For example, Tian [1] first
selected the low-frequency coefficients of integer Haar
wavelet transform (i.e., image pixel-pair differences) with
small magnitude for DE expansion embedding. Alattar [4]
extended Tian's pixel-pair difference expansion method using
difference expansion of vectors. Kamstra et al. [5] improved
Tian’s method and selected embeddable differences using a
sorting list based on the characteristics of the low-pass image.
Small differences tend to occur at the beginning of the sorting
list. In addition to the methods developed in integer Haar
wavelet transform domain, some researchers also proposed
DE expansion methods in other domains. For example, to
better use the correlation information of neighboring pixels,
Thodi et al. [2] used image prediction rather than integer Haar
wavelet transform. They still gave priority to small predicted
pixel errors for DE expansion embedding. Thodi et al. further
proposed a histogram-based selection scheme for choosing
small differences in [3]. The reason of giving priority to small
differences for DE expansion embedding is to acquire a high
peak-signal-to-noise ratio (PSNR) value of the embedded
image. In the aforementioned algorithms, PSNR is used as a
metric to evaluate visual quality of watermarked images.

However, the PSNR value is essentially the measurement of
statistical errors of a modified image rather than a metric for
visual perception of the human eye. On the other hand, small
differences usually correspond to flat image regions. The
alteration to those differences would make embedding
distortion first appear in homogeneous image regions, to
which the human eye is very sensitive.
According to knowledge of human visual systems, image
textures have a substantial masking effect to the human eye
and the human visual systems are not sensitive to the change
in textures. Besides, image edge is able to bear alteration to
some degree [6]. So we propose a new reversible data hiding
algorithm that begins watermark/data embedding from image
edges and textures. The experiments demonstrate that visual
quality of our watermarked images is more suitable for
human visual characteristics.

2 Framework of the proposed algorithm

Our data embedding is based on differences. As stated above,
there are different ways to calculate differences in image
processing (e.g.: [1, 2]). The proposed method can be
extended to different types of differences. For simplicity, we
adopt the predictor in [2] to calculate differences, which are
basically predicted image errors.

)1(),max(),min(
),min(),max(

ˆ
⎪
⎩

⎪
⎨

⎧

−+
≥
≤

=
otherwisecba

bacifba
bacifba

x

where x and x̂ are the current pixel and its predicted value,
respectively. a, b and c are the south, east, and southeast
neighbors, respectively. The predicted pixel error, pe, is
computed by . For generality, we sometimes call pxxpe ˆ−= e
as the difference. For simplicity of description, we further
define the following notations that will be used in this paper.
Let I, I’, Î , and Ie denote the original image,
watermarked/embedded image, predicted image, and
predicted error image, respectively. Let P and Q denote the
pure payload and the header file, respectively. Let M and M
denote the overflow location map and its JBIG compressed
version, respectively. Let)(⋅η be the function to calculate the
length of a bitstream (unit: bit). Let count represent the

number of selected embeddable predicted errors.],[nrnl TT −−
and are the embedding zones in the negative and
positive parts of the horizontal axis, respectively. Here,

 and . and are the left
and right ends of the histogram, respectively.

],[prpl TT

0>≥ nrnl TT 0≥≥ plpr TT
exmlep

exmrep

Generally, the histogram of predicted errors follows a zero-
mean Laplacian distribution, as shown in Fig.1. On the other
side, according to knowledge of image processing, predicted
errors with large magnitude usually correspond to image
edges; predicted errors with middle magnitude correspond to
textures; whereas, predicted errors with small magnitude
correspond to flat regions. Since our algorithm gives priority
to the use of edges and textures, it means that we begin to
search for embeddable predicted pixel errors from both ends
of the histogram.

The framework of our algorithm is depicted in Fig. 2. We will
describe our technical details in the next section.

Fig. 1 Sample histogram of predicted errors.

Predictor Î

Ie

Choose
predicted

errors based
on payload

size

Selected
predicted errors

Unselected
predicted errors

DE
embedding

Embedded
predicted

errors

Reconstruct
image

I’

P

Construct
overflow

map
M

Perform
JBIG M

Construct
header

file
Q

I

+
-

Fig. 2 Framework of our algorithm.

3 Algorithm

This section gives the details of our algorithm. We first
discuss the embedding and extraction formulas, and then,
show how to construct the overflow location map and the
header file. Finally, we list the steps to implement our
algorithm in a predicted error image.

3.1 Embedding and extraction formulas

We embed one binary information bit i into a predicted error.
pe can be represented as , where l is the
length of binary representation. The traditional DE expansion
embedding rule [2] is

021 ...bbbp lle −−=

)2(2... 021
' ipibbbp elle +== −−

where is the embedded difference. The embedded pixel

value, , is computed by . Their corresponding
data extraction and pixel value recovery formulas are

'
ep
'x '' ˆ epxx +=

⎣ ⎦
⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

=

=

ipxx

pp

pi

e

ee

e

'

'

'

)3(2/

2%||

where % denotes the modulo operation, and ⎣ ⎦⋅ is the floor
function. However, if we directly use (2) in our algorithm, the
embedding distortion would be high. We make some
explanation. The core idea of DE embedding is that the binary
representation of a difference has to be left-shifted one bit to
obtain the vacant LSB position for embedding; otherwise, the
decoder does not know the location of the hidden bit in the
process of blind data extraction. However, one-bit left-
shifting operation doubles the absolute of the difference. For a
difference with small magnitude, this left-shifting operation
only brings limited distortion to the resulting difference; but
for a difference with large magnitude, such an operation
would bring a great impact on the result. Since we begin to
select embeddable differences from the ends of the histogram,
the first selected differences often have large magnitude. If
we use (2), the original pixel values would be greatly
distorted after embedding. Therefore, we try to decrease the
distortion by using the following modified embedding
formulas:

)4(
2)(2:],[
2)(2:],[

'

'

⎪⎩

⎪
⎨
⎧

+−=+−+=∈

−+=−++−=−−∈

iTpiTpTpTTp
iTpiTpTpTTp

pleplepleprple

nrenrenrenrnle

where],[nrnl TT −− and are respectively the left and
right embedding zones, as shown in Fig. 1. After embedding,
the altered values fall into

],[prpl TT

],12[nrnrnl TTT −−+− and
. These two intervals indicate that the

embedding distortion is much smaller than that by directly
using (2).

]12,[+− plprpl TTT

Their corresponding data extraction and pixel value recovery
formulas can be described in the following two cases:

 If and has a position
indicated as "0" (i.e., embeddable, as will be discussed
in next subsection) in the overflow location map, we
have

],12['
nrnrnle TTTp −−+−∈ 'x

⎣ ⎦)5(2/||

2%||

'

'

'

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

−−=

−=

ipxx

Tpp

Tpi

e

nree

nre

 If and has a position
indicated as "0" in the overflow location map, we have

]12,[' +−∈ plprple TTTp 'x

⎣ ⎦)6(2/||

2%||

'

'

'

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

+=

+=

ipxx

Tpp

Tpi

e

plee

ple

The construction of the overflow location map will be
explained next.

3.2 Overflow location map and the header file

Applying (4) to a predicted error may cause the embedded
pixel value out of the range [0, 255] for an 8-bit image, even
the predicted error is in the embedding zone. The
overflow/underflow problem occurring at those pixels makes
lossless recovery of the original image impossible. So we
have to avoid using those pixels. In this paper, a 2-D binary
overflow location map, M, is introduced to indicate possible
overflow locations. M is initialized by "0". All of possible
overflow locations, where the pixel value can not satisfy the
following constraint, are indicated as "1s".

)7(
255)12(ˆ:],[

0)12(ˆ:],[

⎪⎩

⎪
⎨
⎧

>+−+∈
<−++−−∈

pleprple

nrenrnle

TpxTTp
TpxTTp

A predicted error or pixel is called as an un-embeddable one
if (7) is not satisfied; otherwise, it is an embeddable one.
For data extraction and image recovery, we need not only the
overflow location map but also the header file, Q, which
records all embedding information. In this paper, Q consists
of (8 bits), (8 bits), (8 bits), (8 bits), the
coordinate of the last embedded pixel in the image (32 bits),
and the length information of JBIG-compressed overflow
location map, M.

nlT nrT plT prT

3.3 Implementation

Data hiding is implemented through the two processes:
selecting the embedding zones and embedding on the selected
zones. These two processes are realized in two separate loops.
In the first process, we begin to select embeddable predicted
errors from the histogram ends. Since the histogram usually

has two tails with different lengths, we do it from the
histogram side with the longer tail. The selection on that side
continues until the histogram has two balanced tails.
Afterwards, we begin to interleavingly select embeddable
predicted errors from the two sides. The use of interleaving
selection is to select just necessary number of embeddable
pixels so as to avoid raising unnecessary embedding
distortion. We give the complete data hiding steps as follows.
 Step 1: Perform (1) on the original image from its upper

left corner and in a raster scanning manner to obtain the
predicted error image, and then, calculate the predicted
error histogram.

 Step 2: Begin the first loop to determine the embedding
zone. Assume . We select embeddable
predicted errors from the left side of the histogram. Let

 and . The initial

embedding zone is

||||
exmrexml ee pp ≥

exmlenrnl pTT =−=−
exmreprpl pTT ==

],[nrnl TT −− . We test each predicted
error located in the embedding zone by (7) and construct
the overflow location map. After each iteration, we
judge whether we get enough embeddable predicted
errors for the payload by the following formula:

)8()()()(MQPcount ηηη ++≥

If (8) is satisfied, stop the current search loop and go to
Step 3; otherwise, decrease by 1 (i.e., the increase of
width of embedding zone) and repeat the search loop.
We recalculate count in the new embedding zone and
judge whether (8) is satisfied. If and (8) is
still not satisfied, we begin the aforementioned
interleaving selection. The embedding zones become

nrT

exmrenr pT =

],[],[prplnrnl TTTT ∪−− . We interleavingly decrease
and by 1, and calculate count and test (8). The

search loop continues until (8) is satisfied.
nrT plT

 Step 3: In the second process, we embed P, Q and M
into the original image according to M. Data embedding
loop begins from the upper left corner of the image and
in a raster scanning manner. However, to facilitate data
decoding, we borrow the idea of [2] and embed the
bitstream of Q and M in the LSBs of first)()(MQ ηη +
pixels of the watermarked image while the
original)()(MQ ηη + LSBs are saved in the place
previously allotted for Q and M. Such an exchange of
storage places does not affect the algorithm performance.
Detailed manipulation can be found in [2].

 Step 4: As soon as the data embedding process is
finished, the watermarked image is created.

At the decoder, we get back Q and M from the LSBs of first
)()(MQ ηη + pixels of the test image before performing data

extraction. With Q and M, we can extract the embedded data
in the exact reverse manner of watermark embedding. We use
(5) and (6) to get back the embedded data and resume the
original pixel value. As soon as the data extraction process is
finished, we also obtain the losslessly recovered original
image.

4 Experimental results

We test our algorithm on different types of images. Some
experimental results are given in Figs. 3 and 4. For the sake of
comparison, we also give the results of Tian’s DE algorithm
[1] and Thodi et al.’s P2 algorithm [3].

According to Fig. 3, Thodi et al.’s algorithm has the best
PSNR values under all embedding rates. Tian’s algorithm has
higher PSNR values than ours, especially, at low and middle
embedding rates. However, due to using the embedding
formula (4), the performance of embedding rate vs. PSNR
curve of our algorithm has the slowest decrease in PSNR as
the payload increases. Besides, at the largest embedding rate,
our algorithm has the same PSNR value as Thodi et al.’s P2
algorithm, which is higher than the PSNR value of Tian’s DE
algorithm. Fig. 4 demonstrates the advantages of our
algorithm in visual quality. We compare the amplified parts
of the watermarked images at typical embedding rates (e.g.:
0.7 bpp). For Lena, (a) has the poorest visual quality. It can be
seen that blocking effects are especially annoying in edges
and flat regions. On the other hand, (b) looks a little blurred.
In particular, the edges (e.g., hat edges and brows) are not
clear. However, (c) obtained from our algorithm has the best
visual appearance. It has smooth flat regions, clear edges and
vivid textures. For F-16, the situation is similar to what occurs
in Lena. For example, (a) has apparent artifacts in flat regions
and edges. (b) looks blurred in edges, star and numbers. (c)
has clear edges, star and numbers, and its flat regions look
very natural. The above experiments demonstrate that,
although our PSNR value is not the highest, our algorithm
produces the best visual quality among the three algorithms.
Practically, applying (2) to edges and textures is similar to
sharpening these image regions first. Moreover, letting flat
regions to be the last embedding zone is a good way to avoid
raising suspicion of content alteration at first glance.

5 Conclusion

We propose a new algorithm for reversible data hiding.
Unlike traditional methods that aim at low PSNR values and
begin data embedding from flat image regions, the proposed
method gives priority to hiding data on edges and textures.
Under the same embedding rate, our algorithm yields better
visual appearance than other typical algorithms. Besides, it
does not sacrifice the maximum embedding capacity.

Acknowledgements

This work was supported in part by KOSEF grant NRL
program R0A-2007-000-20023-0 of MOST, NSF of China
60772115, 60572140, and NSF of Guangdong 04020004.

References
[1] J. Tian, “Reversible data embedding using a difference

expansion,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 8, pp. 890-896, Aug. 2003.

[2] D.M. Thodi, and J.J. Rodriguez, “Prediction-error based
reversible watermarking,” in Proc. of IEEE Int. Conf. on
Image Processing, vol. 3, pp. 1549-1552, Oct. 2004.

[3] D.M. Thodi, and J.J. Rodriguez, “Expansion embedding
techniques for reversible watermarking,” IEEE Trans. on
Image Processing, vol. 16, no. 3, pp. 721-730, Mar. 2007.

[4] A.M. Alattar, “Reversible watermark using the difference
expansion of a generalized integer transform,” IEEE Trans.
on Image Processing, vol. 13, no. 8, pp. 1147-1156, Aug.
2004.

[5] L. Kamstra, H.J.A.M. Heijmans, “Reversible data
embedding into images using wavelet techniques and
sorting,” IEEE Trans. on Image Processing, vol. 14, no. 12,
pp. 2082-2090, Dec. 2005.

[6] A. B. Watson, Digital Images and Human Vision.
Cambridge, MA: MIT Press, 1993.

Fig. 3 Embedding rate versus PSNR curves.

Fig. 4 The amplified image parts (a), (b) and (c) are obtained
from Tian’s [1], Thodi et al.’s P2 [3] and our algorithms,
respectively. The embedding rate employed is 0.7 bpp.

