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Abstract 

We propose a new difference expansion (DE) embedding 
based reversible data hiding algorithm for digital images. 
Unlike other current DE-based algorithms that are primarily 
interested in using small pixel-pair differences (i.e., flat image 
regions) for data hiding, our algorithm gives priority to the 
use of image edges and textures. The experiments prove that 
our algorithm can produce visual image quality more suitable 
for human visual characteristics. 

1 Introduction 

Difference expansion embedding is a popular technique for 
reversible data hiding/watermarking algorithms to achieve 
large embedding capacity. Most of DE-based reversible data 
hiding algorithms (e.g.: [1-5]) prefer choosing small pixel-
pair differences for embedding. For example, Tian [1] first 
selected the low-frequency coefficients of integer Haar 
wavelet transform (i.e., image pixel-pair differences) with 
small magnitude for DE expansion embedding. Alattar [4] 
extended Tian's pixel-pair difference expansion method using 
difference expansion of vectors. Kamstra et al. [5] improved 
Tian’s method and selected embeddable differences using a 
sorting list based on the characteristics of the low-pass image. 
Small differences tend to occur at the beginning of the sorting 
list.  In addition to the methods developed in integer Haar 
wavelet transform domain, some researchers also proposed 
DE expansion methods in other domains. For example, to 
better use the correlation information of neighboring pixels, 
Thodi et al. [2] used image prediction rather than integer Haar 
wavelet transform. They still gave priority to small predicted 
pixel errors for DE expansion embedding. Thodi et al. further 
proposed a histogram-based selection scheme for choosing 
small differences in [3]. The reason of giving priority to small 
differences for DE expansion embedding is to acquire a high 
peak-signal-to-noise ratio (PSNR) value of the embedded 
image. In the aforementioned algorithms, PSNR is used as a 
metric to evaluate visual quality of watermarked images. 

However, the PSNR value is essentially the measurement of 
statistical errors of a modified image rather than a metric for 
visual perception of the human eye. On the other hand, small 
differences usually correspond to flat image regions. The 
alteration to those differences would make embedding 
distortion first appear in homogeneous image regions, to 
which the human eye is very sensitive.  
According to knowledge of human visual systems, image 
textures have a substantial masking effect to the human eye 
and the human visual systems are not sensitive to the change 
in textures. Besides, image edge is able to bear alteration to 
some degree [6]. So we propose a new reversible data hiding 
algorithm that begins watermark/data embedding from image 
edges and textures. The experiments demonstrate that visual 
quality of our watermarked images is more suitable for 
human visual characteristics. 

2 Framework of the proposed algorithm 

Our data embedding is based on differences. As stated above, 
there are different ways to calculate differences in image 
processing (e.g.: [1, 2]). The proposed method can be 
extended to different types of differences. For simplicity, we 
adopt the predictor in [2] to calculate differences, which are 
basically predicted image errors. 
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where x and x̂  are the current pixel and its predicted value, 
respectively. a, b and c are the south, east, and southeast 
neighbors, respectively. The predicted pixel error, pe, is 
computed by . For generality, we sometimes call pxxpe ˆ−= e 
as the difference. For simplicity of description, we further 
define the following notations that will be used in this paper. 
Let I, I’, Î , and Ie denote the original image, 
watermarked/embedded image, predicted image, and 
predicted error image, respectively. Let P and Q denote the 
pure payload and the header file, respectively. Let M and M 
denote the overflow location map and its JBIG compressed 
version, respectively. Let )(⋅η  be the function to calculate the 
length of a bitstream (unit: bit). Let count represent the 



number of selected embeddable predicted errors. ],[ nrnl TT −−  
and  are the embedding zones in the negative and 
positive parts of the horizontal axis, respectively. Here, 

 and .  and are the left 
and right ends of the histogram, respectively.  
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Generally, the histogram of predicted errors follows a zero-
mean Laplacian distribution, as shown in Fig.1. On the other 
side, according to knowledge of image processing, predicted 
errors with large magnitude usually correspond to image 
edges; predicted errors with middle magnitude correspond to 
textures; whereas, predicted errors with small magnitude 
correspond to flat regions. Since our algorithm gives priority 
to the use of edges and textures, it means that we begin to 
search for embeddable predicted pixel errors from both ends 
of the histogram.  

The framework of our algorithm is depicted in Fig. 2. We will 
describe our technical details in the next section. 

 
Fig. 1 Sample histogram of predicted errors. 
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Fig. 2 Framework of our algorithm. 

3 Algorithm  

This section gives the details of our algorithm. We first 
discuss the embedding and extraction formulas, and then, 
show how to construct the overflow location map and the 
header file. Finally, we list the steps to implement our 
algorithm in a predicted error image. 

3.1 Embedding and extraction formulas 

We embed one binary information bit i into a predicted error. 
pe can be represented as , where l is the 
length of binary representation. The traditional DE expansion 
embedding rule [2] is 
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where is the embedded difference. The embedded pixel 

value, , is computed by . Their corresponding 
data extraction and pixel value recovery formulas are  
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where % denotes the modulo operation, and ⎣ ⎦⋅  is the floor 
function. However, if we directly use (2) in our algorithm, the 
embedding distortion would be high. We make some 
explanation. The core idea of DE embedding is that the binary 
representation of a difference has to be left-shifted one bit to 
obtain the vacant LSB position for embedding; otherwise, the 
decoder does not know the location of the hidden bit in the 
process of blind data extraction. However, one-bit left-
shifting operation doubles the absolute of the difference. For a 
difference with small magnitude, this left-shifting operation 
only brings limited distortion to the resulting difference; but 
for a difference with large magnitude, such an operation 
would bring a great impact on the result. Since we begin to 
select embeddable differences from the ends of the histogram, 
the first selected differences often have large magnitude. If 
we use (2), the original pixel values would be greatly 
distorted after embedding. Therefore, we try to decrease the 
distortion by using the following modified embedding 
formulas: 
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where ],[ nrnl TT −− and are respectively the left and 
right embedding zones, as shown in Fig. 1. After embedding, 
the altered values fall into 

],[ prpl TT

],12[ nrnrnl TTT −−+−  and 
. These two intervals indicate that the 

embedding distortion is much smaller than that by directly 
using (2).  
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Their corresponding data extraction and pixel value recovery 
formulas can be described in the following two cases: 

 If  and has a position 
indicated as "0"  (i.e., embeddable, as will be discussed 
in next subsection) in the overflow location map, we 
have 
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 If  and has a position 
indicated as "0" in the overflow location map, we have 
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The construction of the overflow location map will be 
explained next. 

3.2 Overflow location map and the header file 

Applying (4) to a predicted error may cause the embedded 
pixel value out of the range [0, 255] for an 8-bit image, even 
the predicted error is in the embedding zone. The 
overflow/underflow problem occurring at those pixels makes 
lossless recovery of the original image impossible. So we 
have to avoid using those pixels. In this paper, a 2-D binary 
overflow location map, M, is introduced to indicate possible 
overflow locations. M is initialized by "0". All of possible 
overflow locations, where the pixel value can not satisfy the 
following constraint, are indicated as "1s". 
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A predicted error or pixel is called as an un-embeddable one 
if (7) is not satisfied; otherwise, it is an embeddable one. 
For data extraction and image recovery, we need not only the 
overflow location map but also the header file, Q, which 
records all embedding information. In this paper, Q consists 
of  (8 bits),  (8 bits),  (8 bits),  (8 bits), the 
coordinate of the last embedded pixel in the image (32 bits), 
and the length information of JBIG-compressed overflow 
location map, M.  
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3.3 Implementation 

Data hiding is implemented through the two processes: 
selecting the embedding zones and embedding on the selected 
zones. These two processes are realized in two separate loops. 
In the first process, we begin to select embeddable predicted 
errors from the histogram ends. Since the histogram usually 

has two tails with different lengths, we do it from the 
histogram side with the longer tail. The selection on that side 
continues until the histogram has two balanced tails. 
Afterwards, we begin to interleavingly select embeddable 
predicted errors from the two sides. The use of interleaving 
selection is to select just necessary number of embeddable 
pixels so as to avoid raising unnecessary embedding 
distortion. We give the complete data hiding steps as follows. 
 Step 1: Perform (1) on the original image from its upper 

left corner and in a raster scanning manner to obtain the 
predicted error image, and then, calculate the predicted 
error histogram. 

 Step 2: Begin the first loop to determine the embedding 
zone. Assume . We select embeddable 
predicted errors from the left side of the histogram. Let 

 and . The initial 

embedding zone is 
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],[ nrnl TT −− . We test each predicted 
error located in the embedding zone by (7) and construct 
the overflow location map. After each iteration, we 
judge whether we get enough embeddable predicted 
errors for the payload by the following formula: 
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If (8) is satisfied, stop the current search loop and go to 
Step 3; otherwise, decrease by 1 (i.e., the increase of 
width of embedding zone) and repeat the search loop. 
We recalculate count in the new embedding zone and 
judge whether (8) is satisfied. If and (8) is 
still not satisfied, we begin the aforementioned 
interleaving selection. The embedding zones become 

nrT

exmrenr pT =

],[],[ prplnrnl TTTT ∪−− . We interleavingly decrease 
and by 1, and calculate count and test (8). The 

search loop continues until (8) is satisfied.  
nrT plT

 Step 3: In the second process, we embed P, Q and M 
into the original image according to M. Data embedding 
loop begins from the upper left corner of the image and 
in a raster scanning manner. However, to facilitate data 
decoding, we borrow the idea of [2] and embed the 
bitstream of Q and M in the LSBs of first )()( MQ ηη +  
pixels of the watermarked image while the 
original )()( MQ ηη +  LSBs are saved in the place 
previously allotted for Q and M. Such an exchange of 
storage places does not affect the algorithm performance. 
Detailed manipulation can be found in [2]. 

 Step 4: As soon as the data embedding process is 
finished, the watermarked image is created.  

At the decoder, we get back Q and M from the LSBs of first 
)()( MQ ηη +  pixels of the test image before performing data 

extraction. With Q and M, we can extract the embedded data 
in the exact reverse manner of watermark embedding. We use 
(5) and (6) to get back the embedded data and resume the 
original pixel value. As soon as the data extraction process is 
finished, we also obtain the losslessly recovered original 
image. 



4 Experimental results 

We test our algorithm on different types of images. Some 
experimental results are given in Figs. 3 and 4. For the sake of 
comparison, we also give the results of Tian’s DE algorithm 
[1] and Thodi et al.’s P2 algorithm [3].  

According to Fig. 3, Thodi et al.’s algorithm has the best 
PSNR values under all embedding rates. Tian’s algorithm has 
higher PSNR values than ours, especially, at low and middle 
embedding rates. However, due to using the embedding 
formula (4), the performance of embedding rate vs. PSNR 
curve of our algorithm has the slowest decrease in PSNR as 
the payload increases. Besides, at the largest embedding rate, 
our algorithm has the same PSNR value as Thodi et al.’s P2 
algorithm, which is higher than the PSNR value of Tian’s DE 
algorithm. Fig. 4 demonstrates the advantages of our 
algorithm in visual quality. We compare the amplified parts 
of the watermarked images at typical embedding rates (e.g.: 
0.7 bpp). For Lena, (a) has the poorest visual quality. It can be 
seen that blocking effects are especially annoying in edges 
and flat regions. On the other hand, (b) looks a little blurred. 
In particular, the edges (e.g., hat edges and brows) are not 
clear. However, (c) obtained from our algorithm has the best 
visual appearance. It has smooth flat regions, clear edges and 
vivid textures. For F-16, the situation is similar to what occurs 
in Lena. For example, (a) has apparent artifacts in flat regions 
and edges. (b) looks blurred in edges, star and numbers. (c) 
has clear edges, star and numbers, and its flat regions look 
very natural. The above experiments demonstrate that, 
although our PSNR value is not the highest, our algorithm 
produces the best visual quality among the three algorithms. 
Practically, applying (2) to edges and textures is similar to 
sharpening these image regions first. Moreover, letting flat 
regions to be the last embedding zone is a good way to avoid 
raising suspicion of content alteration at first glance. 

5 Conclusion 

We propose a new algorithm for reversible data hiding. 
Unlike traditional methods that aim at low PSNR values and 
begin data embedding from flat image regions, the proposed 
method gives priority to hiding data on edges and textures. 
Under the same embedding rate, our algorithm yields better 
visual appearance than other typical algorithms. Besides, it 
does not sacrifice the maximum embedding capacity. 
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Fig. 3 Embedding rate versus PSNR curves. 
 



 
 

 
 

 
 

 
 

 
 

 
 
Fig. 4 The amplified image parts (a), (b) and (c) are obtained 
from Tian’s [1], Thodi et al.’s P2 [3] and our algorithms, 
respectively. The embedding rate employed is 0.7 bpp.  
 


