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Abstract

Distributed Hash Table (DHT) overlay networks offer 

an efficient and robust technique for wire-area data 

storage and queries. Workload from real applications 
that use DHT networks will likely exhibit significant 

skews that can result in bottlenecks and failures that 

limit the overall scalability of the DHT approach. In this 
paper we present the Content and Load-Aware Scalable 

Hashing (CLASH) protocol that can enhance the load 

distribution behavior of a DHT. CLASH relies on a 
variable-length identifier key scheme, where the length 

of any individual key is a function of load. CLASH uses 

variable-length keys to cluster content-related objects 
on single nodes to achieve processing efficiencies, and 

minimally disperse objects across multiple servers when 

hotspots occur. We demonstrate the performance 

benefits of CLASH through analysis and simulation.

1. Introduction 

 Emerging distributed computing applications, such 

as massively multiplayer games (MMP), corporate 

messaging systems, and enterprise telematics (e.g., 

vehicle fleet management), will rely on cooperative data 

processing and storage by a set of peer servers 

distributed over the Internet. These applications can 

employ thousands of servers to process millions of data 

streams that represent queries or updates to data shared 

by many clients.  

 To improve the scalability of such systems, we may 

distribute the workload across multiple servers using 

some partitioning criteria. Clearly, workload distribution 

must be done judiciously: uneven or unpredicted 

workload skews can cause performance bottlenecks and 

server failures (hotspots). In this paper, we focus on a 

decentralized, adaptive workload distribution 

middleware that distributes the workload of streaming 

data applications over a dynamically varying pool of 

wide-area servers. To scale, servers rely on 

decentralized control to organize into an overlay 

network that accepts continuous queries from clients 

over a large set of data; both the queries and data may 

experience frequent updates. We are pursuing an “on-

demand” workload allocation strategy conforming to the 

“computing as a utility” model inspired by Grid 

Computing concepts. In this view, a distributed 

computing infrastructure acts as a shared resource for a 

wide class of applications that require large, but varying 

amounts of computing power.  Accordingly, our 

infrastructure design is guided by the following 

principles: 

 On-demand allocation of resources – in our model, 

customers deploy their applications on a common, 

shared infrastructure built by a utility provider to reduce 

operational costs. Utility providers charge customers 

according to the resources consumed by their 

applications. Provisioning applications in a fixed 

manner (e.g. peak load) is not ideal from the perspective 

of the customer or the utility provider. A better strategy 

is to dynamically assign resources to an application as 

load fluctuates. This minimizes the cost to the customer 

by reducing the amount of over provisioning necessary 

to guarantee a quality of service (QoS) level. The utility 

provider also benefits by maximizing the pool of free 

resources that can be directed to other applications. 

Transparent operation with no central state – 

applications need not be aware of the on-demand 

operation of the computing utility. Applications y 

should continue to function and receive the specified 

level of QoS (e.g., latency) independently of the number 

of servers currently allocated for its distributed 

operation. Clients that communicate with an application 

may be mapped to different servers as a result of 

application migration but this is achieved through 

seamless redirection. To scale to the Internet, servers 

should only manage a limited amount of state to run 

applications; no server is required to maintain the global 

server allocation state. 

 ·Content-sensitive data placement – for data-centric 

applications, it is important to preserve semantically 

relevant groupings of data for processing efficiency and 

reduction of overhead (e.g. communication and state 
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transfer costs). For example, in systems for processing 

subscriptions over data streams such as NiagaraCQ [6], 

Xfilter [1], efficient query processing at a single server 

is based on the ability to create efficient indices over 

streams and queries with intersecting attribute values.  

Queries in these systems are typically expressed as 

predicates over a small set of attributes and it is possible 

to achieve fairly efficient query processing if data 

objects or streams with similar attribute values are 

clustered on a single physical node. Thus, our goal is to 

cluster groups of “similar” application-specific objects 

(whether data or queries) on as few servers (ideally 1, if 

the workload was low enough) as possible. 

1.2 Distributed Hash Table Overview 

 Researchers have proposed Distributed Hash Table 

(DHT) protocols [14][16][17][18] to organize highly 

distributed and loosely coupled servers into an overlay 

network for the purpose of storing massive numbers of 

data objects. In the DHT environment, both the addition 

and removal of servers as well as the placement of data 

objects on servers in the network, take place in a purely 

decentralized and dynamic fashion. 

 To store an object, the DHT protocol assumes that 

all data objects have an identifier key that can be hashed 

to a hash key. Since all servers are peers, the data object 

can be presented to any server, and the overlay network 

will forward the object from server to server until the 

object arrives at the server that manages the hash key 

derived from the object’s identifier key. DHT proposals 

differ principally in the precise forwarding mechanism 

employed to ensure that this process occurs in O(log(S)) 

time, where S is the number of servers in the overlay 

network. Object retrieval works analogously to storage: 

any client can lookup an object in O(log(S)) time by 

querying any server with the desired object’s identifier 

key. 

 Because of their robust nature (most 

implementations employ replication for fault tolerance), 

potential to scale to the Internet, and bounded lookup 

times, DHTs are an attractive substrate on which to 

build a large-scale distributed system. However, from 

the perspective of the computing utility model, there are 

two critical shortcomings to all basic DHT protocols 

that must be addressed first: 

 1. Basic DHT proposals do not automatically adjust 

workload distribution to alleviate hotspots, which 

ultimately limits the overall scalability of the approach. 

Often, there exists an implicit assumption that the query 

workload is uniformly distributed over the objects stored 

in the system and the principle focus is on ensuring a 

uniform partitioning of a hash space among a set of peer 

nodes (e.g., the use of “virtual servers” in [17]).  

 2. DHT overlay networks inherently distribute 

objects across as many servers as possible. While this 

lowers the probability of concentrated hotspots, this 

approach: a) randomizes objects at very fine granularity, 

making it difficult to achieve “clustering” of related 

objects, b) ignores the communication costs associated 

with queries for semantically related objects that now 

have to be replicated across many nodes, and c) forces a 

low server utilization model for individual applications 

since the data they access is fragmented across many 

servers.

 To alleviate these shortcomings, we present Content 

and Load-Aware Scalable Hashing (CLASH), a 

redirection layer that can be used in conjunction with 

most DHT implementation. CLASH addresses the need 

for content-sensitive clustering of objects and hotspot 

elimination for skewed workloads in basic DHT 

schemes.  

 The rest of the paper is organized as follows. 

Section 2 reviews previous work in the area of load 

balancing for hash-based distributed systems. In Section 

3 we explain how CLASH creates key groups. Section 4 

explains the basic working of CLASH’s binary splitting 

algorithm. Section 5 presents the distributed CLASH 

protocol. Section 6 presents results from simulation 

studies of CLASH. Finally, Section 7 concludes with a 

discussion of our plans for future research. 

2. Related Work 

 The base implementation of DHT protocols, such as 

Chord [17], CAN [14], Pastry [16] and Tapestry [18]), 

implicitly assume a uniform workload in the hash space; 

load balancing is accomplished by ensuring a uniform 

partitioning of the hash space among the server nodes.  

 [17] proposes the use of  log(S) virtual servers per 

physical server node, where S is the total number of 

nodes, to significantly reduce the probability of non-

uniform address allocation in the hash space. 

Alternatively, CAN alleviates the unfairness problem by 

considering the address spaces being managed by 

several neighboring nodes in determining the contiguous 

chunk allocated to a new server node. CFS [7] considers 

the existence of heterogeneous peers and allocates the 

number of virtual servers in proportion to the actual 

processing capacity of a physical server.

 Some recent papers have considered the possibility 

of skews in the DHT workload. [13] reuses the notion of 

virtual servers and aims to balance loads by essentially 

moving virtual servers from an overloaded node H to an 

under-loaded physical node L (in essence transferring 

the responsibility for a chunk of the hash space from H 

to L). [5] requires a client node to hash each object key 

to d (>=2) distinct hash values by using multiple hash 

functions. From the set of servers handling one or more 
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of these d distinct hash values, the client selects the 

least-loaded server for storing the data object. Neither of 

these proposals address our aim of clustering objects 

with similar attribute values on a single server as long as 

feasible. 

 Variable depth hashing (e.g. scalable distributed 

data structures), like that employed by CLASH, is useful 

in databases [9] and has been used in non-DHT 

environments to relieve hotspots [12][11]. While 

CLASH shares the notion of a dynamically variable 

address space range with [12], CLASH operates in the 

identifier key space, leaving the base DHT protocol 

unchanged.  Moreover, while CLASH increases the 

depth selectively only for “hot” objects, [12] changes 

the entire hash space and does not discuss how client 

nodes obtain the correct value of the hash depth i and

the server set associated with the hash value v.

3. Encoding Semantics in Hash Keys

 All the proposed DHT implementations essentially 

operate in a two-step fashion: 

 1. Each object is assumed to possess an identifier 

key. This key is first hashed to a hash value (hash key).

 2. The object is then forwarded to the server 

currently managing that hash key. 

 The method used to create identifier keys defines 

the semantics used to store and retrieve objects in a 

DHT and several methods can be used [4][15][19]. In 

CLASH, identifier keys encode hierarchical clustering 

relationships about objects. As an example of this 

encoding, a geographic area can be encoded in a 

hierarchical N-bit identifier key adopting a quad-tree 

formulation [8]. A large rectangular area can be split 

into 4 sub-regions with each sub-region receiving a 2-bit 

label corresponding to the first 2 bits of the N-bit 

identifier key. These areas can again be split into 4 with 

the sub-regions receiving a 2-bit label, which is 

appended to the key of the enclosing parent region. This 

process can be repeated until an N-bit key is generated.  

 In general, hierarchical identifier keys encode 

parent-child relationships for groups of objects. When 

viewed as a tree, the entire N-bit key uniquely describes 

a leaf group (which may be an individual object); keys 

with common prefixes define clusters of related objects. 

We express groups using a prefix notation “*”, meaning 

“don’t care.” For example, for an N-bit key the label 

“11*” means a group of all keys with the prefix “11”, 

which represents the 2N-2 remaining combinations of 

possible keys.  The label “111*” is contained in “11*” 

and identifies the more select group of 2N-3 keys with 

prefix “111.” 

 CLASH uses key groups to dynamically control the 

placement of semantically related objects (defined by 

the identifier key) on the same physical servers. The 

heart of the CLASH is the ability, within a DHT 

framework, to dynamically assign groups of objects to 

servers where the size of the group is load dependent. 

CLASH takes a “hot” group from an overloaded server 

and splits it into smaller groups according to the 

encoding of the identifier keys. These smaller groups get 

dispersed across additional servers. For “cooler” groups, 

CLASH attempts to combine these into a larger 

aggregate group on a single physical server based on the 

identifier key. In the next section we describe how this 

is done in more detail. 

4. CLASH Binary Splitting Algorithm 

 In a DHT protocol, some arbitrary function 

KeyGen() generates an N-bit identifier key k. A hash 

function f() maps the space K of all possible identifier 

keys to a hash-space H, such that h=f(k) where h is an 

M-bit hash key. Each server belonging to S, the set of all 

servers, is responsible for managing a portion of the 

total M-bit hash-space H. The DHT protocols operate by 

mapping h to a unique server s, using the distributed 

function s Map(h) where Map() is defined by the 

specific DHT protocol. 

 CLASH uses the KeyGen() function to encode key 

grouping semantics in an identifier key for each object.  

CLASH clusters identifier keys into key groups and uses 

DHT mechanisms to store these groups on servers in the 

network. CLASH imposes a many-to-one semantics 

such that semantically related objects (as defined by the 

hierarchical identifier keys) get mapped to the same key 

group.

 CLASH imposes a Shape() function before the 

Map() function in DHTs to map identifier keys to their 

current key group. CLASH identifies key groups 

through a virtual key and a key depth. Shape() takes the 

N-bit identifier key k and a depth d, and generates an N-

bit virtual key k’ by taking kd, first d bits of k, as the 

most significant bits of the virtual key and sets the 

remaining (N-d) bits to 0s. The virtual key k’, along with 

its depth d, identifies a key group containing all the N-

bit key identifiers whose first d bits exactly match the 

bit pattern kd. Accordingly, any virtual key created with 

depth = d effectively groups 2N-d distinct keys (all 

possible variations in the residual N-d bits). For 

example, using our wildcard notation, the key group 

“0110*” includes the 7-bit key identifiers “0110101” 

and “0110111”. The virtual key for this key group is 

“0110000” with depth = 4. 

 We can legitimately increase or decrease the depth 

of the virtual key to change the granularity of key 

grouping. Clearly, increasing depth from its current 

value d to d+1 increases the level of differentiation—the 

entire set of 2N-d identifier keys that were identical in 

their initial d bits are now partitioned into two subsets of 
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cardinality 2N-d-1, with the two subsets having an 

identical d-bit prefix, but differing in the d+1th bit. For 

example, when the set “0110*” with a depth of 4 is 

expanded, we effectively create two subsets of virtual 

key groups, “01101*” and “01100*”, each with a depth 

of 5. On expanding these virtual key groups to their full 

N (=7) bit value, we can see that “01100*” equals the 

original “0110*” representation (the full expansion of 

which is “0110000” or decimal 48). On the other hand, 

the “01101*” virtual key expands to “0110100” 

(decimal 54). By applying a basic DHT Map() to our 

virtual keys, we can see that all objects in the sub-group 

“01100*” will map to the same hash value as the 

original larger group “0110*”, and thus be directed 

towards the same DHT server. On the other hand, the 

sub-group “01101*” will map (most likely) to a 

different hash value, and could thus, be directed towards 

a server different from the one handling the original 

“0110*” group of objects. It should now be clear that 

increasing the depth for a group by 1 from its current 

value halves (in the key identifier space) the set of 

identifier keys of that group that are being handled by 
the current server.

 For effective load balancing, CLASH uses variable

depth keys to make the mapping of identifier keys to 

hash keys non-deterministic and load-aware. Key depth 

depends on the load a key group contributes to the 

overall load of a server.  Different key groups have 

different depths. To make this clearer, we represent key 

group splitting as a logical binary tree. Figure 1 shows 

the logical binary tree created when we start with an 

initial virtual key value of “011*” (depth = 3), and 

iteratively increase the depth at the appropriate branches 

of the tree to distribute the load. For the purposes of 

clarity, the figure also shows the hypothetical identity of 

servers (obtained through the transformation Map(f(k’))
that manage a specific sub-tree of the initial identifier 

space. When server s0 (managing the virtual key group 

“011*”) gets overloaded, it increases the depth, creating 

two new virtual key groups “0110*” and “0111*. While 

s0 continues to manage objects with hash values 

“0110*”, it off-loads the responsibility for the key group 

“0111*” to some other “child” peer-server (randomly 

chosen as s12 in Figure 1). Server s12 can subsequently 

split the key group “0111*” further, creating finer key 

groups “01110*” and “01111*”. While s12 continues to 

assume responsibility for “01110*”, it can request 

another “child” peer server (s5 in Figure 1) to handle the 

key group  “01111*”. Subsequently, s12 can again split 

the key group “01110*”, offloading the key group 

“011101*” to “child” server s7.

 While increasing the depth serves to split the 

workload between the parent node and a “child” peer 

server, an appropriate reduction in the depth provides a 

mechanism for performing greater clustering when the 

workload decreases.  To avoid the complications that 

can arise from consolidation attempts at intermediate 

nodes (e.g., rolling back groups “0110*” and “0111*” to 

“011*” in Figure 1), our load-consolidation algorithm 

works in “bottom-up” fashion, with “leaf” nodes (those 

engaged in currently managing key groups at the leaves 

of the logical tree) informing their parents of the current 

workload. Under conditions of under-load (“cold” key 

groups), a parent node with cold  left and right child leaf 

nodes can revert to the original depth (e.g., when key 

groups “011101*” and “011100*” (depth=6) are 

cumulatively “cold” enough, s12 can resume active 

management of the entire key group “01110*” 

(depth=5) and remove the child entries). 

 To store or query a data object, a client node must 

first determine the appropriate depth (and thus the 

virtual key) associated with the object’s identifier key. 

Each of the leaf nodes in the logical tree (illustrated in 

Figure 1) corresponds to an “active” virtual key group (a 

key group currently being used to aggregate keys on the 

basis of a common prefix). For example, in Figure 1, s0

is currently managing the key group “0110*” (depth=4),

s12 is managing the key group “011100*” (depth=6), s7

is managing the key group “011101*” (depth=6) and s5

is managing the key group “01111*” (depth=5).

 Clearly, each of the virtual key groups managed by 

any leaf node of the logical tree corresponds to a unique 

sequence of bits, since each sequence corresponds to a 

unique traversal of the tree from the root to the 

corresponding leaf. Since the bit sequence of any leaf 

virtual key group cannot be a prefix for the bit sequence 

of any other leaf virtual key group, there can be only 

one leaf virtual key group, k’, whose bits are an exact 

prefix match to the identifier key, k, of a specific object, 

and to which k currently belongs. The bit sequence “k’

padded by N-d trailing zeroes” is then the current virtual 

key associated with k.Figure 1. Load-balancing using binary splitting 
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5. Server and Client Protocols 

 The CLASH protocol provides an efficient 

distributed solution to perform the prefix matching 

operation, when each server possesses knowledge of 

only the key groups that it is currently managing. Each 

server (currently responsible for one or more key 

groups) is assumed to monitor its own workload and 

determine the onset of overload when it must shed some 

load (e.g. this could be measured as latency, queue 

length, etc.). After identifying a key group (with 

depth=d) to be split (for example, the key group 

“01101*” with d=5), the server merely constructs two 

finer-grained key groups of depth d+1 that have the 

same prefix (the key groups “011010*” and “011011*” 

with depth 6). After zeroing out the remaining N-(d+1)

bits in the virtual key, the server uses the conventional  

DHT primitives to determine the right child server, 

which should handle the new right child key group 

(“011011*”).  The server is guaranteed that the left child 

group will map back to itself (“01101*” and “011010*” 

expand to the same N-bit value). The server thus 

performs true load shedding: keeping half the original 
key space for itself and transferring responsibility for 

the other half to another server. As part of the load-

shedding process, the server may also need to migrate 

state to the right child node, as necessary. A CLASH 

server does not need to explicitly determine a candidate 

child node, but simply relies on the underlying DHT 

protocol to determine the appropriate right-child node. 

The server sends an ACCEPT_KEYGROUP message to 

its right child node, transferring responsibility for the 

corresponding key group (“011011*” in our example). 

CLASH requires the “child” node to accept all 

ACCEPT_KEYGROUP messages, thereby allowing an 

overloaded node to always shed load to a peer. While 

the child node itself may be currently overloaded, it can 

then always choose to sub-divide the accepted key 

group further and shed its own load. Although the use of 

DHT implies that a CLASH server has a very high 

probability of picking a different node as its right child 

node, there is always the chance that the right-child 

node maps back to itself (e.g., if “01101*” and 

“01101*” both map to the same hash value)  In such a 

case, the server can then simply increase the depth for 

this right key group again, thereby making another 

randomized attempt to select a different server node. 

  In CLASH, peer servers manage the information 

about the binary splitting tree in a distributed manner.  

Conceptually, each peer server maintains only the key 

groups assigned to it by Map().  This information is 

stored in a table data structure ServerTable, where the 

information for each entry consists of several fields, the 

most important of which are explained using the sample 

table in Figure 2, which shows the current server table 

(and the equivalent binary tree) for a hypothetical server 

(say server s25). While the VirtualKeyGroup and depth 

fields are self-explanatory, the ParentID field stores the 

ID of the server that is managing the “parent” key group 

(for example, the parent for the key group “01011*” is 

server s22, imply that s22 was responsible for managing 

“0101*” before being split). The ParentID field is -1 if 

this node is the “root” for this key group: root entries are 

an optional administrative tool to prevent servers from 

collapsing the workload beyond a minimum specified 

value (e.g., s25 is the root for the key group “011*”). The 

RightChildID field indicates the ID of the server that is 

handling the “right child” key group after a split. For 

example, entry 2 indicates that, on splitting the key 

group “01011*”, s25 asked server s26 to manage the load 

for the right-child key group “010111*”. Finally, Active 

is a Boolean-valued field that is “Y” if the entry is 

currently a leaf node in the logical tree. Thus, s25 is 

actively managing the key group “01100*”, while the 

parent entries “0110*” and “011*” are currently inactive 

(i.e., are currently managed as smaller sub-groups) 

 To insert an object (data or query) with an identifier 

key k, a CLASH client node first “estimates” (e.g., picks 

at random) a depth d. After constructing the virtual key 

having the first d bits of k (and the rest zeroed out), it 

sends an ACCEPT_OBJECT message to the 

corresponding server (using conventional DHT to 

determine this server ID). The server’s must respond to 

three possible cases (depending on whether the client’s 

estimated depth d is correct or not), which we explain by 

using the sample server table in Figure 2:  

N o . V ir tu a l  

K e y  

G r o u p  

D e p t h  P a r e n t  

I D  

R ig h t  

C h i ld  

I D  

A c t iv e  

1 0 1 1 *  3 -1  4 5  N

2 0 1 0 1 1 *  5 2 2  2 6  N

3 0 1 0 1 1 0 *  6 s e lf  - -  Y

4 0 1 1 0 *  4 s e lf  1 1  N

5 0 1 1 0 0 *  5 s e lf  - Y

Figure 2. Key group information using Server Work Table 
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 a) The client had the right depth: (For example, if 

the client sent the (7-bit) key “0110001” with d=5). In 

this case, the server sends back an OK message. 

 b) Client had the wrong depth, but the server 

should be storing this object: (For example, if the client 

sent the 7-bit key “0110001” with d=7. Due to the 

random Map() function, it is possible that 

Map(f(011001)) coincidentally turned out to be s25 as 

well). In this case, the server sends back an OK 

message, but with the corrected depth (5 in our 

example). 

 c) Client had wrong depth, and server is not 

currently responsible for this object. (For example, if the 

client sent “0101010” and d=6). In this case, the server 

sends back an INCORRECT_DEPTH message, 

specifying the longest possible prefix match between k
and the current server entries. (In our example, the 

server sends back 4 to the client). We discuss the 

client’s response to an INCORRECT_DEPTH next.  

 Unlike basic DHT, a CLASH client node wishing to 

insert an object (data or query) in the distributed system 

must first determine the correct depth, dc, for its 

identifier key, before it can use DHT to identify the 

correct server. CLASH sacrifices some efficiency in 

object lookups to increase the availability of hot key 

groups. CLASH uses a modified binary-search 

technique to determine the correct depth dc. CLASH 

clients can, on average, perform this lookup faster than 

the worst-case O(log(N)) bound of basic binary search. 

In essence, the client starts the binary search over the 

range (0,N) by setting low=0 and high=N. If a client gets 

an INCORRECT_DEPTH message (indicating dmin) in 

response to an ACCEPT_OBJECT message sent with an 

“estimated” depth d, then it can adjust the low and high 

values based on the following properties: 

 1. If dmin > d, then the dc> dmin+1. This message 

contains no further information about any upper bound 

on the correct depth dc.

 2. If however dmin< d, then dc is both lower and 

upper as dc > dmin+1, and dc < d.

 Convergence is guaranteed in CLASH. Simulation 

studies (to be described in the next section) show that, in 

practice, clients usually converge to the true depth much 

faster than log(N).

Note that, in general, this estimation of the correct depth 

can be performed in O(log(N)) individual lookups by a 

server that uses this algorithm to query its peer servers, 

rather than assigning the lookup burden to the client. 

6. Simulation and Performance 

 We have implemented a C++-based simulation 

engine for understanding the performance of CLASH. 

The simulator code extends the basic CHORD DHT 

simulation code available from [20]. We simulate a 

pseudo-distributed system for supporting long-lived 

queries over streaming data [2][3].  An example of such 

a system would be a distributed implementation of a 

telematics server such as Mobiscope [8], which supports 

continuous queries over moving objects. In the 

simulation, each server periodically computes a load 

value, based on the number of queries it currently stores 

and the cumulative data rate it currently handles. For 

query-processing applications, this load is usually linear 

in the data rate, and logarithmic in the number of 

queries. Overload and underload conditions are detected 

by comparing this load value to pre-defined thresholds.  

 We model an environment where queries are long-

lived and stateless (no querying over historical data). 

The splitting process requires CLASH to appropriately 

migrate only query objects to a child; data packets are 

discarded after processing and are never migrated. In 

practice, the state to be migrated would be application-

dependent (e.g., a distributed file system would migrate 

stored files), and the amount of migrated state should be 

counted as part of CLASH’s distributed communication 

overhead. The logic employed by a server to select a key 

group to shed during overload, or a key group to 

consolidate during underload, is also outside the core 

specification of CLASH. In our implementation, we 

selected the “hottest” key group (the one with the 

highest load in the last measurement interval) for 

splitting  during overload, and the “coldest” active key-

group for possible consolidation  during underload. 

 We consider the sources to be streaming data at a 

constant rate, where the key associated with each data 

packet represents a hierarchical encoding of some 

source (client) attributes. A source changes its key 

periodically, to reflect potentially dynamic changes in 

its attribute values. For example, in applications such as 

Mobiscope or multi-player games, the key represents the 

source location (in a real or virtual grid). This key 

remains unchanged as long as the client remains in the 

same (finest) grid. Accordingly, each data stream is 

associated with a virtual stream length (Ld), such that 

the key changes every Ld packets. Each client always 

has to perform a new lookup after every Ld packets 
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Figure 3. Workloads used in simulation 
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(since the key changes); once the client identifies the 

appropriate server for a virtual stream, it simply caches 

this server value and sends all subsequent packets with 

the same key to this server without incurring the 

overhead of DHT-based lookup. Of course, the client 

may have to perform additional lookups during a single 

virtual stream, if the corresponding server splits or 

merges and the client needs to be redirected. Varying Ld
allows us to simulate various operating scenarios, with 

Ld=1 representing the extreme request-response where 

each data object has a different key. Skews in our 

system occur when either many data sources, or many 

query clients pick “similar” keys. 

6.1 CLASH Simulation Parameters 

 We used several simulation studies to evaluate the 

performance of CLASH and its effectiveness in 

alleviating workload skews. To study the effect of 

skewed workloads over different ranges of the key 

space, we divide the N=24 bit key into 2 distinct 

portions: a base portion of X bits, and a remainder 

portion of 24-X bits. We present results with three 

different workloads, each with different amounts of 

skew in the distribution of the base X=8 bits. (The 

remaining bits are generated according to a uniform 

distribution). The three different workloads (A, B and 

C) are shown in Figure 3. Both data and query clients 

choose keys with the same skew. Clearly, workload A 

has the smallest skew (it’s almost uniform) while 

workload C has the highest skew. Additionally, we also 

varied the intensity of the data streams: while data 

sources in workload A generated data packets at the rate 

of 1/sec, both workloads B and C correspond to source 

streams with data rates of 2 packets/sec. 

 To compare CLASH with a non-adaptive version of 

DHT, we also simulated the base Chord protocol, where 

the hash space is 24 bits and the length of the identifier 

key N is always fixed. We experimented with fixed 

identifier key lengths of N=(2, 6, 12, 20); in our graphs, 

a plot for DHT(x) refers to a Chord experiment with 

fixed identifier key length equal to x. Simulation 

experiments are run for a total of 6 hours with 1000 

servers, 100,000 client nodes, with servers checking 

their loads for potential overload or underload 

conditions every LOAD_CHECK_PERIOD (5 minutes). 

 We arbitrarily set the maximum acceptable load on 

a server to 90%, and the minimum (underflow) load to 

54%, of the server’s capacity. To capture the effect of 

varying workload skews, sources and query clients 

generated keys according to workload A for the first 2 

hours, followed by workloads B and C over the next 

successive 2 hour intervals. The virtual stream lengths 

for each source client was generated according to an 

exponential distribution, with a mean of Ld=1000

packets. Each query client had an exponentially 

distributed lifetime of Lq=30 mins. 

6.2 Utility-Style Load-Aware Distribution 

 Figure 4 shows the most important metrics used to 

evaluate CLASH performance vis-à-vis basic DHT. The 
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figure shows the variation in average load of servers 

under CLASH and basic DHT (with N=6,12,24) over 

the size hour period (with 2 hours each of workload A, 

B and C respectively), as well as the maximum load 

experienced by any participating server. The figure also 

shows the number of servers actually used by CLASH 

and the basic DHT, as well as how the depth of 

CLASH’s load-dependent tree evolves with changes in 

the workload.  

 These charts clearly explain the performance 

benefits of CLASH. From the average workload graph, 

we see that CLASH adjusts the depth to maintain 

uniformly high server load levels (~50-60% of an 

individual server’s capacity) over the entire duration 

(across all workloads). On the other hand, using a very 

fine granularity in DHT (a large N, such as 12 or 24) 

leads to very low server loads. The graph shows that 

using a relatively small value of N (=6) causes high, but 

acceptable, average workloads. However, the real 

disadvantage of DHT emerges when we study the graph 

showing the maximum load level on any server. While 

CLASH is able to deal with skews and keep the 

maximum load on any server (after a small transient 

period, which would be absent in smoothly varying 

workloads) to less than 90% of capacity for all 

workloads, DHT with N=6 is unable to intelligently re-

distribute the workload and cause the maximum load on 

a server to be as high as 25 times server capacity. Thus, 

for skewed workloads, DHT has to choose either 

between very low server utilization or unacceptably high 

localized workloads. The real problem is that DHT 

applies a uniform depth to the entire key space, unlike 

CLASH, which issues longer length keys only for 

portions of the key space that are currently “hot”.

 Figure 4 also shows the “on-demand” nature of 

server allocation in CLASH. The basic DHT protocol is 

non-adaptive—it uses all the servers to which any of the 

2N distinct identifier keys map. In contrast, CLASH 

attempts to use additional servers, only when specific 

key groups become unacceptably “hot” for a single 

server. Accordingly, Figure 4 shows that CLASH uses 

only a small fraction (approximately 70-80) of the 1000 

servers, for all three workloads A, B and C, by 

essentially redistributing the allocation of the key space 

across servers. Basic DHT, on the other hand, either 

uses too many servers (for N=12, basic DHT ends up 

using ~450-800 servers based on the workload) with 

very low utilization, or uses a very small number of 

servers in an inefficient manner, leading to service 

outages at overloaded servers.  

 Figure 4 also shows how the average, maximum 

and minimum depth of the CLASH tree changes with 

changes in the workload. In general, when the total 

traffic intensity changes (workloads B and C have 

double the traffic rate of workload A), the average tree 

depth increases to encompass a larger number of 

servers. Moreover, the binary tree becomes 

progressively more unbalanced as the workload skew 

increases, since only a small fraction of the groups are 

now very hot and must be split to greater depth. 

Accordingly, we see that the variance between the 

minimum and maximum depth for the leaf nodes in the 

CLASH tree increases with an increase in the workload 

skew.

6.3 Additional Signaling Load under 

CLASH

 Due to its distributed operation, CLASH introduces 

two forms of additional signaling load over basic DHT:  

 a) Servers must periodically exchange load 

information, as well as messages for merging and 

splitting groups. 

 b) Clients must determine the appropriate depth 

associated with their data or query key. Unlike basic 

DHT (where a lookup takes O(log(S)) message 

exchanges), a CLASH lookup requires O(log(N)log(S))

exchanges, since each of the O(log(N)) “guesses” for the 

right depth incurs O(log(S)) DHT overhead to determine 

the appropriate server (even if the iterative depth 

determination is performed by the first contacted server 

rather than the client). This depth determination occurs 

at the beginning of every virtual stream, and also 

whenever load-splitting/merging causes the client to be 

redirected to another server. 

 An adaptive mode of distributed operation also 

incurs additional state-transfer overhead during the 

splitting/ merging process—e.g., in a persistent-query 

application, a group splitting requires the parent server 

to migrate a subset of its stored queries to the target 

child. Figure 5 shows the total CLASH overhead for two 

different cases: (A) when the system has no query 

clients, and thus no state transfer overhead (since data 

objects are never stored) and, (B) when the system has 

50,000 query clients. We simulated for both Ld=50 and 

1000.

 Case (A), which captures the traffic overheads 
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ignoring any state transfers, shows that each CLASH 

server processes at most ~10-12 messages/sec across 

different workload skews and for different virtual stream 

lengths. Clearly, CLASH overheads are lower for 

longer-length streams (larger values of Ld), where keys 

change less frequently. Figure 5 also shows that, for our 

persistent query application, the state-distribution 

overhead (case B) adds very little overhead (~1-2 

messages/sec/server) to the communication cost, even 

with 50,000 query clients. Clearly, if the amount of 

shared state is too large, then this transfer overhead 

becomes a constraint. Our on-demand model of server 

allocation thus appears to be better suited to emerging 

data-intensive applications (e.g., online games, 

streaming data filtering, vehicle tracking), rather than 

traditional distributed databases (e.g., distributed file 

systems). In such newer applications, server overload 

occurs primarily while processing transient data, rather 

than storing persistent state. 

7. Conclusions and Future Work 

 We have described CLASH, a load-aware adaptive 

clustering protocol that can be combined with basic 

DHT primitives to provide a utility-oriented middleware 

for distributed data-intensive applications. CLASH 

works by dynamically varying the relevant portion of an 

object’s key, such that keys with a common prefix are 

redirected to a common server. A CLASH server 

maintains only local state, namely only key groups that 

it currently manages. CLASH clients can determine the 

appropriate server for any N-length key in O(log(N))
individual key lookups by using a distributed algorithm 

that does not suffers from load concentration effects. In 

a utility environment, intelligent workload allocation by 

CLASH can reduce the number of physical servers 

utilized by as much as 80%, compared to basic DHT. 

We are currently building a CLASH-based middleware 

for online games, including an API that game servers 

use to indicate application overload and to distribute 

application-specific state. We are also working on 

supporting range queries in CLASH. For range queries, 

the CLASH overhead vis-à-vis DHT will decrease, since 

CLASH will cluster ranges of objects on a common 

server and thus incur lower query replication overhead. 
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