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Abstract 
This paper presents our finding of a critical point that has not 
been reported thus far in the inverse kinematics of redundant 
manipulators under inequality constraints. The critical point, 
named algorithmic barrier, was first encountered in the form of 
peculiar phenomena in our experiment of 8-DOF robot, which 
we believe to have the significance in the order of so-called 
algorithmic singularity. In addition, this paper deals with the 
characteristics of optimal solutions (COS) in resolving 
manipulator redundancy under inequality constraints. 

In order to analyze the COS, analytic functions of suficient 
conditions and critical point conditions are derived. As a result, 
we find that COS is drastically affected by the introduction of 
inequality constraints. That is, COS under no inequality 
constraints is known to change only at algorithmic singularity, 
while COS under inequality constraints turns out to change at 
semi-singularity and algorithmic barrier as well as algorithmic 
singularity. 

We prove the existence the critical points and present their 
analytical properties by using a planar 3-DOF manipulator. 

1. Introduction 

This paper presents our finding of a critical point that has not 
been reported thus far in the inverse kinematics of redundant 
manipulators under inequality constraints. The critical point was 
first encountered in the form of peculiar phenomena in our 
experiment of 8-DOF robot, KAEROT [1,2]. Through 
subsequent analysis, we have concluded that this point has the 
significance in the order of so-called algorithmic singularity [3]. 
Provided below are the background and context associated with 
the critical point. 

It is well known that various positive attributes of a redundant 
manipulator result from the self-motion capability provided by 
its kinematic redundancy. According to the self-motion 
topologies, configuration space (C-space) and work space (W- 
space) of a manipulator are divided into several regions by 
critical manifolds of kinematic singularity [4]. The kinematic 
map resulting from such divisions gives valuable information for 
global path planning. 

The kinematic map, however, changes drastically and so does 
the global behavior of a redundant manipulator in the presence 
of physical limits, such as joint angle limits, obstacles, and self- 
collision [5]. More specifically, semi-singularity resulting from 
the physical limits causes a re-structuring of global kinematic 

While the two maps above are invaluable to understand the 
map 161. 
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solution characteristics of inverse kinematics for redundant 
manipulators, they do not take into account the performance 
optimization or the use of additional constraints. Remember that 
in many cases the very rationale of the redundancy is to provide 
the capability to optimize and/or use additional constraints. Then 
you may be able to understand the significance of the following 
question: What are the characteristics of optimal solutions 
(COS) under the physical limits? 

The answer to the question forms the core of our paper and 
leads to the finding of the aforementioned critical point named 
as algorithmic barrier (AB). In addition, on the basis of our 
newly obtained understanding on the COS, the extended 
Jacobian method (EIM) [3,7] can be extended to redundancy 
resolution under inequality constraints with all its advantages 
and without its shortcomings and critical points. By its 
advantages, we mean the ability to exactly optimize a 
performance measure and trace a cyclic joint configuration 
space path [8-lo]. By its shortcomings, the algorithmic 
singularity and the wrong direction of optimization [8-lo]. 

This paper is organized as follows. Section 2 presents 
inequality constrained optimality constraints and extended MCL, 
based on the necessary conditions. Then, COS under inequality 
constraints are analyzed along with numerical examples by 
using analytic functions of sufficient conditions and critical 
points. Finally, Section 3 draws conclusions. 

2. Characteristics of Optimal Solutions under 
Inequality Constraints 

2.1 Problem Statements 

In general, the forward kinematic function of a manipulator is 
given as follows: 

where x denotes an m-dimensional vector representing the 
location of an end effector, 8 an n-dimensional vector 
representing joint angle variables, and f ( )  a vector consisting 
of m scalar functions. For a redundant manipulator, r = n - m 
is greater than zero and is termed the degree of redundancy 
(DOR). Given the forward kinematic function, its inverse 
kinematics can be described as the following set: 

which constitutes called the self-motion manifold (SMM) [ I ]  
representing all inverse maps of the workspace position x . 

Physical limits, such as joint angle limits and obstacles, to be 
avoided may be naturally represented by inequality constraints 

f ( e )  = x , (1) 

M ( e )  = {e : f (e) = X} , (2) 
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as follows: 

where G, = 0 corresponds to the safe boundary of a kinematic 
constraint, and G, < 0 the permissible region outside of that 
boundary. Additional subtasks have been included with the type 
of a performance measure, H ( 8 )  E 3' , to be optimized. 

Therefore, several researchers [2,13,14] have formulated the 
manipulator redundancy resolution problem with multiple 
subtasks into the following local constrained optimization 
problem with inequality constraints [ I  I]: 

G , ( 8 ) < 0  ( i = 1 ,  ..., p ) ,  (3) 

maximize (or mimmize)H(@) 
subject to f ( 0 )  = x and g(8) I 0,  

where g(e) = [c,w c,(e) ... cp(e)]'. 
(4) 

In order to solve this problem (4), the necessary and sufficient 
conditions are required. To this end, a Lagrange function L can 
be defined as follows: 

with 

where L is rendered to a dimensionless quantity; to this end, 
1 E%"' and p E W  are assigned proper dimensions, 
respectively. The first-order derivatives of the Lagrange function 
leads to 

ue,a,p) = me) + a r ( m  -XI + p T m  (5) 

prg(e') = 0 ,  (6) 

(7) 

where h 1 (vH(e))', J = vf(e) E smxn and v = m e .  
The necessary conditions of the constrained maximization 

(minimization) under inequality constraints are already given by 
the Kuhn-Tucker conditions [15], which consists of (6), (8), and 
the sign requirements of Lagrange multipliers, p I (2)0,  along 
with the active set of A = {i IC,(O) = 0, p S ( 2 ) O ) .  In [15], one 
can ,find it in more detail and also find the corresponding 
sufficient conditions. 

In this paper, however, we redefine the active set as follows: 
(9) 

Note that this active set modified in this paper has no sign 
requirement of Lagrange multipliers aiid thus is different from 
the original active set in [15]. Without the sign requirement, our 
approach presents a wider set of necessary conditions 
irrespective of the direction of optimization (maximization or 
minimization). Furthermore, 'conditions for the direction, of 
optipization exist only in the sufficient conditions proposed in 
this paper. This reorganization of the necessary and sufficient 
conditions is much more helpful for the analysis of the COS, 
which will be turned out later in this section. Then, the next two 
subsections will deal with deriving the new necessary and 
sufficient conditions,. respectively. 

A = {i ici(e) = o} 

2.2 - Inequality Constrained Optimality Constraints 
and Extended ,Measure Constraint Locus 

First of all] let us define a new index set given by . ,  

s = {i ic(e),= 0, p, = 01, (10) 

which is called the switching set in this paper since a switching 
of an inequality constraint from active state to inactive one or 
vice versa occurs when the switching set exists. Subtracting the 
switching set from the active set lead to another set given by 

In this paper, this is called the effective set, which is needed to 
derive the necessary conditions of this subsection and the 
subsequent sufficient conditions in a consistent way. The 
number of indices in effective set is denoted by @, with 
0 5  (J I r .  Let us define g, (E 3,) as the vector with 
G, ( i ~  @) as an element and p, as the corresponding 
Lagrange multiplier vector. 

4, = A - S  = { i  IC,(@) = 0, p, # O}. (1 1) 

Since p, = 0 ( j  @), equation (8) leads to 

h(e*)+J(e*)Ta+vg, (e*)rpp  = 0 .  (12) 

Z = [J,Adj(J,") i -det(J,)Z,] E R'"" (13) 

zh(e) +zvg,(eirp, = o (14) 

Meanwhile, Chang[7] proposed a full-rank r x n  matrix Z 
representing the null space matrix of the Jacobian J as follows: 

where J = [J,' i .ITr]. Premultiplying both sides of (12) with 
2 leads to 

since ZJ' = 0 .  If @ = (} ,  then (14) can be reduced to the 
following r optimality constraints: 

Zh(8') = 0 E R', (15) 
which are exactly the same as those of the EJM [6]. Because of 
the effective set, however, (14) still includes Lagrange 
multipliers pQ. In order to get pQ out of (14) similar to (15), let 
us define 

and 

Substituting these two relations into equation (12) leads to 
h+J;A,  = O .  (18) 

Similar to 2 ,  we can derive 2, E Ri(r-4)xn representing the null 
space matrix of J4 with the relationship of ZJ,' = 0 .  Then, by 
premultiplying both sides of (1 8) with 2+, we obtain 

Z,h = 0 E R'-'. (19) 
Finally, we have r independent equations, called inequality- 
constrained optimality constraints (ICOC), as follows: 

g,(e) = o  €914 
(20) 

which constitute the new necessary conditions of the constrained 
optimization problem under inequality constraints. 

In order to effectively visualize in C-space a set of optimal 
solutions satisfying the necessary conditions (20) of constrained 
optimization under. no inequality constraints, the measure 
constraint locus (MCL) [7] was proposed as the following set: 

(21) 
However, the MCL cannot be applied to inequality constrained 
optimization. Thus, we define a new MCL under inequality 
constraints, called the extended MCL (EMCL), as the set of 
configurations satisfying the ICOC such that 

Z,h(O') = 0 E WQ' 

Y = {e :Zh(8) = O}. 
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Y, = {e :g,(e) = o, z,h(e) = o}. (22) 
Since SMM and EMCL are homogeneous solutions and 
optimality constraints of a constrained optimization problem 
under inequality constraints, respectively, a set of inverse 
kinematic solutions can be uniquely determined by overlapping 
them in C-space. Further, EMCL can be classified into the 
following two types: one is EMCL on free space (EMCLFS) 
given by 

(23) 
and the other is EMCL on physical limits (EMCLPL) given by 

Then, the switching set exists where the EMCLFS and EMCLPL 
meet each other. 

Y~ ={e :z,h(e) = o}. 

Y~ = {e :g,(e) = o}. (24) 

2.3 Sufficient Conditions 

Redundancy resolution methods using only necessary 
conditions often result in wrong direction of optimization. That 
is, even if maximization is needed, minimization may occur. 
Hence, a method is needed that serves as a discriminant to 
discern the right direction of optimization. In a redundancy 
resolution problem under no inequality constraints, the 
characteristic of an optimal solution (COS) means whether the 
solution is (local) maximum, minimum, or algorithmic 
singularity. In general, COS can be easily identified by 
sufficient conditions. 

This idea can be extended to a redundancy resolution 
problem under inequality constraints. That is, an optimal 
solution satisfying the necessary conditions (20) may be (local) 
maximum, minimum, or else. In order to identify COS, in this 
section, we propose simple and analytical functions for 
sufficient conditions of redundancy resolution (or constrained 
optimization) with the following theorem. 

Theorem 1 (sufficient conditions of constrained maximization 
(minimization)): On a non-singular joint configuration e' 
satisfying (l), (3), and (20), 8' is a local maximum (or 
minimum) point for the constrained optimization problem if 
&(e*) is negative (or positive) and if C,(O') is negative (or 
positive) definite such that 

(25) 

(26) 
where D = [O,xn i I,,,] E !R,x(n+)) denotes a kind of 
selection matrix and W, the weight matrix for dimensional 
consistency. 
hoof : proof is omitted by the page limit. 

p,(e*)  = -D(~,w,-IJ:)'Jpw,-lh(e*) E w, 
c,(e') = v(z,h)z;(e') E w@, 

By using Theorem 1 of the sufficient conditions, EMCL can 
be further divided into max. EMCL and min. EMCL. Note that 
there exist critical points at which max. EMCL and min. EMCL 
meet each other, some of which are neither maximum nor 
minimum. Next subsection will analyze the critical points. 

2.4 Critical Points 

As one of redundancy resolution methods under no 
inequality constraints, the well-known extended Jacobian 

method (EJM) is known to have the problem of algorithmic 
singularity (AS) [8-lo]. Furthermore, the invertible work space 
of EJM is limited by AS 181. AS always occurs at a point on the 
MCL where SMM is tangent to MCL [8-lo], as is illustrated in 
C-space in Fig. 1. Note that MCL under no inequality 
constraints is almost the same as EMCLFS under inequality 
constraints. In the left of Fig. 1 ,  thin solid lines with 
M, ( i  = 1,2,3) denote SMM, thick solid lines max. MCL, and 
thick dashed lines min. MCL. In Fig. 1 ,  MCL meets Mi at two 
points P, and e, while MCL is tangent to M2 at 8. Let us 

define z = Z(' and y = (VZ,hr at each point. Then, C4 = y'z. 

As the result, we obtain C, < 0 (max.) a t e ,  C, > 0 (min.) at 
, and C+ = 0 (singular) a t e ,  which is summarized in Table 1.  

This feature can also be easily understood through the plots of 
performance measure on M, ( i  = 1,2,3) in the right of Fig. 1. 
That is, AS always exists at the border of max. MCL and min. 
MCL. Therefore, when the EJM is applied, the characteristic of 
an initial equilibrium solution (max. or min.) is invariant before 
AS, if any [lo]. Consequently, COS changes only at AS along 
MCL in constrained optimization under no inequality constraints. 
Thus, it is easy to believe that this still holds in constrained 
optimization under inequality constraints. 

M, (i = 1,2,3) : SMM, z = Z(', y = (VZ,hr 
Fig. 1 : Algorithmic singularity 

Table 1 : COS at the three points in Fig. 1 through Fig. 3 

I (c) of Fig. 3 I pk < 0 I p, sign-indefinite (AE33) I pk > 0 1 
Note: C, < 0 and pUt < 0 denote maximum state, while 
C, > 0 and pt > 0 minimum state. 

In this paper, however, we found that inequality constraints 
drastically affect the COS. That is, COS changes at semi- 
singularity ( S S )  and algorithmic barrier (AB) as well as AS 
along EMCL. On the one hand, S S  is a kinematic condition in 
which the end-effector is unable to generate velocity in a 
particular direction, while still capable of generating velocity in 
the opposite direction[5]. That is, S S  is uni-directional, while 
kinematic singularity (KS) is bi-directional [6]. However, the 
effect of S S  on the global behavior of redundant manipulators is 
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almost the same as that of KS. The fundamental property of S S  
is that it always occurs at a point on the boundary of physical 
limits where SMM is tangent to such a boundary [5,6], which is 
illustrated in Fig. 2. The shaded regions with G, > 0 in Fig. 2 
denotes the inside of obstacles. S S  is originally divided into two 
cases: one is smooth tangency case (a) and (b); and the other is 
non-smooth tangency case (c). In this paper, we further divide 
the smooth tangency case into two types because S S  of (a) is 
inescapable by self-motion, while S S  of (b) is escapable. As the 
result, there exist three types of semi-singularity. Let us define 
v = (VGk)r at the three points. Then, we obtain 

p = p  =-- ''/I The COS at each point in each type of semi- 
zTv ' 4 b  

singularity is also shown in Table 1. From the Fig. 2 and Table 1, 
it turns out that COS also changes at SS. 

AS 

SSI 
sS2  
sS3 

AB1 

AB2 

(a) Semi-singularity type-1 (b) Semi-singularity type-2 

C,(O') is singular 
pk(O') = *CO and inescapable by self-motion 
pr(O') = +- and escapable by self-motion 
pk(O') (# 0) is sign-indefinite and inescapable by 
self-motion 
pk(8*)  = 0 and C,(e') is positive definite 

pb(O*) = 0 and C,(O*) is negative definite 

M, (i = 1,2,3) : SMM 

z=Z%, v=(VGk) ' ,  

(c) Semi-singularity type-3 
Fig. 2: Semi-singularities 

(a) Algorithmic barrier type-1 (b) Algorithmic barrier type-2 

M i  (i = 1.2.3) : SMM 

z=z:, v=(vGb)r, 

Y = (VZPhT 

(c) Algorithmic barrier type-3 
Fig. 3: Algorithmic barriers 

On the other hand, AB as well as AS does not affect the 

global behavior of redundant manipulators, different from KS 
and SS. That is, AB and AS occur only when we use 
optimization of a performance measure additionally. Fig. 3 and 
Table 1 illustrates the three types of AB and why COS changes 
at each AB. Note that AB type-1 is called AB against 
maximization, AB type-2 AB against minimization, and AB 
type-3 against both of them. In other words, AB type-1 is not 
AB for minimization and AB type-2 is not AB for maximization 
since there exists a way on MCLFS along which COS does not 
change. It is noteworthy that the condition of AB3 (pk  is sign- 
indefinite) is the same as that of SS3. The only difference 
between the two depends on whether the point is escapable by 
self-motion or not. 

In the end, Table 2 summarizes when each critical point 
occurs in general. Note that thanks to the reorganization along 
with the new active set and the effective set, the sufficient 
conditions and the critical point conditions can be derived with 
the same function in a consistent way. 

Table 2: Conditions of critical points 
I Type I Conditions of critical points I 

1 AB3 I p&(8*) (# 0) is sign-indefinite and escapable by self- I 

) ll = 3.0 
l2 = 2.5 

2.5 Examples 

By using examples, in this subsection, we will prove that 
COS changes at AS, SS, and AB along EMCL and will analyze 
the global properties of COS and EMCL. Consider a planar 3- 
DOF manipulator with link lengths of ll = 3.0, 1, = 2.5, and 
l3 = 2.0 units as shown in Fig. 4. 

As for a performance measure to be maximized, we choose 
the manipulability measure [12], which have been widely used 
for a subtask of dexterity improvement and singularity 
avoidance and which is given by 

H ( 8 )  = ,/-. 
As for physical limits, the following three situations are 
considered in turn: 

a) under no physical limits, 
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b) under angle limits of the second joint (60" I 8, 5 265"), 
c)under angle limits of the second and third joints 

(60" I 8, I 265" and -120" I 8 , s  170"). 

2.5.1 under no physical limits 
Irrespective of the measure, the simulated manipulator has 3 

(escapable) KS's, that are shown as squares in Fig. 5(a). Their 
corresponding SMM, shown as thin solid lines in Fig. 5(a), 
globally divides C-space into 4 C-bundles, respectively, in light 
of self-motion topology'. 

Meanwhile, if we consider optimization of the manipulability 
measure in this case, MCL (or EMCLFS) can also be shown in 
Fig. 5(a), where thick solid and dashed lines represent max. 
MCL and min. MCL, respectively. As for max. MCL satisfying 
both 'necessary and sufficient conditions, there are 6 groups 
denoted by A1 through C2. At the ends of max. MCL's, we can 
easily identify 10 AS's, shown as triangles in Fig. 5(a), as the 
points where SMM is tangent to MCL and where max. MCL 
meets min. MCL. 

Note that max. MCL also meets min. MCL at KS with 
8, = 8, = 0". However, this kind of KS is excluded in this 
analysis since it is on the boundary of the workspace. 
Consequently, COS changes only at AS in constrained 
optimization under no inequality constraints. 

2.5.2 under a joint angle limit (1 JAL) 
Fig. 5(b) shows that due to a joint angle limit, the manipulator 

has 2 KS's, 2 SSl's and 2 SS2's, which divides C-space into 6 
C-bundles. As denoted by circles in Fig. 6, SS1 and SS2 occur at 
a point on the boundary of the joint angle limit, where SMM is 
tangent to such a boundary. 

Similarly, if we consider optimization of the measure in this 
case, along with EMCL, 8 AS's, 4 -1's and 4 AB2's appear 
additionally at which COS changes. As for max. EMCL, there 
are 8 groups denoted by A1 through E, with SS, AS and AB at 
their both ends. To sum up, it is verified that COS under 
inequality constraints is different from those under no inequality 
constraints and changes at SS1, SS2, AB1, and AB2 as well as 
AS. 

' 

2.5.3 under 2 joint angle limits (2 JAL's) 
In this case, there newly appears 1 SS3, shown as a filled 

circle at 8, = 60° and 8, = 170" in Fig. 5(c). As the result, the 
manipulator has 1 KS, 2 SSl's, 3 SS2's and 1 S S 3 ,  which divide 
C-space into 7 C-bundles different in self-motion topology. 

Similarly, if we consider optimization of the measure in this 
case, along with EMCL, 7 AS's, 7 ABl's and 3 AB2's appear 
additionally at which COS changes.* As for max. EMCL, there 
appear 10 groups denoted by A1 through H, with S S ,  AS and 
AB at their both ends. 

Through the examples, it is finally verified that COS changes 
at AS, S S  and AB, while self-motion topology changes at KS 
and SS, and that critical points exist at the ends of EMCL groups. 
Thus, redundancy resolution problem can be transformed into 
selecting and following an appropriate EMCL group. 

' The physical motion of the links in a self-motion are similar only in a 
C-bundle, but changes when crossing a singularity manifold [l]. 

AB3 does not appear in these three examples, but it is easy to show 
that COS also changes at -3. 

. -. 

(a) under no inequality constraints 

(b) under 60" 5 8, I 265" 

(c) under 60" 5 8, I 265O and -120° I 8, 5 170° - (maximum locus) m I (minimum locus) 
0 (KS) 0 (SS1, SS2) 0 (SS3) h (AS) A (ABl) 

Fig. 5: EMCL and singularity manifolds 

- (singularity manifold) 
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Table 3: Existence of Critical Pc 

Equality 
Constrained 
Optimization 

nts 

Inequality . Constrained 
Kinematics 

Inequality 
Constrained 

Optimization 

Meanwhile, it is also noteworthy that different kinds of 
critical points appear according to situations. More specifically, 
as shown in Table 3, when only the forward kinematic function 
is considered (in case of equality constrained kinematics), there 
appears only KS. When an optimization problem is added to this 
situation (in case of equality constrained optimization), AS 
appears additionally. Meanwhile, when there exist physical 
limits (in case of inequality constrained kinematics) without any 
measure, SS appears with KS. In case of inequality constrained 
optimization, finally, all critical points including AB show up. 

3. Conclusions 

The characteristics of optimal solutions (COS) in resolving 
manipulator redundancy under inequality constraints were first 
analyzed in this paper, which are greatly different from those 
under no inequality constraints. To visualize COS, we proposed 
the extended measure constraint locus (EMCL), which is the set 
of configurations satisfying the necessary conditions for 
constrained optimization under inequality constraints. 

As the results, in this paper, it turned out that based on the 
COS, optimal solutions are divided into local max., local min., 
algorithmic singularity (AS), semi-singularity (SS) and 
algorithmic barrier (AB). In addition, COS under no inequality 
constraints is known to change at AS, while COS under 
inequality constraints turned out to change at critical points such 
as SS and AB as well as AS. 

The analytic functions of sufficient conditions and critical 
points are crucial to this analysis. With the help of these 
functions, we do not need to depend on the graphical analysis of 
EMCL. 

By using the necessary conditions and the analytic functions 
for COS, a new redundancy resolution method3 can be made, 
which is an exact extension of the EJM to redundancy resolution 
under inequality constraints and which can exactly perform the 
main task starting from the best initial configuration while 
avoiding physical limits and exactly optimizing a performance 
measure with cyclic behavior. 
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