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ABSTRACT 
Recently the Time Delay Control with Switching Action 
(TDCSA) method has been proposed as a promising 
technique in the robust control area, where the plant has 
unknown dynamics with parameter variations and 
substantial disturbances are present. When TDCSA is 
applied to nonlinear system having frequency resonances, 
TDCSA reveals chattering problem or undesired vibration. 
This undesired vibration and chattering problem come from 
the switching action and high gains. Fast sliding mode 
dynamics or fast desired error dynamics improve the control 
performance, but excite the unmodeled resonance modes 
and cause undesired vibration or chattering. To solve this 
problem, we proposed an integral sliding surface design 
method using frequency-shaping features. This method is to 
incorporate frequency-shaping LQ design techniques into 
an integral sliding surface. By experimental results, the 
frequency-shaped integral sliding surface was shown to be a 
practicable for a single-link flexible arm. Motion control of 
a single-link flexible arm with unmodeled flexible modes 
was taken into account. The desired trajectory was tracked 
while minimally exciting the unmodeled flexible modes. 

1. Introduction 

Recently, the Time Delay Control with Switching Action 
(TDCSA) method [3, 41 has been proposed as a promising 
technique in the robust control area, where the plant has an 
unknown dynamics with parameter variations and 
substantial disturbances are preset. Specifically, TDCSA 
consists of Time Delay Control (TDC) [SI, which estimates 
the amounts of an unknown nonlinear dynamics and 
unexpected uncertainties and cancels them, and a switching 
action [7] based on sliding mode control. The switching 
action, a discontinuous input used in sliding mode control, 
keeps a tracking error on predefined sliding surface which 
matches the desired error dynamics of TDC. Namely, the 
switching action compensates for the time delay estimation 
error of TDC and makes the TDC more robust. Its 
effectiveness has been demonstrated through the successful 
application to a 21-ton robotic excavator [3] and a DC 
motor [4]. 

However, when TDCSA is applied to nonlinear system 
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having high frequency resonance modes which cannot be 
modeled completely by a rigid body model, undesired 
vibration or chattering is occurred. This problem, which 
Sliding mode control reveals also, results from the 
switching action and high gains. More specifically, a 
flexible manipulator has high frequency resonance modes. 
If we design fast sliding mode dynamics or fast desired 
error dynamics to improve the control performance, high 
frequency control inputs excite resonance modes and may 
cause undesired vibration or chattering. To avoid this 
excitation, the sliding mode dynamics or desired error 
dynamics should have a slow response. A typical method to 
suppress chattering problem is the introduction of a 
smoothing function instead of the signum functions. Such a 
smoothing function, however, lowers the robustness to 
steady disturbances and a steady error occurs. So, new 
method is required to eliminate the undesired vibration or 
chattering. 

To solve this problem in sliding mode control, several 
researchers have studied the sliding surface design method 
with frequency-shaped cost functional [2, 6, 91. Gupta [l] 
proposed frequency-shaping linear quadratic (LQ) design 
method and applied it to flexible structure control with 
success. Young and Ozgiiner [9] have proposed the sliding 
surface design method using frequency-shaping linear 
quadratic (LQ) design techniques, which Gupta [2j 
proposed. In this method, the state space is extended to 
include an additional observer dynamics. The new state is 
guided by a linear quadratic regulator (LQR) optimization 
law to establish certain frequency characteristics for the 
original dynamics. Therefore, an optimal sliding surface 
considering unmodeled dynamics is designed for not 
exciting the unmodeled dynamics. Moura, Roy and Olgac 
[6 ]  improved sliding mode control with perturbation 
estimation (SMCPE) by incorporating the above frequency- 
shaping features into the sliding function. For frequency 
shaping control design, Koshkouei and Zinober [Z] 
proposed some new methods for designing the sliding 
surface and sliding mode control when the LQ weighting 
functions are not constant at all frequencies. Almost all the 
research works above, however, is limited to a PD type 
sliding surface. There have been no researches proposing 
the design method of an integral sliding surface, which 
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should be used in TDCSA, using frequency-shaping 
approach. 

In this paper, we propose the suitable integral sliding 
surface design method using frequency-shaping features for 
TDCSA. By incorporating frequency-shaping LQ design 
techniques into the integral sliding surface, the performance 
of TDCSA is more improved. TDCSA using a frequency- 
shaped integral sliding surface is shown to be a viable 
strategy for dynamics structures with unmodeled dynamics 
as well as dynamics uncertainties. Tests are conducted on a 
single-link flexible arm. 

This paper is structured as follows. Section 2 will briefly 
introduce TDCSA law. In Section 3, we will propose the 
design method of the frequency-shaped integral sliding 
surface. Experimental results verifying the effectiveness of 
the proposed frequency-shaped integral sliding surface will 
be presented in Section 4 

2. Time Delay Control with Switching Action 
(TDCSA) 

In this section, TDCSA will be briefly introduced and the 
stability of TDCSA using an integral sliding surface will be 
analyzed. 

2.1 TDCSA [3,41 
The class of plants we are concerned with can be 

expressed in the following nonlinear differential equation: 
x ( f )  = f ( x , t )  + B(x , t )u ( t )  + d(t) ,  ( 1 )  

where x ( f ) t  R" denotes the state vector of the 

plant, u ( t ) ~  R' the control input vector, f(x,t)E R"* the 
nonlinear function in companion form, which may be 
unknown; d(f)E R""' unknown disturbances; and 

B ( x , / ) E  R""' the control distribution matrix, the range of 
which should be known. In this plant, i t  is assumed that the 
states and their derivatives are measurable. If we select a 
constant matrix B which is located within the known 
range of B(x, t )  and useB,  Eq. ( I )  is rearranged into the 
following: 

(2) 
where H(/) consists of terms representing uncertainties and 
time-varying factors, which are expressed as 

x ( t )  = &(t) + H ( t )  , 

H(t) =f(x,t)+{B(x,f)-B)u(t)+d(t). (3) 
In addition, H(t)must be satisfied with the following 

matching condition 
(1 -BB) (xd  -Arne - H) = 0 .  (4) 

TDCSA consists of Time Delay Control (TDC) and 
switching action of SMC. TDC makes, on the one hand, the 
plant accurately follow a desired error dynamics in the 
presence of unknown dynamics and unexpected disturbance. 
On the other hand, the switching action keeps the tracking 
error on the sliding surface so that the controller 
consequently becomes robust. The reason that the integral 

sliding surfnce is used for switching action is to match the 
desired error dynamics of TDC with the derivative of the 
sliding surface. If the derivative of the sliding surface is not 
equal to the desired error dynamics, the switching action 
acts differently from TDC so that the control performance 
deteriorates. 

The desired error dynamics is defined with a reference 
model as the following: 

where e ( t ) = x , ( t ) - x ( t ) E  R" is the tracking error vector, 

xd E R" the desired trajectory vector, and A, E Rv a 
constant matrix of the desired error dynamics. 

The TDC law that meets the desired error dynamics (Eq. 
(5)) is obtained as 

where B denotes a pseudo-inverse of 
(B' = (pT&'Br )d and H(t) the estimate of H ( t ) .  If 
L is very small and H ( t )  does not vary largely during 

the L times, the estimated H ( t )  can be obtained by 
using both Eq. (2) and the fact that H ( t )  is usually a 
continuous function. More specifically, when L is small 
enough, then 

(7) 
Combining Eq. (7) with Eq. (6), the TDC law is 

obtained as follows: 
u.,(f) = u,,,(f - L) + B*[x, ( t )  - x(t - L )  -Arne@)]. (8) 

More details about the stability condition and the design of 
TDC can be found in [SI. 

L should be sufficiently small enough for TDC to meet 
the desired error dynamics of Eq. (5). The value used for L , 
however, is set to be that of the sampling time when TDC is 
implemented in a real-time controller. Therefore, the 
variation of system nonlinearities and disturbances 
occurring during the time delay ( L ) ,  cause time delay 
estimation (TDE) error as follows: 

(9) 

e( t )  = Arne(?), (5)  

u,,(t) =B'[xd(f)-H(t)-A,e(t)], (6) 

80) = H ( t  - L )  = x ( f  - L ) -  &(t - L )  . 

H(r) - H(t) = H(f) - €I($ - L)  = AH([) . 

e(?) = Arne(?) - BB'AH(1). 

Because of the TDE error, TDC does not have the desired 
error dynamics of Eq.(5), but the following error dynamics: 

(10) 
In order to match the desired error dynamics (Eq. (5)) 

with the sliding surface ( s ( t )  = 0 ), we use the integral 
sliding surface as follows: 

s(t)=B+~[e(s)-Arne(7)1ds,  (11) 

where the sliding surface has the initial value of zero 
( s ( t  =0) = 0 )  and its derivative (Eq. (12)) is equal to the 
desired error dynamics (Eq. (5 ) ) .  

(12) 
Finally, the TDCSA is proposed by adding the switching 
action to TDC, as follows: 

S ( f )  = B'[e( t )  - Arne(?)] . 

203 Proceedings of the American Control Conference 
Denver, Colorado June 4-6.2003 



u(t) = u(f - L )  + B'[x,(t) - x(t - L )  - Arne@)] 

where KE Rn' denotes a switching gain matrix, which is 
obtained from the following stability condition:se R ,  the 
sliding surface vector. 

. (13) 
+ K . m ( s ( t ) )  

2.2 Stability Analysis of TDCSA 
For the stability analysis of the overall system, the second 

method of Lyapunov is used. If the Lyapunov function is 
selected as V = s ' s l 2 ,  its time derivative is as follows, 

V = sTs = sTB'[e(t) - Arne(t)] 

= sTB'[X,(t) - Bu(t)- H(t) - A,e(t)l 

=s'~'[x,(t)-~(B'(x,(r)-H(t)-A,e(t)) 

= sTB'[(I - BB*)(x,(t) - Arne@) - H(r)) 
-BB'AH(r) - BKsgn(s)] 
= s~[-B'AH(~) - &gn(s)] 

+Ksgn(s)] - H(r) - Arne@)] (14) 

Therefore, the following condition is needed so that the 
time derivative of the Lyapunov function should be negative 
definite: 

( ~ 1 ~ ~  > ~ ( B ' A H ) ~ ~  for i = I,. . . , r . ( 1 3  
In other words, the magnitude of the switching gain ( K  ) 

must be larger than that of the term due to the TDE error. 

3. Frequency-Shaped Integral Sliding Surface 

In this section, we will propose integral sliding surface 
using frequency-shaping features for TDCSA, by 
incorporating frequency-shaping LQ design techniques [ 11 
into the integral sliding surface. 

3.1 Frequency-shaped integral sliding surface 
The design method of a frequency-shaped integral sliding 

surface is presented below. A general second-order system 
is taken for simplicity. However, the technique is easily 
expandable to arbitrary order 

Let define the cost function using frequency dependent 
weighting matrices 

I 
T- 

J '= 5 { [Q, W e j  (w)l' + Q, 4: (w) + i; (w)} dw ( 16) - 
where e; = x j , ( f ) - x j ( t )  and E j  = f .  id ( t ) - i j ( f )  is 

tracking error and tracking velocity error, respectively; 

qj = Le,(t)dt is the integral value of e j  ; and Q, 2 0 is a 

weighting value forq,. If we choose Qj(w) to have low- 
pass characteristics and set Q, to be zero, the 
minimization of J will penalize high-frequency components 
on the state ( e j . e j ) ) .  This is true since Q,(w) is reduced at 

high frequencies, consequently e; terms become dominant, 

If we define Q, to be over zero, the integral term ( 4,) 
have equal weighting for all frequencies. The time domain 
equivalent ofEq. (16) is given as 

J = j [ y : ( t )  + Q,qj(t) + i:(t)ldr (17) 

where y , ( r )  is the output of a nj  -order filter defined by 

Q,(w) with e j  as the input. The following is the state- 
space representation of this input-output relation: 

i j ( t )  = Fjzj(t) + Gjej ( t )  

~ 

0 

(18) 

where z je  R"' is the filter state vector and Fi,Gj,mj,Dj 
have corresponding dimensions. Eq. (17) can be rewritten 
as 

y j ( t )  =@izj(r)+D,ej(t) 

~ 

J = j { w l j Q ~ , ~  +w~,wZj}dr 
0 

where 

wlj =[ZT qj  e,], 

w = e .  2; I 

Note that wli and wZj are related through the linear time 
invariant (LTI) system 

Wlj = A W , ~  +Bw,, 

where A =  i" 0 O 0 Gj] 1 , B =  r"] 0 
(20) 

l o  0 0 1  14 
The conventional optimal solution to the LQR problem of 

Eq. (19) and Eq. (20) is 
wZj  -Kiwlj 

(21) 
where Kj = AgT 

whereT is the solution of the Riccati equation 
TA,j + AZT - TA,AZT + Q  = 0 (22) 

Eq. (21) expresses the desired relation among the state 
variables, which is satisfied by defining 

s j  = ij + Kj q = ij + Hjz, + K,q + K,ej (23) [::I 
and forcing the system to stay on si = 0 .  

3.2 TDCSA using Frequency-shaped Integral Sliding 
Surf ace 

The desired error dynamics is obtained from the relation 
between the desired error dynamics of TDC and the integral 
sliding surface - the derivative of the sliding surface is - - 
equal to the desired error dynamics. 
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i;, + K2e j  + Klej + H,i, = 0 

Using Eq. (23) and Eq. (24). the TDCSA using 
frequency-shaped integral sliding surface is obtained as 

u(r)=u(f -L)+B*[xd(t ) -x(r  -L)-A,e(t)+Hz(r)l 
(25) 

+Ksgn(s(t)) 
where 

4. Experiment 

To verify the effectiveness of the proposed frequency- 
shaped integral sliding surface, experiments were 
performed on a single-link flexible arm like as Fig. I. 

4.1 Single-link flexible arm 
This single-link flexible arm consists of a flexible arm, a 

following arm, a linear guide, two encoders and a motor. 
The material of the flexible arm is spring steel plate. The 
following arm is located over the flexible arm to measure 
the tip displacement of the flexible arm relative to the angle 
of motor. Encoder 2 senses the angle of the following arm 
and detects the tip displacement. The linear guide, 
connecting with the following arm and the flexible arm, is 
located to minimizes the friction force and prevent the warp 
of the flexible arm. 

The single-link flexible arm used at this experiment can 
be modeled simply as clamp-free model as shown in Fig. 2. 
The mathematical. model of this arm can be derived by 
using the assumed mode method associated with 
Lagrangian formulation [5 ] .  If first flexible mode is only 
considered, the approximated mathematical model of this 
arm is 

I Mlor 

Enrodut I -.-- 
Figure 1 : Experimental setup of single-link flexible arm 

t 

motor 
Figure 2 : Clamp-free model of flexible arm 

where S, and 8, are the angles of motor and tip, 
respectively, as shown in Fig. 2; k is time-varying spring 
coefficient; gj is viscous term; M, is inertial term and z 
is the motor's torque 

4.2 Controller Design 
Given the desired trajectory about the angle of motor 

(8, ), the control objective is to control the angle of motor 

while keeping (+',I as small as possible. We assume that the 

flexible arm is rigid. 
Now we consider a reduced order one-link model of the 

flexible arm as follows: 

h 7 e l + H ( t ) = z  (27) 
where 3 is a constant value representing the known range 
ofM,,(B,), whereas H ( f )  consists of terms representing 
uncertainties and time-varying factors. 

For Eq. (27), without considering the resonance mode, 
original TDCSA law is obtained as follows: 

u( t )  = u ( r - ~ ) - M e , ( t - ~ ) t  Ksgn(s(r)) 
(28) th7[ad(f) + KV(Bd -4') t K , ( Z  -8,)l 

where 
s ( f )  = e(r) + K,e(r) + K, je(t)dr - e ( r  = 0) - K,e(r = 0) , the 

value of gains are selected: = 0.0001 I ,  Ku = 6 .  K, = 9, 
and K = 0.001. 

For step input (8, = -60',6, = gd = O ) ,  original TDCSA 
is applied to the single-link flexible arm. Fig. 3 shows the 
response of the flexible arm to the step input. Fig. 4 shows 
the power spectral density of8,. As shown in Fig. 4, the 
unmodeled flexible mode is located at 0.7 Hz. Because this 
unmodeled flexible mode, the oscillation exists in the 
response of 8, (Fig. 3 (c)). This oscillation affects the 
response of 8, , as shown in Fig. 3 (a) and (b). The 
unmodeled mode drops the overall control performance. 

In order that the flexible mode excitation is minimized, 
now we design a frequency-shaped integral sliding surface. 
The peak frequency of unmodeled dynamics is 0.7Hz (Fig. 
4). Firstly the cost function filter ( Qj of Eq. (16)) is 
selected as 
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I 
10 20 30 

ll",SB*Cl IlrnBI.BC1 

Figure 3 : Step response of the flexible arm 
using original TDCSA 

which is 4th butterworth filter having the cut-off frequency 
of 0.7Hz. The state-space representation of Q , ( p )  
defines F, , G I  , 'D, . and D, . The weighting value ( Q ,  of 

Eq. (16)) for integral error ( q  = le(t)dt ) is selected to be 3 
[radls]. Following section 3. I ,  the frequency-shaped sliding 
surface is 

s * ( t )  = i ( r )  + 2.573e(t) + 3.0je(t)dr 

+0.310z,(t) + 3.153z,(f) + 13.688z3(t) 
+25.513z,(t)-e(0)-2.573e(O) 

(30) 

From Eq. (30). the desired error dynamics is obtained as 
follows: 

e ( t )  + 2.5731(1) + 3.0e(t) + 0.3 102, 
+3.153i2 +13.6882, +25.513z4 = O  (31) 

By using Eq. (30) and Eq. (31), TDCSA using 

FFTa102 
105 , 

10 lo- 102 10'' lo" 

heqlnrl 

Figure 4 : Power spectral density of. 6, 

1 
10 10 30 

Umebecl tiW[*eCl 

Figure 5 : Experimental results for step input (solid line 
stands for TDCSA using a frequency-shaped integral sliding 

surface; and dotted line for original TDCSA) 
trequency-shaped integral sliding surface is obtained as 
follows: 

U ( t )  = U ( f  - L) -@&t - L) t W[Bd( t )  
+2.573e(t)+3.0e(f) +0.31Oil +3.1532, (32) 

~13.6882, t 25.5132,]+ Ksgn(s'(t)) 
Fig. 5 shows the step responses of the flexible arm with 

TDCSA using a frequency-shaped integral sliding surface. 
Fig. 6 shows the power spectral density of 6, . In 
comparison with the responses using original TDCSA 
(dotted line), the oscillation of 0, and 0, is reduced. As 
shown in Fig. 6, the excitation of the first flexible mode at 
0.7Hz is suppressed. Accordingly, the above experiment 
results show that the frequency-shaped sliding surface can 
avoids the excitation of the first flexible mode. 

FFT 01 6z 

Figure 6 : Power spectral density of 0, (solid line 
stands for TDCSA using a frequency-shaped integral sliding 

surface; and dotted line for original TDCSA) 
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5. Conclusion International Journal of Control, Vol. 57, No. 5, pp. 1005- 
1019. 

When TDCSA is applied to nonlinear system having high 
frequency resonance modes, undesired vibration or 
chattering is occurred. This problem results from the 
switching action and high gains. Fast sliding mode 
dynamics or fast desired error dynamics improve the control 
performance, but excite the unmodeled resonance modes 
and cause undesired vibration or chattering. To suppress 
this undesired vibration or chattering, we proposed the 
integral sliding surface design method, which is suitable for 
TDCSA, by using frequency-shaping features. This method 
is to incorporate frequency-shaping LQ design techniques 
into an integral sliding surface. 

By experimental results, the frequency-shaped integral 
sliding surface is shown to be a practicable for a single-link 
flexible arm. Motion control of a single-link flexible arm 
with a unmodeled flexible modes is taken into account. The 
desired trajectory is tracked while minimally exciting the 
unmodeled flexible modes. 

This design method of a frequency-shaped integral 
sliding surface will he useful to SMC using an integral 
sliding surface. 
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