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Vector Watermarking Robust to Both Global
and Local Geometrical Distortions

Dong-Hyuck Im, Hae-Yeoun Lee, Seung-Jin Ryu, and Heung-Kyu Lee

Abstract—A blind watermarking algorithm for vector graphic
images is presented. The algorithm is resilient to both global and
local geometrical distortions. The polygonal line is represented
by the wavelet descriptor. An additive watermarking scheme is
used to embed the watermark by slightly modifying the wavelet
descriptor, and that causes invisible distortions to the coordinates
of the vertices. The invariant properties of the wavelet descriptor
ensure that the presented algorithm is resilient against both global
and local geometrical distortions. Using vector graphic images
from contour maps, we demonstrate that the presented algorithm
outperforms the algorithm based on the Fourier descriptor.

Index Terms—Local geometrical distortion, robust water-
marking, vector watermarking, wavelet descriptor.

I. INTRODUCTION

V ECTOR graphic images are widely used in digital maps,
geographical information systems, cartoons, and 2-D

graphics. The copyrights of these images need to be protected
when they are used commercially. Digital watermarking pro-
vides such protection. While numerous watermarking schemes
have been developed for raster graphic images, a limited
number of schemes have been developed for vector graphic
images, which use geometrical primitives such as points, lines,
curves, and polygons.

It is an important challenge for most current watermarking al-
gorithms to ensure that they are robust against geometrical dis-
tortions [1]. Global geometrical distortions do not remove the
embedded watermark. However, they desynchronize its location
and make automatic blind detection impossible. Local geomet-
rical distortions are particularly difficult to resist because they
desynchronize the location of the watermark and destroy water-
marks without loss of perceptual image quality. Given that parts
of vector graphic images are often modified in routine work, ro-
bustness against global and local geometrical distortions is es-
sential for the successful watermarking of vector images.
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Watermarking schemes using curve reparameterization [2]
and mesh spectral analysis [3] are proposed by Ohbuchi et al.
Robustness is not considered in [2]. While the algorithm in [3]
is robust against various attacks, it has high computing com-
plexity and is not suitable for watermarking curves. Gou and Wu
[4] proposes a robust watermarking scheme that uses B-spline
control points. The scheme needs a preprocessing step before
detecting the watermark, in order to align the test curve with the
original one. Solachidis and Pitas [5] proposes a vector water-
marking algorithm that uses the Fourier descriptor of polygonal
lines. Although [5] is robust against global geometrical distor-
tion, such as rotation, scaling, and translation (RST), it is weak
against local geometrical distortion. Modifying the locations of
a few vertices drastically decreases the performance of vector
watermarking systems that use the Fourier descriptor.

In this letter, we present a blind vector watermarking algo-
rithm that is resilient to both global and local geometrical dis-
tortions. The wavelet descriptor [6] is adopted to analyze the
shape of polygonal lines, and an additive watermarking scheme
is used to embed the watermark into the polygonal lines. The
invariant properties of the wavelet descriptor against RST and
local geometrical distortions are analyzed. Simulation results in-
dicate that the presented algorithm is robust against both global
and local geometrical distortions and outperforms Solachidis’
algorithm [5].

The remainder of this letter is organized as follows. Sec-
tion II presents and explains the proposed watermarking algo-
rithm. Section III demonstrates the invariance of the presented
scheme against both global and local geometrical distortions.
Simulation results are shown in Section IV. Section V con-
cludes.

II. PRESENTED WATERMARKING ALGORITHM

A blind vector watermarking algorithm is presented. First,
we explain the wavelet descriptor and how to solve the starting
point-dependent problem of the wavelet descriptor for robust
watermarking. Then, we describe the process by which water-
marks are embedded and detected.

A. Wavelet Descriptor and Synchronization

In shape recognition and retrieval, the wavelet descriptor is
used widely, because it has many desirable properties, such as
multiresolution representation, invariance, uniqueness, and sta-
bility [6]. The wavelet descriptor decomposes a curve into com-
ponents of difference scales. The coarsest scale components
carry the global approximation information, while the finer scale
components contain information about local details.

Let us denote a clockwise-oriented closed-plane curve with
parametric coordinates and by
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(1)

where is the normalized arc length, is the arc length along
the curve from a certain starting point , and is the total arc
length. By applying the wavelet transform to the parameterized
coordinates, we obtain

(2)

where

(3)

are called the approximation coefficients at scale and

(4)

are called the detailed signals at scale , where is
the finest scale and is the coarsest scale. and
denote a scaling function and a mother wavelet function, respec-
tively. Then, we can use the wavelet coefficients
and in (3) and (4) as the planar curve descriptor.

It is a well-known problem that the wavelet descriptor is not
invariant to changes in starting point, which is critical for robust
watermarking. To avoid this drawback, the same starting point
should be used in the procedures for both watermark embedding
and detection. Kith and Zahzah [7], [8] proposed several solu-
tions using the following measures: furthest distance, maximum
curvature, principal axis, and natural axis. We adopted the best
measure, the furthest distance, to synchronize the starting point
during watermark embedding and detection. When using this
method, the starting point is fixed at the contour point such that
its distance to the centroid is maximal. The point
with is chosen to the starting point.

Multiple points could be selected as the starting point. If ambi-
guity occurs, a combined method could be applied.

B. Watermark Embedding

After the starting point has been determined, we apply the
wavelet descriptor to the vertices of the polygonal line. Then,
we embed the watermark into the magnitude of the detailed
wavelet coefficients in order to use the invariant properties of
the wavelet descriptor. A bi-polar ( ) random sequence from
a pseudo-random generator is used as the watermark, which has
zero mean value and unit variance. The watermark is multiplica-
tively embedded as follows:

(5)

where is the magnitude of the original wavelet coef-
ficients from the curve , is the bi-polar watermark,

is the watermarked magnitude of the wavelet coeffi-
cients, , and is a factor that determines

the watermark’s power. Given that the magnitude of the wa-
termarked line’s wavelet descriptor must be nonnegative, the
multiplicative factor must be less than 1. After the watermark
has been embedded, an inverse wavelet transform of the water-
marked wavelet coefficients produces the watermarked curve

.

C. Watermark Detection

The same starting point is chosen for both the embedding
and detection of the watermark by using the furthest distance
measure. Then, the wavelet descriptor is applied to the vertices
of the polygonal line. We used the same method for detecting
the watermark as Solachidis’ algorithm [5]. Let be the
magnitude of the detailed wavelet coefficients after applying
the wavelet descriptor to the polygonal line , which is wa-
termarked by . To determine whether the watermark is in

or not, the correlation between and the watermark
is computed as follows:

(6)
The mean value of correlation, , can be computed with the

following assumptions: both and are independent
and identically distributed random variables, and has zero
mean value and unit variance. Then becomes

if

if
if no watermark is present.

(7)

Since we assumed that has zero mean value, we can com-
pute and without knowing the original wavelet coef-
ficient as follows:

(8)

The normalized correlator can be computed by , and
the value is in the range [0, 1]. Instead of , we use a normalized
correlator in detection. The mean value of the normalized cor-
relator equals 1 if . The detection rule is simple. If
the normalized correlator is higher than the threshold, the wa-
termark is present in the line. Otherwise, the watermark is not
present. When determining the threshold, a false positive prob-
ability and a false negative probability are taken into account.

III. ROBUSTNESS OF THE PRESENTED ALGORITHM

A. Global Geometrical Distortion

In a scaled polygonal line, the magnitude of the wavelet
descriptor becomes . As far as the polar coordinates are
concerned, we have

(9)



IM et al.: VECTOR WATERMARKING ROBUST TO BOTH GLOBAL AND LOCAL GEOMETRICAL DISTORTIONS 791

where are the wavelet coefficients of the detailed sig-
nals. However, the normalized correlator remains invariant
because both the numerator and the denominator are multi-
plied by as follows:

(10)

(11)

where is an original polygonal line, and is the wa-
termark. Therefore, the presented watermarking method is in-
variant against scaling attacks.

The displacement of a curve affects only the approximation
coefficients. After translation, we have

(12)
for the wavelet coefficients of the detailed signals. Given
that our watermark embedding scheme only uses the detailed
coefficients that are invariant under translation, the presented
method is robust to translation attacks.

By rotating a curve by a counterclockwise angle with the
centroid as the pivot point, we have

(13)

for the wavelet coefficients of the detailed signal. The same re-
lationship also holds for the polar coordinate representation of
the approximation coefficients. As shown in (13), rotation does
not affect the magnitude of the line’s wavelet descriptor. There-
fore, the presented method is invariant against rotation attacks.

B. Local Geometrical Distortion

The wavelet descriptor has the stability property, which
means that small differences in the shapes of curves corre-
spond to small differences in their representations, and vice
versa [9]. We consider a class of square-integrable functions

and their corresponding wavelet frame rep-
resentations [10], [11]. The frame is a concept that is more
general than the basis. By choosing such that functions

(14)

constitute a frame in , we have

(15)
for and . The 2-norm of the
wavelet representation is defined as follows:

(16)

Fig. 1. Vector graphic image with (a) a watermarked polygonal line overlays
the original line and (b) zoomed-in view of (a).

We can see that if two representations are close, the curves
that they represent should be close as well [6]. Thus, a small
change in the shape of a curve will not cause a large change in
its wavelet representation, which means that the wavelet repre-
sentation is stable with respect to local geometrical distortion.
From the viewpoint of watermarking, detection performance is
affected little by local geometrical distortion. In contrast, the
basis functions of the Fourier descriptor are sinusoids that are
periodic and global (not sufficiently localized in space). As a
result, the entire shape can be changed by a small perturbation
of one coefficient, and the whole coefficients can be changed
by only a small changes in shapes. Due to the lack of stability,
watermarking systems that use the Fourier descriptor have dif-
ficulties in detecting watermarks in locally distorted images.

IV. SIMULATION RESULTS

We tested the presented algorithm and Solachidis’ algo-
rithm [5] on 100 polygonal lines from several contour maps.
Global and local geometrical distortions were applied to the
watermarked vector graphic images. We set the watermark
embedding strength at 0.8 through experiments. In Fig. 1,
the watermarked curve overlays the original curve, using a
dotted line and solid line, respectively. A portion of Fig. 1(a) is
enlarged in Fig. 1(b). The Hausdorff distance [12] can quantify
the difference between the original and watermarked curve, and
the distance is 2.36.

A. Global Geometrical Distortion

RST attacks were applied to the watermarked vector graphic
images with the presented algorithm. We tested with several
keys. The empirical distribution of the normalized correlator of
1000 watermark detections with an erroneous key (left side) and
1000 watermark detections with the correct key (right side) is
shown in Fig. 2(a). The empirical distribution after translating
the polygonal line by pixels on the -axis and 200 on the

-axis is shown in Fig. 2(b). The empirical distributions after
scaling 0.5 and rotating 30 degrees are shown in Fig. 2(c) and
(d), respectively.

Against RST attacks, the empirical distributions repre-
sent well-separated probability-distribution-functions (PDFs),
which means that the watermarking method has few detection
errors. It is evident that the presented watermarking algorithm
is robust against global geometrical distortion.
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Fig. 2. Empirical probability distribution of the normalized correlator on 1000
watermarked polygonal lines with an erroneous key (left) and the correct key
(right) against: (a) no attack, (b) translation, (c) scaling, and (d) rotation.

TABLE I
AVERAGE OF NORMALIZED CORRELATION FOR 100 WATERMARKED

VECTOR IMAGES AGAINST GEOMETRIC DISTORTIONS

Table I summarizes the average normalized correlation value
of 100 watermarked vector images using the presented algo-
rithm and that of [5] against global geometrical distortion. The
presented algorithm performed as well as that of [5].

B. Local Geometrical Distortion

We modified the local part of the watermarked polygonal
lines as shown in Fig. 3. About 10% of the adjacent vertices
around (150, 50) in Fig. 3(a) are locally modified by moving

pixels on the -axis and on the -axis. The modified
part is indicated by the arrow in Fig. 3(b). The watermarked
polygonal line with the Solachidis’ algorithm was modified in
the same way.

The empirical distributions from the presented algorithm and
Solachidis’ algorithm are shown in Fig. 3(c) and (d), respec-
tively. The correlation PDF of the presented algorithm was sep-
arated well. The average normalized correlation values of the
correct and erroneous parts were 0.8306 and 0.0016, respec-
tively. However, the detection performance of the Solachidis’
algorithm was not good as that of the presented watermarking
algorithm. The average normalized correlation values of the cor-
rect and erroneous parts were 0.1638 and 0.0016, respectively,
and the correlation PDF is not separated well. These correla-
tion distributions support the assertion that the presented water-
marking algorithm is more efficient than Solachidis’ algorithm
against local geometrical distortion. Table I summarizes the av-
erage normalized correlation value of 100 watermarked vector
images against local geometrical distortion. The presented al-
gorithm outperformed Solachidis’ algorithm.

Fig. 3. (a) Watermarked line and (b) its locally distorted line. Empirical prob-
ability distribution of the normalized correlator output on 1000 polygonal lines
with an erroneous key (left) and the correct key (right) against local distortions:
(c) the presented algorithm and (d) Solachidis’ algorithm [5].

V. CONCLUSION

We have presented a blind watermarking algorithm for vector
graphic images by using the wavelet descriptor. The algorithm
is robust against both global and local geometrical distortions
and outperforms Solachidis’ algorithm, which uses the Fourier
descriptor [5], especially against local geometrical distortion.

However, like Solachidis’ algorithm, the presented algorithm
is still not robust to malicious attacks such as polygonal line
cropping, vertex insertion, and vertex deletion. Our future work
includes improving robustness against these smart and delib-
erate attacks.
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