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Abstract

DEVSim++ is a C++ based, object-oriented mod-
eling/simulation environment which realizes the hier-
archical, modular DEVS formalism for discrete event
systems specification. This paper describes a method-
ology for performance modeling and analysis of a
distributed access network system under development
within the DEVSim++ environmeni. The methodol-
ogy develops performance models for the system using
the DEVS framework and implement the models in
C++. Performance indices measured are the length
of queues located at connection points of the system
and cell waiting times with respect to QoS grades for
a network bandwidth of 155 Mbps.

1 Introduction

ATM technology based B-ISDN has been expected
as a next generation high speed communication. The
technology will provide end users with a variety of
public services which satisfy different service require-
ments, traffic characteristics, and geographical cover-
age. An interface technique between end users and
ATM local exchanges is one of major issues for the
ATM network. The reference model defined by ITU-T
SG13 consists of three area networks of B-ISDN UNI,
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namely, Customer Premises Network, Access Network,
and Transport Network[2]. We have proposed a dis-
tributed access network architecture as an introduc-
tory phase of B-ISDN[5], which covers urban areas
having various traffic characteristics and service re-
quirements. The proposed system now is under devel-
opment.

Performance modeling and simulation analysis are
essential to optimizing system parameters for new de-
sign as well as existing ones. Especially, as complexity
of systems is increased, simulation modeling may be
the only means to evaluate performance of such sys-
tems. ATM networks are an example of such complex
systems[1][3].

Discrete event simulation has been widely used as
a performance evaluation means in many areas of sys-
tem design including communication networks. In
such performance study, simulation models are much
more reliable and accurate than analytical ones, which
may omit some aspects of the behavior of systems un-
der design. In particular, when temporal issues of
systems are significant, discrete event modeling and
simulation can be considered the best solution.

The DEVS formalism developed by Zeigler sup-
ports specification of discrete event systems in hierar-
chical, modular manner[6]. DEVSim++ is a realiza-
tion of the DEVS formalism in C++, which provides
modelers with facilities for modeling systems within
DEVS semantics and simulating DEVS models in hi-
erarchical fashion[7].

This paper describes performance modeling and
simulation analysis for the distributed access network
system under development. The modeling method-
ology is based on Zeigler’s DEVS formalism to ex-
ploit compatibility between the hierarchical, modu-
lar model specification and the hierarchical distributed




access network system architecture.

We organize this paper as follows. Section 2
presents a brief review of the DEVS formalism and
DEVSim++ modeling and simulation environment.
Section 3 describes characteristics of the distributed
access network system architecture. Development of
a simulation model for the distributed access network
system is given in Section 4 and simulation results in
Section 5. We conclude this paper in Section 6.

2 DEVS Formalism: A brief review

A set-theoretic formalism, the DEVS formalism,
specifies discrete event models in a hierarchical, mod-
ular form. Within the formalism, one must specify 1)
the basic models from which larger ones are built, and
2) how these models are connected together in hierar-
chical fashion. A basic model, called an atomic model
(or atomic DEVS), has specification for dynamics of
the model. An atomic model AM is specified by a
T-tuple [Zeg84):

AM =< X, S) Y, 6int1662t; A)ta‘ >

X : input events set;

S : sequential states set;

Y : output events set;

bint : S — S : internal transition function;

bezt : Q x X — S : external transition function;
A:S —Y : output function;

ta: S — Real : time advance function,

where @ = {(s,e) | s € 5,0 < e <ta(s)}:
total state of M.

The second form of the model, called a coupled
model (or coupled DEVS), tells how to couple (con-
nect) several component models together to form a
new model. This latter model can itself be employed
as a component in a larger coupled model thus giving
rise to construction of complex models in hierarchical
fashion. A coupled model CM is defined as [Zeg84]:

CM =< X,Y,M,EIC,EOC,IC,SELECT >

X : input events set;
Y : output events set;
M : DEVS components set;
EIC CCM.IN x M.IN :
external input coupling relation;

EOCC MOUT xCM.OUT :

external output coupling relation;
ICCMOUT x M.IN :

internal coupling relation,;
SELECT :2M — () — M : tie-breaking selector,

where the extensions .IN and .OUT represent the
input ports set and output ports set of
respective DEVS models.

DEVSim++ is a realization of the DEVS formal-
ism in C++. The DEVSim++ environment supports
modelers to develop discrete event models using the
hierarchical composition methodology in an object-
oriented framework. The environment is a result of the
combination of two powerful frameworks for systems
development: the DEVS formalism and the object-
oriented paradigm.

3 Characteristics of Distributed Ac-
cess Network System

A distributed access network system is an interface
system between the local exchange and subscribers.
The system consists of a head node, a collection of
rings, each consisting of a collection of ring nodes.
Each ring node is connected to a number of sub-
scribers.

The head node mainly performs a traffic switch-
ing among ring nodes and local exchanges. Each link
of the head node is based on a STM-1 frame with
155 Mbps bandwidth. The ring node mainly func-
tions multiplexing the traffic from subscribers to the
head node as well as distributing the traffic from the
head node to subscribers through the ring. The traf-
fic from subscribers is based on ATM cells with the
speed of DS-1, DS-3 or STM-1 depending on appli-
cations. For the transmission speed, we consider to
transform the bandwidth into a number of cells. The
STM-1 frame is recommended to have 260 x 9 Bytes
without overheads. One ATM cell has 53 Bytes with-
out overheads. Therefore 44 ATM cells are included in
a STM-1 frame. The transmission mechanism in the
distributed access network system is shown in Figure
1. A cell-by-cell mechanism is used for adding from
and dropping into subscribers in the ring node and
switching in the head node. But the transmission on
the ring and the network is based on the STM-1 frame.
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Figure 1: Transmission Mechanism

4 Models Development

This section describes modelling system architec-
ture and shows development of a distributed access
network system simulation model in DEVSim++.

4.1 Modeling Overview

The overall distributed access network system ar-
chitecture is shown in Figure 2. At the top level, the
distributed access network system consists of two sub-
systems, a HEAD and a RING. Having the (n x n)
switching function for traffic, the HEAD can connect
n RING’s and communicate with n Local Exchange
sites. Each RING comprise a set of identical Ring
Nodes (RN’s), each of which has 4 inputs and 4 out-
puts for communicating with subscribers.
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Figure 2: The System Architecture

A RN, as shown in Figure 3, consists of a ring
access (RA) which accesses the ring to add or drop
cells, UPWARD for concentrating cells sent from 4
subscribers into RA and DOWNWARD for distribut-
ing cells dropped from RA into 4 subscribers.
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Figure 3: Coupled Model of RN

RA consists of two atomic models, D_1—t0o—2 and
M_2 —to — 1, as shown in Figure 4. D_1 —to — 2
forwards traffic to the ring if there is no cell dropped
into local subscribers. Otherwise, D_1 — to — 2 drops
the cell to local subscribers. Likewise, M2 —to — 1
forwards traffic, arrived from D.1 — to — 2, into the
ring if there is no cell to add on. Being ready to add
on the ring, M 2—to—1 inserts a cell being ready into
the empty slot on the frame. If there is no empty slot
on the frame, M _2 —to — 1 forwards with no adding.
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Figure 4: Coupled Model of RA

HEAD also includes RA which accesses the ring.
RA in HEAD has input and output channels to receive
and transmit the cell stream from and to SWITCH.
On the other hand, RA in RN has I/O channels to
add and drop a cell from and to subscriber.

4.2 Models Development in DEVSim+-+

Regarding models development in DEVSim++, we
describe development of an atomic model, M _2—to—1,
and a coupled model, RA, in DEVSim++.

4.2.1 Atomic Models

The atomic model M _2 —to—1 can be represented in
DEVS semantics as follows:



X = {?forward, ?ack}
Y = {'ru, 'req-add}
S = { phase | phase €
{WAIT, ACTIVE, SEND, ADD}}

dezt: degt((WAIT), ?forward) = ACTIVE
dez:(ADD, ?ack) = SEND

dint: dint(SEND) = WAIT
dint(ACTIVE) = ADD

ta : ta(ADD) = infinity
ta(WAIT) = infinity
ta(ACTIVE) = active_time
ta(SEND) = sending-time

O : O(ACTIVE) = 'req-add
O(SEND) = 'ru

Figure 5 shows the state transition diagram of
M _2—to—1. M _2—to—1 has two inputs, forward and
ack, and two outputs, ru and req-add. When an input
arrives at the port ”?forward”, M_2 —to — 1 transits
into the phase ACTIVE and stays there for active_time
units. Then it outputs on the port ”!req.add” and
then transits to the phase ADD. At the phase ADD,
it waits for an input ”?ack” to be arrived. On receiv-
ing the input ”?ack”, M_2-to-1 transits to the phase
SEND and stays there for sending-time units. After
then it returns to the phase WAIT after generating an
output on the port ”!ru”.

Figure 5: State Diagram for M_2-to-1

The followings are codes for implementation of
M_2 —to— 1 within DEVSim++.

const int M21_ATV_TIME = 0;
const int M21_SND_TIME = 0;
enum {WAIT, ACTIVE, ADD, SEND};

// external transition function
void m21_ext_transfn(State_vars& s,
const timeTypeds, const Messages& x)

{
if (+x.get_port() == "forward") {
if (s.get_value("phase") == WAIT) {
s.set_value("phase", ACTIVE);
s.set_value("size", x.get_value());
} else
exit(1);
} else if (xx.get_port() == "ack") {

if (s.get-value("phase") == ADD) {
int global, local;

global = s.get_value("size");
local = x.get_value();
s.set_value("phase", SEND);
s.set_value("size", global + local);

} else
exit(1);

} else
exit(1);

// internal transition function
void m21.int_transfn(State_vars& s)

if (s.get_value("phase") == ACTIVE)
s.set_value("phase", ADD);
else if (s.get_value(*phase") == SEND)
s.set_value("phase", WAIT);
else
exit(4);
}

// output function
void m21 outputfn(const State_vars& s,
Messages& message)

int total;

if (s.get_value("phase") == ACTIVE) {
total = s.get_value("size");
message.set("req_add",

MAXCELLS - total);

} else if (s.get-value("phase") == SEND) {
total = s.get_value("size");
message.set("rout", total);

}
}

// time advance function
timeType m21_time_advancefn(const State_vars& s)

if(s.get_value("phase") == ACTIVE)
return M21_ATV_TIME;

if(s.get_value("phase") == SEND)
return M21_SND_TIME;

else
return infinity;




// routine for creating the model
void create_m21(Atomic.models& m21)

String* name = m21.get-name();
m21.set_sigma(infinity);

m21.set_state_var(3,"phase","name","size");
m2].set_state_value("phase", WAIT);

m21.set state.value("name", name);
m21.set_state_value("size", 0);

m21.set_ext_transfn(m21_ext_transfn);
m21.set_int_transfn(m21.int_transfn);
m21.set_outputfn(m21_outputfn);
m21.set_time_advancefn(m21_time_advancefn);

}

4.2.2 Coupled Models

The coupled model RA, shown in Figure 4, consists of
three atomic models. The coupled model RA can be
represented in DEVS semantics as follows:

DN =< X,Y,M,EIC,EOC,IC,SELECT >
X = {7ngq, ?rd}

Y = {lru, !drop}

M={Dl1-to—2, M2—to-1}

EIC = {(RA.rd, D_1 —to — 2.rd),
(RA.ack, M_2 —to — l.ack)}

EOC = {(D-1—to — 2.drop, RA.drop),
(M2 —to— l.req.add, RA.req_add),
(M2 —to— l.ru, RA.ru}

IC = {(D-1 - to— 2.forward, M2 — to — 1.forward)}

The following codes show DEVSim++ implemen-
tations for the coupled model RA.

void create_.D12(Atomic_models& D12);
void create_M21(Atomic.models& M21);
void create_.GEN(Atomic_models& GEN);

void make_RA(Coupled_models& ra)

Atomic.modelsé& d12 =

*(new Atomic_models("D12"));
Atomic_models& m21 =

*(new Atomic_models("M21"));
create_D12(d12);
create_M21(m21);

ra.add.inports(2, "rd", "nq");

ra.add-outports(2, "ru", "drop");
ra.add_children(2, &d12, &m?21);
ra.add_coupling(&ra, "rd", &d12, "rd");
ra.add_coupling(&ra, "ack", &m21, "ack");
ra.add_coupling(&m21, "ru", &ra, "ru");
ra.add_coupling(&d12, "forward", &m?21,
"forward");
ra.add_coupling(&d12, “drop", &ra, "drop");
ra.add_coupling(&m21,"req.add", &ra,
"req_add");

5 Simulation Experiments and Results
5.1 Simulation Experiments

Two goals for simulation experiments are as follows:

1. to foresee the maximum lengths of queues at: IN-
BUF, CELLPOOL, RA and SWITCH. These give
us important data for cell waiting status during
transmission.

2. to estimate average waiting times of cells with
respect to QoS grade levels, which are waiting in
CELLPOOL.

For the experimentations, several cases of sub-
scribers having different average bandwidths are ap-
plied. Since the transmission speed through a RING
or a SWITCH is upto 155Mbps, if 4 RNs are connected
to one RING and 4 subscribers are included in a RN,
about 10 Mbps in average can be given to one sub-
scriber. Maximum queue lengths and average waiting
time are measured for various subscribers’ bandwidths
ranging from 5Mbps to 100Mbps.

A summary of assumptions for simulation modeling
is as follows:

1. 90% of the traffic from a RING is routing
to the network through the SWITCH. And the
rest(10%) is forwarding back into the same RING,
which is destined to the subscribers connecting to
the same RING.

2. The traffic given at any port of the SWITCH
are divided and routed to the rest ports of the
SWITCH with equal probability.

3. Any RN has statistically the same portion of traffic
sent from or added into a RING. If a RING in-
cludes 4 RNs, 25% of the traffic sent from a RING
are dropped to be routed into destined subscriber.
The rest are forwarded into the next stage of a
RN. During forwarding, a new traffic from sub-
scribers is added on, which has the same proba-
bility as dropping.




For simulating cell loss rate of 10~'2, more than
1012 cells should be generated. A couple of techniques,
such as importance sampling[8] or the generalized ex-
treme value theory[9], has been proposed to deal with
such a problem.

One way is that the value for numbers of cells, in-
stead of cell by cell, are generated and distributed with
given probability density functions. It is an easier way
to handle event messages as well as to implement sim-
ulator. Instead of counting how many events(” cells”)
waiting in queues, we just consider the integer value
calculated in queues.

We employed a token passing based simulation
scheme. In the scheme, only one token traverses each
RING. Each token consists of a number of slots. In-
deed, a slot means a message. When a model receives
a token, it can remove/insert messages from/into the
token. But, the total number of slots in a token can-
not exceed a bound. We have already known that 44
slots exist in a frame(125us) of an 155Mbps RING.
It is natural that a token is responded by n*44 slots.
For simplicity, we set n to 7. Consequently, a token is
composed of 44*7 slots.

The relationship between physical and virtual times
can be acquired easily. Let the RING turnaround
time in virtual time be T,. Thus, one unit in virtual
time corresponds to 125*7/7, ps. Now, we should
discuss about how we can design subscriber models
with given average and maximum bandwidths. Con-
sider that in a RING only one subscriber is active
and others are inactive. Since 155Mbps corresponds
to 44*7 cells during T, bandwidth of w corresponds to
44*7/155*w cells. For reducing simulation time com-
plexity, we assume that a subscriber generates cells in
a burst manner. Therefore, if a subscriber generates
« cells at an instance, bandwidth of w corresponds to
44*7/155*w /o times of burst output generation fre-
quency during 7,. Then, the intergeneration time ta
is defined as:

g N 155 Nxa
ThMy e T Tx44 w

We set that T, = 1 and a = 44 x 7. Consequently,
155

w

ta

Assume that the request rate of a subscriber has
a uniform distribution and the maximum and aver-
age bandwidths of the subscriber is wmas and wayy,
respectively. Then the subscriber can be modeled sta-
tistically as:
Ul 155 2 155 155

Wmaz Wavg Wmax

where Ula,b] denotes a uniform random number
generator in [a, b].

5.2 Simulation Results

Table 1 shows maximum queue lengths for the given
subscriber’s average bandwidths. Each number means
how many cells are waiting in the queue. In other
words, it gives the queue length which should be im-
plemented to avoid cell loss.

Table 1: Maximum Queue Length

Wavg(Mbps)  inbuf cellpool head switch
5 308 655 30 280
10 308 3552 171 343

30 770 36334 282 347
50 7392 45584 263 345
100 27643 45815 319 340

Wimaz(Mbps) = 155.

The simulation results for average waiting times
with respect to QoS grade levels are shown in Table 2.
Note that the traffic with lower QoS grades can rarely
be served for.

Table 2: Average Waiting Time

Wavg(Mbps) QoSO QoS1  QoS2 QoS3
5 1.96 1.72 1.66 1.61
10 20.79 7.05 4.56 2.97

30 00 oo 64.60 7.47
50 00 00 oo 33.64
100 00 1% oo 68.17

Wmaz(Mbps) = 155.

6 Conclusion

Performance modeling and analysis for the dis-
tributed access network system under development
has been discussed. The objectives of modeling are
not only to analyze dynamic traffics in a transient
state but also to make decisions of architectural pa-
rameters such as queue lengths. By consideration of
the distributed access network system architectural
characteristics, we employ Zeigler’s DEVS formalism
and develop model within DEVSim++ environment..
As results of simulation experiments in DEVSim++,
we analysis the length of queues located in connec-
tion points. Also we analysis cell waiting times with
respect to QoS grade levels, which are for the cells
waiting for to be added on a network.

Such results help us to decide the maximum lengths
of queues to avoid cell loss. We can observe that a
queue in the SWITCH is rarely dependent of the sub-
scriber’s bandwidth. But queues at the other locations
in the RING is much dependent of each subscriber’s
bandwidth.



We also observe that the traffic with lower QoS
grade can rarely be served if a subscriber’s bandwidth
is more than 30 Mbps.

For future work, we should collect more data for
various situations. From this we can optimize the de-
sign parameters for the system under development.
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