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Abstrack- A sensor fusion scheme for mobile robot
environment recognition that incorporates range data and
contour data is proposed. Ultrasonic sensor provides coarse
spatial description but guarantees open space {with no
obstacle) within sonic cene with relatively high belief. Laser
structured light system provides detailed contour description
of environment but prone to light noise and is easily affected
by surface reflectivity. Wepresent a sensor fusion scheme that
can compensate thedisadvantages of both sensors. Line
medels from laser structured light system play a key role in
environment description. Overall fusion process is composed
of two stages: Noise elimination and belief updates. Dempster-
Shafer’s evidential reasoning is applied at each stage. Open
space estimation from sonar range measurements brings
elimination of noisy lines from laser sensor. Comparing actual
sonar data to the simulated sonar data enables data of two
disparate sensors be fused at the unified feature space.
Experimental results demonstrate the effectiveness of the
proposed method.

Index terms—Environment recognition, map building, sensor
fusion, Dempster-Shafer

I. INTRODUCTION

Environment recognition for mobile robots can be defined
as acquiring geometric information of surrounding objects
in its own description to be used in position estimation or
obstacle avoidance. Environment recognition is the most
basic task required for mobile robot navigation and involves
sensing and interpreting information from external sensors,
thus various kinds of sensors have been devised and
applied.

Among them, sonar sensor is the most widely used sensor
in mobile tobots due to ts low cost and simplicity in
manipulation. Despite of its popularity, the performance of
sonar sensor is somewhat disappointing due to two
problems: wide beam width and multiple reflections (also
referred as specularity). A cone shaped beam width brings
large uncertainty in locating target object direction, and
relatively long sonar wavelength makes ordinary indoor
walls or door surfaces look like mirror, which is the cause
of erroneous range reading due to multiple reflections. To
overcome those disadvantages, Leonard and Durrant-Whyte
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[t] have proposed a range data feature, the region of
constant depth {(RCP). From a scrics of range data with
rotational scan of sonar, distinct sonar target objects like
walls, corners and cylinders can be observed as a
succession of constant range data over a centain orientation
region.

Laser structured light (LSL) system is another way to
obtain geometric information of surrounding environment.
A laser stripe is projected horizontally onto surrounding
surfaces and is observed by a camera equipped with an
optical bandpass filter. Using the inverse perspective
transform, world coordinates of each reflected light point
can be calculated and contour information on the projected
surface could be acquired. Because of its narrow eam
width, LSL guarantees detailed contour information from
the environment [2, 3]. However, it’s likely to fail with
light noise, such as sunlight, and cannot detect transparent
or mirror like surfaces.

A mobile robot depending on a single external sensor is not
considered as a good solution for intelligent robot system.
A lot of researchers have been studying the synergistic
usage of multiple sensors for mobile robots. Sonar and
stere¢ vision §#], sonar and omni-directional vision B],
camera and laser range finder [ 6}, and sonar and laser range
scanner [7] are some of examples of pairs of sensors studied
for mobile robot environment recognition. One of key
advantages of the multisensor suite comes from using
sensors that provide information unavailable fom others

[8].

Fusion methodology heavily depends on the type of sensors
(also features) and goals of sensor fusion. Matthies and
Eifes [4] have used Bayesian approach and occupancy grids
for integration of range data from sonar and stereo vision,
However, Bayesian approach cannot represent ignorance or
lack of information explicitly, Dempster-Shafer s evidential
reasoning is a generalization of Bayes reasoning that allows
confidences to be assigned to sets of propositions rather
than to just N mutually exclusive propositions [9].
Tirumalai et al. [10] have used DS reasoning for building
environment maps with 3D voxels. Another alternative is a
rule based sensor fusion. It can avoid the difficulty in
modeling the sensor readings under a unified statistical
model. Applications can be found in fusion of sonar and
infrared sensors [t 1] and sonar and laser range finder [12].



In this paper, we present a sensor fusion scheme that
integrates range data from a sonar and contour data from an
LSL system. LCAR, a mobile robot that has been designed
and built in authos’ laboratory, was used as a test bed. It
has two driving wheels, and a pan-tilt device on the top can
make a sensor system rotate around the azimuth axis of the
robot and the horizontal axis. A Polaroid ultrasonic sensor
and an LSL system are mounted on the pan-tilt device. By
rotating the pan-tilt device, a full 36(P rotational scan of
both sonar and LSL is acquired.

A single range data from a sonar sensor cannot give
accurate target direction and may contain €rroneous range
data due to multiple reflections. However, if we extract
RCDs from multiple scan data by rotating sonar, we can
have more accurate description of the environment with
reduced uncertainty. In this paper, we present a method to
estimate an open space within the environment by
classifving the type of RCDs, A detailed line description of
environment contour can be acquired using LSL. However,
line models from LSL may contain corrupted information
from light noise and LSL cannot detect transparent or
mirror like objects. Our goal is to overcome those limited
sensing capabilities of each sensor by fusing two sensor
data in feature level. Sonar data arc used to compensate
erroneous or missing contour information, while line
description of the environment from the LSL enables us to
get a much more detailed environment description,
Dempster-Shafer evidential reasoning is used to eliminate
the fake lines from noise and update the belief of existence.
However, the features obtained by each sensor are so much
different that matching the same object between two sensor
measurements brings another difficulty. We present a
metheod to find the matching objects between two sensors
by comparing the RCDs from actual readings and simulated
readings.

Polaroid
Siitbeam uftrasohic
laser sensor

Tilt mctor

Fig. 1. A sonar sensor and LSL mounted on the pan-tilt
device of a mobile robot, LCAR

In this paper, sensor fusion is performed on object-based
environment description rather than on geometrical
segmentations like grids [4] or voxels [10]. Grid or voxel
based description split environment into same -sized boxes
whose status can be either occupied or empty. In due
course, the robof s behavior is limited by the resolution of
its grid size. Moreover, this kind of description does not
make the robot really understand the environment. Line and
corner models used in this approach can provide not only
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geometrical but also topological description of the
environment. Thus, more intelligent and advanced robotic
navigation problems can be followed.

II. GEOMETRIC FEATURES OF SONAR AND LSL

A. Region of Constant Depth

Polaroid ultrasonic sensor, which is the most widely used
sonar sensor between mobile robots, has a visibility angle
of about 25°. When a range data is acquired, it means a
target object whose distance from the sensor equal to the
range value exists within the sensor's visibility cone. In
other words, we have about 25° of uncertainty on the
target’s directional angle. This uncertainty can be much
reduced if we take a rotational scan {acquiring range data at
the constant step angle) of the environment. Region of
constant depth (RCD) is a connected set of sonar returns
with constant range data, and it is a sensor feature that can
be acquired only from distinctive objects like wall. comner,
edge and cylinder. Leonard and Dumant-Whytefl] have
extensively studied on RCDs and successfully used them in
localization and navigation. Fig. 2 shows a typical sonar
scan of an environment composed of walls and corners, and
the RCDs obtained from the scan.

[
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Fig. 2. Actual sonar scans mn a room and RCDs obtained
from the scan. RCDs are obtained from sonar reflections
less than 1.0 e¢m of range difference and more than 10
degree of continuity. Dashed line is hand measured recom
contour. Time-of-flight (TOF) dots are shown for every
return, and rays are drawn at every 10th return.

The width of an RCD describes how strong the echo is.

When a strong echo is received and other objects do not
occlude the target, the width of an RCD almost equals the
visibility angle of the sonar sensor. However, the width of
RCD depends largely on the layout of objects rather than
the type of objects. Thus, the difference in width of RCDs
cannot give enough clues to recognize the target type.

From observing the sonar scan in a real world environment,
we could find out that RCDs can be categorized into four
different types according to the relationship with the
adjacent range data. Fig. 3 explains four different RCD
types. Type [ is an RCD with an average range data shorter
than adjacent range data in both left and right sides. This
type of RCD appears when the target cbject is closer than
neighboring objects. Usually this kind of RCD shows the



largest width due to the strong echo. Because we measure
the range by time -of-flight (TOF) of the first echo only, this
type of RCD means that an echo reflection point lies within
the RCD and the point is closer than any other object within
the RCD. One of major disadvantages of sonar is its wide
beam width so that it cannot locate the accurate target
direction. But inversely it means that we have a strong
belief that no other object than the target exists, i.e. an open
space, within a Type I RCD. Thus, an open space
assumption can be made over the entire area of a Type |
RCD. However, when a multiple reflection happens over
surrounding walls, open space is not guaranteed over the
entire arca, Multiple reflections usually accompanies a big
range jump or a range reading equal to the maximum
detectable range, which is a design factor of the timing
circuit for sonar. Thus, a multiple reflection can be
identified from a range data difference larger than a certain
threshold or range data equal to the maximum range. This
type of RCD is classified as a Type IV, and no open space
assumption can be made.

Type II RCD is an RCD neighboring a shorter-range data in
one side and a farther range datain the other side. While the
echo reflection point lies within the arc of Type | RCD,
Type 11 RCD may have the reflection point lying out of the
arc of RCD, because wide visibility angle makes other
nearer targets detected even when it's facing a target. RCDs
of this kind are mostly observed from small corners (or
edges) which can be seen at small extrusions or recesses in
real world environments, Due to the multiple reflections in
large incident angle, the arc of Type Il RCD cannot
represent the open space iike Type [ RCD. However, we
can expect an open space within Type [T RCD area up to the
range equal to the shorter adjacent range reading.

Type {Il RCD is the opposite one of Type | RCD, i.e. an
RCD neighboring shorter-range readings in both sides. This
type of RCD can be observed from pathway to open space,
like corridor. However, this type of RCD also appears as a
result of multiple reflection from smooth surfaces. Thus, an
open space within the RCD can be expected only up te the
range equal to the shorter neighboring range reading.

Type |

<5

Type 11

Fig. 3. Different types of RCDs

While conventional RCD identification considers only
RCDs with large width, open space assumption is
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independent on the width of RCDs. Even an RCD with a
single sonar reading can be used to get the open space
within an environment. Thus, we define a term, primitive
RCD, which is an extended RCD that does not have a
minimum requirement on the width.

B Line Model

LSL uses a horizontal laser slit beam to detect the contour
of the surrounding environment. Thus, line model can be
considered as the most suitable form of cnvironment
description for LSL. Gonzalez et al.[13] have demonstrated
usefulness of line models in map building for mobile robots
with a 2D time-of-flight laser rangefinder.

Line modet of environment from LSL can be acquired from
a scries of image processing of acquired image. At the
image fevel, preprocessing of an image with linc mask
convoiution and binarizing with maximum intensity over a
threshold  enhances laser line image. Polyline
approximation from the acquired binary image extracts line
segments. Finally, triangulation implemented by inverse
perspective transform makes us calculate the corresponding
world coordinates of endpoints of line segments [14].
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Fig. 4. Acquired line map (solid {ines) using LSL
superposed on the hand measured contour (dashed lines) of
a corridor.

The width of laser line on the projected surface within the
desired range (about 7 or 8 meters) can be easily maintained
at several millimeters and reflected image can be observed
over a wide range of incident angle. Thus, LSL can provide
a good spatial resolution for environment recognition of
mobile robots. For LSL installed on LCAR with a camera
having about 27 degree of field-of-view (FOV), 15 snap
shots at 24deg step angle are required to cover a full circle.
An example of line model acquisition in an indoor
environment, as shown in Fig. 4, shows LSL provides quite
a good description of the environment. However, LSL
cannot detect a transparent object like windows, The LSL
successfully detected a wall at the bottom of Fig. 4, but
there is no single line segments acquired from two windows
in the right side. Also, the acquired line meodels are
corrupted with erroneous line models by a light noise from
sunlight coming through the window. Even though LSL
uses a laser light that has a very narrow spectrum and an
optical band-pass filter and LSL has its own noise rejection



algorithm, that eliminates very short line segments, sunlight

coming through the windows adds noisy lines in the
acquired line map. Moreover, modern buildings are more
filled with glasses than before. This inability becomes a
major disadvantage for LSL to be used in natural indoor
environments.

II.

In our method, the line map acquired from LSL plays a
major role in environment recognition. RCDs acquired from
sonar sensor cannot give enough spatial resolution that can
be acquired with line models from LSL, However, phantom
lines from light noise and undetectable transparent objects
are major problems for LSL. These problems can be
resolved by integrating line model of the environment with
sonar range data. Moreover, fusion of two sensors provides
a belief reinforcing mechanism of the acquired environment
models. The overall environment recognition process is
composed of two stages: (1) Noise elimination and
smoothing of line maps, and (2) belief reinforcement of
acquired line models. The DempsterShafer s (DS)
evidential reasoning method is used in both stages.

FUSION OF RANGE AND CONTOUR

Dempstef s rule of combination [15] provides a method for
combining two evidences assigned to propositions of

obtained from two independent
sources to produce an updated evidence m,, that
represents a consensus of the two sources. Mathematically,
it is represented as:

> i (A)my (B)

A.BCO
AnB=C

L= X m(A)ymy(B)
A BCO
AN B=g¢

where 4, B and C corresponds to the set of propositions of
interest. In noise elimination stage, m; and m; would
correspond to the basic probability assignment $pa) of
sonar sensor and LSL, respectively. The set of proposition
for sonar A can be defined as {Real, Noise, Unknown}. The
bpa for each proposition can be evaluated from the
relationship with the open space, acquired from the RCD
type classification of sonar scan data. The set of proposition
for LSL B can be defined as {Real, Unknown}. LSL does
not have any method to evaluate whether an extracted line
is from real object or light noise. Thus, the state Noise
cannot be acquired from LSL.

interest m, and m,

mpp(C)= 0y

The relationship with a line segment model and the open
space acquired from sonar data can be categorized into
three states: (1) completely outside the open space, (2)
partly inside the open space, md (3) completely inside the
open space. When the line segment is contained completely
outside of the open space, we would have a stronger belief
that it’s a real object rather than it’s a noise. Oppositely,
when the line segment is completely inside the open space,
we would have a stronger belief in neise than real object.
When the line segment is partly inside the open space, we
would say that it’ s hard to distinguish. Considering these a
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priori knowledge, we have assigned bpa from sonar sensor
my as shown in Table 1. For bpa from LSL m;, we would
have a stronger belief on Rea/ as the length of line segment
increases, because lines from noise tends to be short in
length. We have defined a bpa function for mp as follows:

m,(Real) = c-% (1< L),

(I>L),

m,(Unknown) =1-m,(Real),
where [ represents the length of line segment in world
coordinates, and L and ¢ are constants that controi the
variable range of the bpa.

2

=C

Table 1. Basic probability assignment for noise elimination

Senser | Relationship | Basic probability assignments
with open
space
Sonar Completely n(Real) = 0.8
outside ni(Noise) = 0.1
mt (Unknown) = 0.1
Partly mside nn(Real) = U1
nn{Noise) = 0.1
an(Unknown) = 0.8
Completely | m{Heal} = 0.1
inside n1{Noise) = 0.8
mi{Unknown) = 0.1
ST - R
m,(Real} =¢ I (<L)
= (> L),
my{Unknown ) = 1 — my{Reat ).
{¢c=0.6and L= 40cm )

Combined evidence of existence is calculated using
equation (1) for each line segment and lines with more
evidence in Noise than a specific value {for example 0.5)
would be considered as a noise and eliminated from the
map.

Though lines from Ight noise are eliminated, still the
acquired line map is composed of a series of short line
segments due to small FOV of camera and image
overlapping occurred in rotational snapshots. For further
updates of environment models, merging of these line
segments to reduced line description is also required. A pair
of lines whose end points lie within a tolerance boundary of
the other and whose difference in slop angles is within a
tolerance are merged together. After merging of small line
segments, edge and comer points are found by comparing
the distances between end peints of all line segments. Fora
pair of lines whose end points lie within a tolerance circle
are considered to meet together at the midpoint between
two end points. Consequently two end points of the pair of
lines are modified to that corner (or edge) peint. In this
way, we can have a complete and simplified environment
model composed of lines and comer points without any loss
of information.

The last step of sensor fusion is the updates of the acquired
map elements. Those objects observed simultancously from
both sensors would have a reinferced evidence of existence.
Objects detected by only one of two sensors would have



mid-level evidence. Lines observed by LSL but not by
sonar and transparent objects detected by sonar but not by
LSL could be examples of those objects. One difficulty
arises here in finding the matching target between sonar and
LSL. Due to the large uncertainty in direction angle of
sonar target, it is difficult to distinguish the target from the
acquired line-corner map. Thus, we generated a simulated
sonar scan from the acquired line-comer map using a
simulation model of sonar sensor. The simulated sonar data
will represent the measured environment by LSL rather
than by actual sonar. Thus, we can compare measured data
from two independent sources in the same feature space.

Kuc and Siegel [16] studied an analytic model based on the
impuise response and suggested a simulation model of
ultrasonic sensor. Their work has been considered as a good
reference for most of researchers who have studied
application of senar sensors, Leonard and Durrant-Whyte
[2] used the sensor simulation model in fusing sonar sensor
measurcments with odometry data to solve the localization
problem. We also use this simulation model to get the
simulated sensor readings from the acquired line map.

After generating simulated sonar scan from the acquired
line-corner model, RCDs are extracted with the same
method used in RCD extraction from actual sonar readings.
Matching RCDs from simulated scan and those from actual
sensor readings can be found by comparing the direction
angle and average range data of every RCD, which are two
major features of RCDs. RCDs showing nearest distance in
two features would be sekcted as a matching pair. In the
simulation model, we can identify which is the correct
sonar target of current sonar reading. If the identified sonar
target appears to be a line (& wall in real environment),
belief of that specific line will be rcinforced. However,
when the identified sonar target appears to be a corner or
edge, it also supports the belief of two line segments
surrounding the coener. Thus, the belief level of those two
lines would be reinforced.

IV. EXPERIMENTAL RESULTS

Fig. 5 (a) shows actual sonar scans obtained from the same
environment shown in Fig. 4. Range data plot represents the
actual contour relatively well in most of places. However,
spurious range data due to multiple reflections {marked as
SR) can be observed at the wall of the bottom side of right
end space and the wall at the left top side. Very long range
reading above the robot position is a typical Type 111 RCD,
which can be observed at the passage way to another cpen
area. Please note that windows undetected by LSL at the
right end of corridor could be observed by sonar, After
classifying the type of RCDs, open space area is obtained as
shown in Fig. 5 (b). The obtained open space from the
sonar well represents the actual open space, except the wall
marked, where we got the mu ltiple reflection.

26 of total 28 fake lines from light noise could successfully
be eliminated by DS based sensor fusion. Only two fake
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lines observed near the window at the right end side of Fig.
4, could net be eliminated, because they were completely
out of bound of estimated open space. Line merging and
corner finding from the noise-eliminated line map was
followed. 62 line scgments (excluding 26 deleted fake
lines) in original line map were reduced to 42 lines with the
distance tolerance of Scm and angular tolerance of 10°.
From merged line map, 14 comer points were found with
the distance tolerance of Scm.

(b} Open space estimated from sonar range scans
Fig. 5. Sonar scans of the corridor of Fig. 4 and boundary of
open space assumption

From sonar scan, depicted in Fig. 5 (a), actual RCDs were
extracted, as shown in Fig. 6 (a). RCDs whose width is
larger than & and difference in range data less than 2cm
were collected. Simulated sonar readings and RCDs from
them were obtained as shown in Fig. 6 (b). Total 6 of 8
actual RCDs appeared to be matching with simulated
RCDs. Two target objects from two unmaitched RCDs were
registered in the line-corner map as target type unidentified
objects. Line segments and corner points not observable by
sonar were also registered in the map with mid-level belief.
Their belief level can be updated with tepeated observation
in different position, which will be a further work of this
study. Final belief reinforced line-comer map are shown in
Fig. 8. Thicker lines distinguish line models that construct
the matched wall or corner point. These lines and corner
points would be helpful in selecting natural landmarks for
future navigation problem.
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{b) Noise eliminated line map and RCDs obtained by
simulated scan from the smoothed map
Fig. 6. RCDs obtained from actual sonar scan and RCDs
predicted from smoothed line map generated by LSL
Matching RCD pairs: (2, a), (3, b), (4, ¢), (5, d), (7, e), and
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Fig. 7. Final line map from sensor integration:
Belief reinforced objects are shown in thick lines.
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V. CONCLUSION

An environment recognition method using sensor fusion of
sonar senser and laser structured light system is presented.
LSL whose spatial resolution is much higher than sonar
sensor plays a major role in achieving the line and comer
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meodel of the environment. However, fusing with sonar
sensor could eliminate erroncous line modeis from light
noise and restore missing object models, which cannot be
achieved when only LSL is used. The effectiveness of the
approach is demonstrated with experimental results.
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