
Template based High Performance ALE-TSOAP Message Communication

Suhyun Kim, Daeyoung Kim, Jongwoo Sung and Tomás Sánchez López
Information and Communications University (ICU)

 Daejeon, Republic of Korea
{lure1214, kimd, jwsung, tomas}@icu.ac.kr

Abstract

Recently, the RFID technology has become essential for
ubiquitous computing. As the deployment of mega SCM
(Supply Chain Management) environments starts at the
largest companies in the distribution industry, efforts tend to
concentrate on a variety of performance improvements for
the RFID middleware aiming to give quality of service for
large RFID-data transmission. Web services, cornerstone of
the RFID networks, require high performance, security and
extensibility. Since SOAP (Simple Object Access Protocol)
inherits the poor performance of XML, it is not easy for the
RFID middleware to support high performance web services.
The ALE (Application Level Event) communication interface
from the RFID middleware sends a response message. Its
serialization, which includes the conversion of common
language runtime objects to the XML documents and streams
and packing of this data into a message buffer, has been
proven as the bottleneck for SOAP’s poor performance. In
this paper, we propose ALE-TSOAP, based on ALE templates,
that provides an increase in the performance of the RFID
middleware when generating response messages. We analyze
SOAP messages to classify the various ALE template formats,
to design and implement our ALE templates and, finally, to
evaluate the performance of the ALE-TSOAP processing. The
use of ALE-TSOAP does not change the SOAP protocol or
the ALE communication interface of the RFID middleware.
Through our experiments, we observed that our approach
obtains up to a 197.8% performance gain by only using ALE
templates for the serialization of SOAP message.

1. Introduction

RFID (Radio Frequency Identification) technology is one
of the most influencing and powerful technologies to realize
the ubiquitous computing society. RFID tags can identify a

 This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information
Technology Research Center) support program supervised by the
IITA(Institute of Information Technology Advancement)" (IITA-
2006-(C1090-0603-0047))

This work was supported by "Development of Korean u-SCM
platform and wireless identifying application technology” project of
MOCIE, Korea.

product, animal or person by using radio waves and monitor
their physical data in real-time.

Traditionally, the RFID technology research has focused
on the development of hardware such as antennas,
transponders and single chip RFID tags. Recently, however,
the interest has shifted to the development of middleware
solutions that can support the RFID technologies integrating
them into existing enterprise application systems. The
resulting RFID middleware must aggregate and filter the data
from RFID tags, and must support the management of tags
by using various RFID readers in an Internet based network.

Among all the challenges involving the RFID middleware,
its performance is one of the most essential factors. For every
service request from clients, the middleware should process
hundreds of thousands of tag codes per second. The increase
in the concerns about the RFID technology is also becoming
more and more coupled with the increase in the RFID
standardization activity by EPCglobal; a organization that
leads the development of industry-driven standards for the
EPC (Electronic Product Code) to support the use of RFID in
today’s fast-moving, information rich, trading networks. In
[1] the EPCglobal defines and describes the EPC Network as
a collection of technologies to build an ‘Internet of Physical
Objects’.

In addition to the means for supporting multifarious
services as described previously, the RFID middleware in
EPC Networks provides the ALE interface [2] as the
communication interface through which clients such as
EPCIS may obtain filtered, consolidated EPC data from a
variety of sources. The client may be new software designed
expressly to carry out an EPC-enabled business process,
EPCIS (Electronic Product Code Information Service), The
ALE interface enables platform independent services using
the SOAP protocol to communicate with the EPCIS.

SOAP [3] is a protocol for exchanging XML-based
messages over computer networks, normally using HTTP.
SOAP forms the foundation layer of the web services stack,
providing a basic messaging framework that more abstract
layers can build on. SOAP is the most popular protocol to
exchange message among heterogeneous systems due to its
support for interoperability, language and platform
independence, simplicity, extensibility and robustness.
SOAP has less performance than binary protocol such as
RMI or CORBA due to its inheritance from XML [4]. For
this reason, the EPC middleware, which uses SOAP to

generate request/response messages, has a limitation of the
RFID data it can process in real-time. In concrete, some
studies of the SOAP performance [5] show that the encoding
of the serialization takes about 90% of the time during the
SOAP service. Particularly, the encoding time increases
exponentially with the size of the SOAP message. This paper
proposes a performance improvement to the generation of
SOAP messages by using ALE-based templates for the ALE
interface. This approach increases the performance of the
RFID middleware without the need of making any change in
the SOAP protocol. In particular, we optimize the RFID
middleware server-side processing of an ALE-TSOAP
request.

 This paper is organized as follows. In Section 2, we
discuss works related to the SOAP processing optimization.
In section, 3, we explain the background of the EPC Network.
In section 4, we design the RFID middleware platform. In
section 5, we design the templates for the RFID middleware,
and discuss the use of caching to increase the performance of
the RFID middleware. Section 6 presents our experimental
result for the execution time required to process SOAP
messages. Finally, in Section 7 we conclude the paper with
future work and the summary of our contribution.

2. Related Work

Several studies have proposed versatile approaches for
analyzing and optimizing the SOAP performance, comparing
SOAP with binary protocols such as JavaRMI and CORBA.
In this section, we show how all these studies have proven
that SOAP is inefficient in distributed computing due to the
requirement of formatting all its messages in ASCII.
[4][5][6].

 [4] identifies the sources of inefficiency in the current
implementations of SOAP and analyzes the latency
performance of several SOAP implementations such as MS
SOAP Toolkit +, SOAPRMI, SOAP::Lite, etc. It also
compares them with the performance results of binary
protocols such as JavaRMI and CORBA. This study shows
that the performance of JavaRMI and CORBA are
comparable, but that the latencies of SOAPRMI, Apache
SOAP, SOAP::Lite, and Microsoft SOAP Toolkit are much
worse. One large source of inefficiency in SOAP is the use
of multiple system calls to send one logical message.
Another source of inefficiency is the XML parsing and
formatting time, that incurs in processing penalizations when
converting SOAP messages from binary representation into
ASCII representation.

In addition to these costs, it should be considered that the
ASCII encoded record in each SOAP call is larger than the
original binary. This means that SOAP also affects the higher
network transmission costs. The performance analysis of
SOAP in [5] identified the most critical bottleneck to be the
conversion cost of SOAP from binary representation to
ASCII representation. The conversion processing takes up to
90% of the time for the end-to-end message processing.
To solve the serialization problems of SOAP, [6] proposed
bSOAP, which uses a saved message that is sent last so that
it can be used as template for later SOAP calls. Each saved

message has its own DUT (Data Update Tracking) table,
each of whose entries corresponds to a data element in the
SOAP message. This approach can bypass the generation
time of an equal previously sent message when it is called
next. Applications that repeatedly send similar messages
achieve performance improvement by applying bSOAP
processing.

Because this approach should maintain the DUT table, it
becomes a problem to guarantee enough memory space to
maintain such table for each template. Shifting is also
necessary when the serialized form size of the new data
exceeds the field width value in the DUT table entry. In this
case, the performance of the system is much poorer, meaning
that the performance of a 100% value re-serialization without
any shifting is better than the shifting worst case.

The limitations of the system performance in [6] are more
evident in EPC networks, where most of the RFID
middleware generates different structure and size messages
in the SOAP protocol used by the ALE communication
interface.

In order to increase the performance of the DUT table, [6]
also proposes to “steal” memory space when only a few
contents require modification in the data fields of the table
after the serialization. In this case, it is profitable to adjust
the data fields of the DUT table by stealing memory space
from neighbor fields. However, this approach does not
provide much benefit to the RFID middleware in EPC
networks. RFID middleware generate an Event Cycle Report
which is a response sent to the ALE client at the conclusion
of an event cycle. Since most of all the SOAP messages,
such as the Event Cycle Report generated every event cycle,
have different XML tree structures with different contents,
the expansion and shrinking of tags in the XML tree
structures would always be necessary. Also since the DUT
table can not exceed the maximum size of the predefined
memory space, DUT tables for Event Cycle Report templates
should be assigned enough space in the initial stage of the
memory allocation to store the RFID data in the data fields
of the RFID middleware. It is clear that we should avoid this
way for optimized SOAP processing. since this kind of
memory allocation before starting the SOAP service calls
wastes memory space.

3. SOAP based ALE Services in EPC
Networks

The EPC Network (Figure 1) architecture consists of an

infrastructure which aggregates raw EPC data in the physical
layer, a RFID middleware (ALE) which performs filtering
and collection (grouping) of EPC data, and a repository and
business gateway (EPCIS) which provides application
services using EPC business data. All the components in the
EPC Network architecture intercommunicate through
interfaces such as tag protocols, the Reader protocol, the
ALE interface, the EPCIS Capturing application and the
EPCIS Query interface. However, the EPC network suffers
from huge data processing at each component since the RFID
data is periodically returned to the upper layers every read
cycle and event cycle. The event cycle is an interval of time

over which an ALE server carries out interactions with one
or more Readers on behalf of an ALE client. The read cycle
is communication unit of interaction with a Reader and
represents iteration of the RF protocol used to communicate
with RFID tags. Additionally, the fact that all the interfaces
are expressed in XML and most of the communication in the
network is done via the SOAP protocol pose additional
overhead limitations.

The RFID middleware serves service requests from the
EPCIS through the ALE interface over HTTP. When an
EPCIS client requests a service to an ALE server, it sends an
Event Cycle Spec within the request. The Event Cycle Spec
holds information about the service start/stop time, the
event/read cycle period, the destination URI of the response
message, a list of readers or logical readers which is an ALE
client uses to refer to a physical reader with multi-antenna,
etc.

The RFID middleware (ALE) of the EPC Network
processes the raw EPC data that travels from the reader layer
to the application layer (Fig. 2). When the ALE server calls
an ALE service, it first analyzes the Event Cycle Spec, and
then starts to receive EPC data from data sources such as an
RFID reader. This data is accumulated in every read cycle,
filtered by removing duplicated or irrelevant EPC data and
organized in groups. Finally, the middleware generates an
Event Cycle Report in the form of a SOAP message.

The RFID middleware must contain characteristics
typical of the RFID networks such as real-time,
repetitiveness of frequent service calls, mass data processing
or distributed environment. To support these characteristics,
the ALE interface provides component independence for the
EPC data acquisition, filtering and business applications.
This way, the RFID middleware can maintain its internal
data processing by aggregating RFID data from logical
readers independently without being affected by the physical
devices. Thus this independence separates the infrastructure
in the physical, service and application layers.

4. Design of a Template-based RFID
Middleware Architecture

This paper proposes the light-weight ALE-TSOAP RFID
middleware architecture. ALE-TSOAP is an ALE Template
based SOAP processing scheme that enables a high
performance RFID middleware by using a Template
Processing component and a Compression Processing
component in order to overcome the poor performance of
SOAP.

Our ALE design is a layered structure formed by a
Device Management layer, a Data Processing layer and an
Application Interface layer that provide independent data.

The Device Management layer aggregates EPC data
every read cycle through devices such as RFID readers by
sending requests to the Event Processing Manager and
transferring periodically the EPC data to the Data Processing
layer. The Device Management, consisting of the Logical
Reader Agents, the Configuration Management and the
Device Manager, must hold a reader ID, a sensor ID and a
device profile ID in order to read EPC data. The device
profile contains the reader name, antenna and the protocol of
the physical reader devices. The Configuration Management
should also have the MAC and IP addresses of each device,
and their related public/private keys for security purposes. A
reader with more than a single antenna recognizes each
antenna as an independent device, called a Logical Reader.

The Logical Reader Agent plays the role of a reader
adapter and driver instance. The Data Processing layer
processes service requests called by the Application Interface

Fig.2 Event data processing of ALE
communication interface

Reader Protocol

EPCIS Capturing Interface

Filtering & Collection (ALE) Interface

RFID Reader

EPCIS Capturing Application

EPCIS Repository

EPCIS Query Interface

RFID Middleware

EPCglobal Subscriber

EPCIS Accessing Application

Inteface
HW/SW Role

Partner
EPCglobal Subscriber

EPCIS Accessing
Application

EPCglobal Core Services

RFID Tag

Tag Protocol (UHF Gen2, Class 0, Class 1)

Reader
Management

Interface

Reader
Management

Subscriber
Authentication

EPCIS
Discovery

ONS
Root

Manager
Number

Assignment

SOAP binding

Fig.1 Communication interface using SOAP
protocol in EPC Network Architectures

layer and responds an Event Cycle Report message for every
request. The Data Processing layer consists of the
Event/Task Process Manager, the ALE Service Processing,
the Template Processing and the Compression Processing
modules. The Event Process Manager produces event cycles
by using the Event Cycle Spec sent from the EPCIS. The
Event Process Manager accumulates reading data from a
collection of Logical Readers during every event cycle.

The ALE Service Processing component filters the EPC
data returned from the Event Process Manager by using EPC
code patterns, time and logical reader, etc. as defined in the
Event Cycle Spec, making separate groups of classified
reports. The Template Processing module carries out a new
approach using ALE templates WSDL based to generate
Event Cycle Spec and Event Cycle Report between a RFID
middleware and an EPCIS service. The Template Processing
component aggregates reports returned from the ALE
Service Processing during the Event Cycle and translates
them into SOAP messages. This way, the ALE-TSOAP
middleware bypasses the serialization of SOAP messages
using the ALE-based Template Processing.

The RFID middleware finally generates a complete Event
Cycle Report and sends it to the requester, the EPCIS,
through the ALE server. Furthermore, if the size of the
SOAP message that includes the Event Cycle Report is big
enough for compression, compression is applied. The
Compression Processing component dynamically chooses the
optimum compression algorithm by the size of the SOAP
messages in run-time, such as gzip and XMill, to reduce the

transmission size of the response message. The compression
technology is essential in order to deal with huge amounts of
RFID data especially that included in the Event Cycle
Reports.

When an EPCIS calls the RFID middleware through its
ALE Interface over HTTP, SOAP messages are sent by the
web server to the SOAP engine. If the SOAP engine finds the
same service in its own service list first, it sends the message
to the Application Interface layer. When the Application
Interface layer gets the service, it sends back a response
message to the client accepting the request. Finally, when the
Application Interface layer starts the service, it calls the Data
Processing Layer and waits for the the Event Cycle Report
message returning from it.

5. ALE-TSOAP Optimization Scheme
using ALE Templates

This paper bypasses the full serialization of SOAP
messages to overcome the serialization problem where 90%
of the processing time in SOAP service calls is used for
message serialization. Our RFID middleware design makes
use of ALE-TSOAP to avoid this problem, predefining
various types of ALE templates and dynamically choosing
the appropriate one. The selection is based on the services
that are called to generate SOAP formatted response, and the
final complete SOAP message may be a combination of
multiple ALE templates together. Fig. 4 presents the RFID
middleware processing EPC data. The ALE middleware
reads EPC tags, filters their data and makes groups of
reports’ collections. Finally, the middleware generates a
response message for the service called from a client or a
third party.

In this section, we explore the lightweight ALE-TSOAP

scheme for SOAP optimization. ALE-TSOAP is based in the
use of differential-ALE Templates, ALE TDM (Template
Data Management) tables and SOAP message generation
with multiple ALE Templates on the RFID server side in
order to generate Event Cycle Report messages.

Fig.3 Template based ALE-TSOAP
Middleware Architecture

Fig.4 Event Data Processing of ALE
Middleware

5.1 Differential-ALE Template Design
based on the ALE interface

The structure of a SOAP message is fixed when the
service is described via WSDL. SOAP is represented in
XML elements and attributes, providing a text-based means
to describe tree-based structured information in the form of
tags and actual values. Regarding the EPC Network and
Web Services, the EPCglobal describes the ALE interface as
a WSDL with an Event Cycle Spec and an Event Cycle
Report schema. Using WSDL for the ALE interface, we
design ALE templates in which the tags are a static part of
the SOAP messages but the attributes are dynamic.

We started with the WSDL service interface specification
that describes the communications between the ALE server
and the EPCIS. We then designed the structure of the
response messages based on their corresponding XML
schema definition. Fig.5 shows the XML schema that we are
going to use for the Event Cycle Reports. There is more than
one report element in an Event Cycle Report. We analyzed
the service calls to the ALE interface and the structure of the
response messages to classify them before sending them
outside the ALE middleware. Response messages are SOAP
message resulting from adding the HTTP protocol header to
the service requests. Each SOAP message has information
about the SOAP processing instructions and an Event Cycle
Report with multiple reports as the result of the particular
service that was called.

The ALE template classification derived from the
response messages for the ALE interface services is the
following;

• Message Fully Matching;
The whole structure of message and its contents is fixed.

We define an ALE template of the SOAP header for the
SOAP processing instruction; we must cache the serialized
SOAP template to avoid duplicated serialization process for
its later use.

• Message Contents Matching;
The whole structure and size of the message is fixed, but

some of its contents are variable. We define ALE templates
of the SOAP body to add the actual value of variable tags
according to a result of services called in Body of SOAP
message and update serialized actual value of the only
changed contents. If the number of characters in the updated
serialized contents is bigger than the field size of the
predefined contents, the field size should be adjusted by
more than the size of the updated serialized contents.
However, the sizes of the variable fields in the response
messages are always fixed and so we can make them as
templates.

• Message Structure Matching;
The structure and size of the SOAP message should be

changed and extended. We define ALE templates of the
SOAP body to add both new EPC code tag elements and the
actual value of each EPC code. Although the EPC code tag
elements and the actual value of the EPC codes have fixed
size in the SOAP messages, the structure and size of those
messages should be extended to additionally add the number
of tags and their contents according to the service results
after every event cycle is finished. It is the processing time to
adjust the structure of a variable field which dictates the
performance improvement of the RFID middleware.

We discussed three classifications for the SOAP

messages in the ALE server, giving a much more efficient
way to generate response message using different ALE
templates. We have found these cases partially appropriate
for the Event Cycle Report SOAP messages. The Message
Fully Matching classification can produce templates for
SOAP headers since they always have the same basic XML
and SOAP supporting information. However, the main
purpose of the response message in the RFID middleware is
to provide EPC information as business event data to the
EPCIS as a result of a requested service. The Message
Contents Matching and the Message Structure Matching
classifications can make a template for the SOAP Body
containing reports filled with the list and the total number of
EPC codes. The tag field elements presenting the EPC code
list must be branched out new child node of XML tree
structure, as much as the number of EPC codes in the EPC
list returned as the service result. We must also require
additional fields for the tag count element and the tag list
element according to the service result in every event cycle.
The Message Structure Matching classification is useful in
the case of expansion of the SOAP messages structure for the
additional fields of tag count and tag list elements. Since we
can know how many tags are necessary after every event

-specName : char
-date : long
-ALEID : char
-totalMilliseconds : long
+terminationCondition
+ECSpec
+reports

SOAP Body

+trigger
+duration
+stable_set
+unrequest

terminationCondition

+reportName : char
+Group

reports

+groupName : char
+GroupList
+GroupCount

Group

+epc
+tag
+rawHex
+rawDecimal

member

+count : int
GroupCount

+targetNamespace
+xmlns:ale
-xmlns:epcglobal
-xmlns:xsd

SOAP Envelope

+member
GroupList

+SOAP Envelope
+SOAP Body

SOAP Message

Fig. 5 XML Schema of an Event Cycle Report

cycle is finished, we can calculate the exact chunk size
required for them and reserve the necessary memory space.

Using ALE templates allows avoiding the full
serialization of SOAP message by only serializing the
contents that are changed, and so reduce the generation time
of Event Cycle Report messages and, hence, SOAP
generation time, by reusing cached SOAP header templates.
Following, we will introduce the ALE templates data
management for ALE-TSOAP, that allows maintaining the
internal data of the ALE templates while guaranteeing the
memory space for caching.

5.2. ALE Template Data Management for
ALE-TSOAP

As explained previously, our RFID middleware design
dynamically chooses ALE templates from a pool of
predefined ALE templates in order to generate response
messages. It then fills out the EPC data results for the
requested service in the form of serialized contents in each of
ALE template. Finally, it combines these ALE templates
after applying a differential serialization and makes a
complete SOAP.
hen a service is called, the RFID middleware determines
whether any of the ALE template messages can be partially
reused. To do this, the middleware goes through the ALE
TDM (ALE Template Data Management) tables looking at
the information about the same service type. Each of the
ALE templates has its own ALE TDM table and
continuously maintains its updated status data during service
running.

An ALE TDM table contains the following fields.
• Data Field ID: a field key to identify additional tag
elements and variable content values.
• Data Field: a field name for additional tag elements and
variable content values.
• Data Type: a field data type for additional tag elements
and variable content values.
• Usable Field: whether cached data exists in the case of tag
elements and fixed content values.
• Change: whether cached data should change in
comparison with the current service result
• Serialized Length: the number of characters in the
message for the new serialized data

Each result message should be cached in the format of an
ALE template after differential serialization and before
sending in order to make it available for the next service call.
The value of its change field in the ALE TDM table field is
set to TRUE and the status of the ALE template is updated.
When the same service is called for the second time, the
RFID middleware checks the change field in the ALE TDM
table and reuses the cached messages in order to avoid full
serialization. This way, the response message generator in
the ALE server generates a complete SOAP message from
each ALE template, using the data ID, data type, usable and
change fields in the ALE TDM.

5.3. SOAP Message generation with
Multiple ALE Templates

The RFID middleware has a response message generator
in the ALE server that creates SOAP message using ALE
templates. These templates are created after a differential
serialization process that combines dynamically chosen
templates among a collection of ALE templates. The
response message generator considers the repetition of tag
elements and combines SOAP header template messages and
SOAP body template messages to finally generate a

Fig. 6 Automata of combination of report

templates to generate complete SOAP Message

complete SOAP message. The only difference between this
architecture and the original ALE interface in the RFID
middleware is thus the response message generator that is
replaced by ours which uses ALE templates after differential
serialization.

The ALE-TSOAP response message generator is a
component that communicates with what we call the
“Matching Engine.” The Matching Engine processes a
variety of ALE templates required for the differential
serialization by crawling the repeated XML structures using
an automaton. This component dynamically generates an
automaton from the response message’s XML schema and
uses ALE-TSOAP to link the created automaton and the
ALE template objects. Finally it tries to match the linked
ALE template objects with the service program and if it
succeeds, it invokes the differential serialization in order to
give the linked ALE template objects the actual values of the
service after every event cycle is finished.

The automaton consists of a fixed state and a variable
state. The fixed state contains the tag sequence that is not
changed, such as the XML prolog, start and end tags defined
by the XML namespace, and constant values of the contents.
The variable state contains the tags sequence that is changed,
such as the variable content values and additional tags
extending XML structure. While creating a new automaton,
the Matching Engine collects information about the variable
states and creates an ALE TDM table for maintaining them.

The repeated structure of tags element in a SOAP
message is required for those services that have two or more
pieces of the same ALE template with different contents.
This approach is shown by the definition of automaton in Fig.

6. For example, let Q be a finite set of internal states for the
fixed part, Σ a finite set of states for the input symbols, δ a
transition function to determine the next state and F the set of
the final states.

We want to generate a report tag which consists of two
report tags. The each report tag has its own child tags
hierarchically in the response message. Each report tags
should create its child tags step by step and independently.
Our goal is to avoid this repeated step by using ALE
templates. Our approach is to fill out the report related
elements in the report template with the new contents of the
variable fields that come as a result of the particular service
that was called. Finally we can create a higher reports tag
with the combination of multiple report templates. Before
making a complete SOAP message, we must cache this
report template message for its use in a next service call.
Figure 7 presents the pseudo code for creation of reports tags
using report templates into an Event Cycle Report.

6. Implementation and Performance
Evaluation

In this section we illustrate the operation of ALE-TSOAP
and demonstrate the whole process with a simple application.
In our experiments we use and open source RFID
middleware software, the ALE Server 1.0.4, released by
Logicalloy [11] as part of their Web Service suite. The
software uses Codehause XFire, a java SOAP framework
that supports the most important Web Service standards such
as SOAP and WSDL. We used Java 1.4 to test our ALE-
TSOAP application on a Jetty Web Server, using Hsql DB
and the dom4j library for XML, providing full support for
DOM, SAX and JAXP. The application was tested on a
Windows XP, 2.40 GHz machine with 512 MB of RAM.

We implemented an alternative response message
generator in order to support ALE-TSOAP, that is used in the
ALE server when subscribe and immediate/poll services are
called in the ALE interface. To experiment with the response
message generator, we also implemented a simple
application which yields SOAP messages with a payload of a
string defined (name, ECSpec) with 100 EPC tags. The

<reports>{

FOR $reportName IN ECREPORT

FOR $groupName || $tag || $count IN REPORT

IF $reportName

<report reportName= $reportName >

IF $groupName

<group name=$groupName>

ELSE <group>

FOR $tag IN REPORT

<groupList>

<member><tag>$tag</tag></member>

</groupList>

IF $count IN REPORT

<groupCount>$count</groupCount>

</group>

</report>

}</reports>

Fig.7 Pseudo-code for combination of report
templates according to the reportName
element in an Event Cycle Report

Client ALE Reader(s)

Fig. 8 A subscribe method when a client ask to
ALE server to start a service

purpose of the experiment is to compare the performance of
the ALE-TSOAP with the performance of the original SOAP
(Codehause XFire) regarding the generation time of the
SOAP response messages, especially for the ECReports
(Event Cycle Reprots) method (Fig. 8). For the performance
metric, we used the total number of tags instead of the size of
the SOAP messages because even when two messages have
the same XML tree structure they may have different sizes
due to white spaces such as carried returns, new lines, tab
and a blank space. At first, our study focused on the ALE-
TSOAP after the differential serialization since the most
critical bottleneck of SOAP is the serialization of the XML
files. We saved to files the SOAP response messages for
each operation in order to analyze each of their generation
times according to the total number of EPC tags. Results in
Fig.9 show that our ALE-TSOAP boosts the performance of
the ALE server when compared with the original SOAP,
Codehause XFire. It presents the average time for SOAP
processing for 20 trials for both the Codehause Fire and
ALE-TSOAP.

We show evaluation results in Table Ⅲ. When the
Codehause XFire in the ALE server generates response
messages with 100 tags, the time taken before file I/O grows
up to 38.75 ms. When using the ALE-TSOAP, however, it
only takes 19.5 ms. Therefore the performance of the ALE-
TSOAP is better than that of the Codehause XFire by a
197.8%.

7. Conclusion

This paper aims to solve the problem of the poor

performance of the SOAP serialization of XML messages in
the RFID middleware. We implemented the light-weight

ALE-TSOAP architecture based on ALE templates that
applies differential serialization of SOAP messages in the
EPC Network. We defined ALE templates to used them with
WSDL and the XML schema of Event Cycle Reports,
mapped the ALE templates with the ALE TDM tables and
combined pieces of ALE template messages to generate
complete SOAP messages. Our study compares the
performance of our ALE-TSOAP, based on ALE templates,
with the performance of the original SOAP, Codehause
XFire, regarding the generation time for response messages.
The evaluation result presents a 197.8% performance
improvement of the ALE server when using ALE-TSOAP.

For our future work, we plan to improve and enhance
ALE-TSOAP using caching of ALE template messages.
First, we will take advantage of the fact that a major portion
of the bottleneck is the serialization time. By using caching,
the performance of the RFID middleware could improve due
to the reduction of the system calls processed by SOAP.

Reference
[1] Ken Traub,Greg Allgair , “The EPCglobal Architecure

Framwork” ,EPCglobal Final Version of 1 July 2005,
[2] EPCglobal, ”The Application Level Events (ALE)

Specification, Version 1.1 “EPCglobal ,13 July 2006
[3] W3C, "SOAP Version 1.2" , June, 2004
[4] D. Davis and M. Parashar, “Latency Performance of

SOAP Implementations”, Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 407-412, 2002.

[5] K. Chiu, M. Govindaraju, and R. Bramley,
“Investigating the Limits of SOAP Performance for
Scientific Computing”, Indiana University. Accepted
for publication in the Proceedings of HPDC 2002.

[6] Abu-Ghazaleh, N., Lewis, M.J., Govindaraju, M.,
"Differential serialization for optimized SOAP
performance," 13th IEEE International Symposium on
High performance Distributed Computing, pp. 55-64 ,
June 2004

[7] K. Devaram and D. Andresen, “SOAP Optimization via
Client-Side Caching”, in the Proceedings of the First
International Conference on Web Services (ICWS'03),
pages 520-524, LasVegas, NV, June 2003.

[8] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P.
Widener, “Efficient wire formats for high performance
computing”. In Proceedings of the 2000 conference on
Supercomputing, 2000.

[9] K. Chiu, M. Govindaraju, and R. Bramley,
“Investigating the Limits of SOAP Performance for
Scientific Computing”, HPDC-11, pages 246-254,
Edinburgh, Scotland, July 23-26, 2002.

[10] Daniel Andresen , David Sexton, Kiran Devaram,
Venkatesh Prasad Ranganath, "LYE: a high-
performance caching SOAP implementation" ICPP’04,
pages 143- 150 vol.1, Montreal, Canada, Aug. 2004

[11] ALE Server 1.0 Final Released 2006-11-19 , logicalloy
RFID system, http://sourceforge.net/projects/logicalloy/

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 1011121314151617181920
creation trial of SOAP message

cr
ea

tio
n

tim
e

(m
s)

Codehause Fire

ALE-TSOAP

Figure 9. The experiment result of creation
time of SOAP message between Codehause
Fire and ALE-TSOAP.

Table Ⅲ. The comparison result of
processing time for an Event Cycle
Response message with 100tags

Codehause XFire ALE-TSOAP

38.75 19.5

