
Multi-hop Network Re-programming Model for
Wireless Sensor Networks

Kangwoo Lee, Jae-eon Kim, Do Thu Thuy, Daeyoung Kim, Sungjin Ahn, Jinyoung Yang
School of Engineering

Information and Communications University
Daejeon, Korea

{kangn2, jekim, dtthuy, kimd, sungjin, jyyang}@icu.ac.kr

Abstract—Network re-programming in wireless sensor networks is an essential facility, especially in practice, for deploying and
maintaining highly dynamic sensor nodes. This paper proposes an efficient way to update whole binary image based on layered
architecture with multi-hop network protocol. The layered architecture utilizes 3 different memories including flash, RAM and
EEPROM. The network dissemination protocol is based on hierarchical routing and support practical considerations such as
sleep/wake-up mechanism for energy saving.

I. INTRODUCTION
Network re-programming is a challenging problem in

widely deployed wireless sensor network applications.
Usually sensor nodes are located far from existing network
infrastructure or easy human accessibility, such as top of
trees, side of cliffs, etc. It is very tough and difficult if users
want to change sensor network applications on top of
existing network. We can say that sensor networks are
fundamentally difficult and expensive to maintain.

We propose ANTS (An evolvable Network of Tiny
Sensor) PNP(Progressive Network re-Programming) multi-
hop network re-programming model for wireless sensor
networks to achieve easy and autonomous management for
large scale sensor networks. Our network re-programming
model can be basically divided into two parts: PNP
Framework and Dissemination Protocol.

Our ANTS platform aims to support an evolvable
framework: upgrading kernel module, application, and even
kernel core function in runtime without stopping a current
application. The proposed PNP framework is based on the
layered architecture, taking into consideration how nodes
store a lot of packets received during update and how to
manage the different types of storages efficiently. The
dissemination protocol discusses how to deliver a large
program image reliably and quickly. Section II reviews
related work. We introduce the PNP framework in section
III, and describe the dissemination protocol in section IV. In
section V, we evaluate the implementation of ANTS-PNP,
and section VI concludes this paper.

II. RELATED WORKS
A few Network re-programming schemes have been

developed, most of which are based on TinyOS. The first

implementation of network re-programming in TinyOS is
XNP (Crossbow Network Programming) which updates
nodes in a single hop range with whole binary image.
Deluge is the extension of XNP, which supports multi-hop
environment. It is designed to solve the broadcast storm
problem by suppressing identical simultaneous broadcast
packets. MNP is another variant of XNP-based multi-hop
network re-programming protocol, but it proposes a sender
selection algorithm for the broadcast storm problem and
hidden terminal problem to select the most effective node as
a sender. Another XNP-based protocol is MOAP, which
uses a sliding window mechanism for reliable data
transmission. Incremental network re-programming is the
first attempt to transmit only differences between two
images for the update by using a simplified variant of
Rsync. Aqueduct is a multi-hop network re-programming
protocol based on Deluge, support heterogeneous sensor
networks by adding a new ‘Forward’ state to Deluge.These
works use a physical addressing which is different from
each platform. They stop running application and transit to
re-programming state. Moreover, EEPROM is used to store
a whole binary image, which is relatively very slow than the
flash. ANTS-PNP provides enhanced functionalities such as
a relative addressing, simultaneous update, and storage
management scheme using the flash than EEPROM.

III. PNP FRAMEWORK
The PNP framework for ANTS-PNP is one of two key

technologies which contributes to the efficiency of our
network programming model. In this framework, we
propose an approach for a sensor node to store multiple
packets while it is in the upgrading phase. Regarding
different types of storages (RAM, Flash and EEPROM) have
their own characteristics such as storage size, addressing
scheme, overhead for accessing, etc.

This research has been supported by the National Computerization
Agency and the Ministry of Information and Communication in Korea.

Fig. 1. Update Procedure of ANTS-PNP Fig. 2. Layered Architecture of ANTS-PNP

This framework has a management scheme for those
storages to best utilize them.

A. Upgrade procedures
Figure 1 shows the utilization of different storage in each

step of upgrade procedure. Before explaining the procedure,
since ANTS-PNP targets whole program image update,
rather than modular update, we use the concept
“application” in this paper to denote whole executable
program image, including both the “real” application and
the operating system. First, (1) a node receives a packet of a
new application from a source node. This packet is sent after
the update is initiated. (Further details for this step will be
described in the next section). Then, (2) the decision of
where the packet should be stored is finalized by the storage
management information, such as the number of bytes
written in a buffer, in EEPROM. Next, (3) the application
which is running, stores it in the buffer. (4) If the buffer is
full, the execution flow moves to the bootloader (5) to copy
the buffer to one of storage sections. To do this, some
parameters are also passed (For example, addresses of buffer
and storage section). (6) The application continues its
execution after writing the buffer. (7) If a new application is
received and stored completely, the execution flow moves
again to the bootloader, and it copies the new application
from the storage section to the application section. Finally, a
node restarts with the new, updated application.

B. Layered Architecture
ANTS-PNP is based on the layered architecture, as

depicted in figure 2, consisting of four layers: Application
Layer, Buffering Layer, Storage Management Layer and
Bootloader Layer. We briefly describe the function of each
layer in TABLE I.

TABLE I. FUNCTIONS OF LAYERS IN LAYERED ARCHITECTURE

Layer Function

Application
Consists of different application versions that exist
simultaneously in program memory.

Buffering Buffers packets before writing to program memory
when the full image is received.

Storage
Management

Stores necessary information to generate a complete
image from received packets and to manage multiple
versions of applications.

Bootloader Stores code to load new version of application to first
address of flash or just to execute PIC image.

Each layer utilizes different types of storage for quick
update and efficient storage usage. An application image can
be divided into many pages, which are sent in several
packets to fulfill the upgrade procedure.

1) Application Layer: A remarkable difference of PNP
framework from other network re-programming schemes is
that ANTS-PNP allows multiple applications of different
versions to reside simultaeneously in the flash, or program
memory. It allows a node to roll back into the previous
application, for example, when the new application does not
work properly. As the access time to EEPROM is much
slower than to flash, we can reduce the update time
compared with previous work based on TinyOS which uses
EEPROM to store a packet or a bit of application image
whenever it is received.

To store different application images, we divide the flash
memory into three sections. The size of each section is 40K
bytes. Different versions of an applications will be first
located in these sections. Whenever there are requests to
update to a new version or roll back to a previous version
the boot loader will choose the appropriate version from
these sections to copy to the application section, which is
located at the first address of flash memory.

2) Buffering Layer: Rather than writing a packet
whenever received, buffering a certain amount of packets
and writing them together allows us to shorten the update
time. Since buffering time should be less than writing time
to the flash, RAM is used for buffering. For example,
Atmega128, one of the most widely used MCUs for sensor
nodes, can write 256Bytes to flash in the same time as
writing one byte. In addition, the buffer size is the same as
that of a page to make it easier to check for missing pages.

3) Storage Management Layer: Information about
storage usage should be kept to generate a complete
application image from many packets, and to manage
multiple applications. For a complete application image, we
need a set of information including: address and size of the
buffer, address of the flash to write the buffer, the number
of bytes written to the buffer and missing pages. For
multiple applications, the information of address, version
and length of the applications are required. EEPROM is
used to store such information listed above because the
information must be preserved even after an update.

4) Bootloader Layer: In order to update a whole
application, the current application stops running and the
bootloader loads a new application from Application Layer
into the first address of the flash. If a PIC (Position
Independent Code) can be generated for the platform, the
bootloader will simply execute a new application directly
without such a loading. Because this is not the case for
Atmel, we do not consider PIC at this time, and leave it for
further work.

C. Storage Management Scheme
The storage management layer provides storage

management functions for the flash and EEPROM such as
read/write and page management. Through these functions,
the bootloader can write binary images in the flash and
verify its correctness. The page management is done by
keeping the usage information of pages in the flash in order
to determine where a new image should be located.

The approach to manage different storages used in
ANTS-PNP is explained in figure 3 below:

Fig. 3. Storage Management Scheme

As shown in figure 3, we propose a new addressing scheme
which is independent from the physical address, basing it
on two basic units, namely page and segment. This
addressing scheme will also be evolvable with our system,
i.e. it can be adapted to multiple platforms such as
Atmega128, MSP430, C8051 and usable with modular
update scheme. As shown in figure 3, the application
information table contains all needed information for
updating like version, start address of each segment and
number of pages in each segment. For the current approach,
the number of pages is fixed, but it can be varied for an
evolvable system which requires more flexible memory
usage. The Bit-Mask of each segment shows us the status of
each segment, whether it is written or not and if it is locked
for preventing other applications to change it. We can also
estimate the usage of storage using the following equations:

If N denotes the size of flash for application, the size of a
section Ss is: Ss = Np*Sp where Sp is the size of a page and Np
is the number of pages in a section. If Es is the expected size
of a section, Np is calculated as follows:









=

P

s
P S

EN

In this way, the number of sections, which is calculated by N
is:









=

S
S S

NN

IV. DISSEMINATION PROTOCOL
Dissemination protocol for network re-programming has

different characteristics/requirements from a typical routing
protocol. For example, the size of an application image
could be very large compared to usual sensing data.
Moreover, a new application must be delivered completely
without any error to ensure its proper execution. With some
assumptions, listed below, we provide an efficient protocol
in a practical situation.

• Update transaction is initiated, at any time, to only
interested nodes in a whole network: Usually the
user/network manager prepares a new application
image and disseminates it from the base node to the
whole network.

• Due to the lack of energy resource, of a node, it’s
important to apply sleep/wake-up mechanism to
deployed sensor networks to save energy. Therefore,
ANTS-PNP performs network re-programming only
to interested node and lets non-interested nodes
sleep during the update.

• Because ANTS-PNP is based on a hierarchical
routing protocol widely used in practical
deployment, a node is assumed to have its
parent/child information.

To save the energy for the network, ANTS PNP only
choose interested nodes and routing nodes on the way to
reach interested nodes using a publish/subscribe mechanism
which is represented as ADV-RES. At first, source nodes
start 3-way handshake (ADV-RES-SLP) to establish a “Re-
programming Network” composed of necessary nodes
required necessarily to disseminate a new application to
interested nodes. Re-programming network contains two
types of nodes: one is interested node that would be updated;
another is routing node that is located between interested
nodes to forward a new application. Then non-interested
nodes sleep during the update. After 3-way handshake, data
is disseminated along the re-programming network. While
disseminating, two status flags are maintained.

• Update: TRUE if a node needs update, FALSE if
not.

• Alive: TRUE if a node is in the re-programming
network, FALSE if not.

The following describes the detail of each step from
figure 4.

A. ADV(Advertisement)
A source node floods ADV messages to the whole networks:
each recipient forwards the ADV message to child nodes, as

Fig. 4. Dissemination protocol: (a) Advertice, (b) Response, (c) Sleep, (d) Re-programming Network

shown in figure (a) of 4. ADV message contains availability
and version information of the new application image. Then
each node that receives the ADV message determines the
version information. TABLE II shows the contents of the
version information in a packet.

TABLE II. PACKET OF VERSION INFORMATION

Architecture Binary
Format Image Type Image Version

0: AVR
1: 8051
2: MSP430
3. Jennic

0: SREC
1: ihex

0: Whole Kernel +
APP
1: Kernel Core
2: Kernel Module
3: Application

Major#.Branch#.Patch#

B. RES(Response)
If a leaf node receives an ADV message, it replies, as

shown in figure (b) of 4, by sending a RES message
including a status of the path which the message goes along:
status Active is initially FALSE and become TRUE if a node
or at least one of its descendents needs the update.
Furthermore, Alive becomes TRUE if Active in received
RES message is TRUE, or Update is TURE.

C. SLP(Sleep)
After receiving RES messages from all child nodes, a

source node sends a SLP message to all sensor nodes. The
SLP message includes the expected time to finish the update
and nodes out of the re-programming network go to sleep
for the amount of time after receiving the SLP packet.
Figure (c) of 4 shows dissemination of SLP messages, and in
(d) white nodes make up the re-programming network. In
addition, because time synchronization is critical to
synchronize the wake-up time of nodes when the
sleep/wake-up mechanism is applied, the time specified in a
SLP message is represented in absolute time.

D. DATA(Data)
From a source node, a parent node starts sending new

application packets by first sending a short description
packet. A description packet delivers the number of pages
and version of the new application. A child node keeps a
track of missing packets in the EEPROM by writing only
two bytes: one which indicates missing pages 0~255;
another is a bitmap of missing packets in that page from 0~7.
After receiving the last page, child nodes request
retransmission based on the data.

V. IMPLEMENTATION AND TEST
We implement ATNS-PNP on an ANTS-H20 hardware

platform. ANTS-H20 is Atmega128 based sensor node
capable of RF communication using CC1100 in the
frequency of 433MHz. The PNP system architecture is
implemented as a module of ANTS-EOS (Evolvable OS),
and the dissemination protocol is on top of ANTS-NWK
mesh network routing protocol.

We build test environment with one base node as a
source node transmitting 15KB image and 5-hop sensor
nodes, and measure the number of packets, completion time
and retransmission rate, listed in TABLE III. “Total packets” is
the number of packets transmitted while updating whole
network with 5-hop, including control, data and
retransmission packets. “Completion Time” is the time taken
from starting update at a source node to finishing update at
the last node, and retransmission occurs less than 3 percent
of total packets.

TABLE III. AVERAGED RESULT OF MEASUREMENTS

 Total
Packets

Completion
Time

Retransmission
Rate

Measurement 400 42 sec > 3%

VI. CONCLUSION
ANTS-PNP is an efficient multi-hop network

reprogramming model for updating a whole binary image.
It’s based on a layered architecture with storage
management scheme for the efficient and safe use of the
different memories. The PNP framework can be applicable
to various platforms and even to evolvable systems. The
publish/subscribe-based dissemination protocol provides a
practical, efficient update by allowing a sleep/wake-up
mechanism during normal functionality and nonstop
communication during update.

REFERENCES
[1] D. Kim, T. Sanchez Lopez, S. Yoo, J. Sung, "ANTS platform for

Evolvable Wireless Sensor Networks," LNCS, The 2005 IFIP Int’l/
Conf/ on Embedded And Ubiquitous Computing (EUC'2005),
Nagasaki, Japan, 6-9 December 2005.

[2] Q. Wang, Y. Zhu, L. Cheng, “Reprogramming Wireless Sensor
Networks: Challenges and Approaches,” IEEE Network, May/June,
2006.

