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ABSTRACT
In this paper, statistical properties of the spatiotemporal
center weighted median (CWM) filter for image sequences are
investigated. It is statistically shown that the CWM filter pre-
serves image structures under motion at the expense of noise
suppression. To improve the CWM filter, an adaptive CWM
(ACWM) filter having a variable central weight is presented.
We show that the ACWM filter can preserve image structures
under motion while suppressing noise, and thus can be effec-

tively used in image sequence filtering.

1. INTRODUCTION

The processing of image sequences involving motion has be-
come increasingly important in a variety of areas including
video signal coding, medical imaging, and robot vision [1],[2].
Recently so-called high definition television (HDTV) systems
which are an application of image sequence processing have
received a great deal of attention.

Some noise reduction techniques for image sequences use 3-
D linear filters based on the assumption of the spatiotemporal
stationarity [3],[4]. Such linear filters smear abruptly sustained
changes (edges), and distort moving objects where the assump-
tion of the stationarity is not justified.

A variety of motion-compensated temporal filtering tech-
niques have been proposed to overcome this problem [5]-[7].
Some of these techniques utilize a combined segmentation and
motion detection algorithm to segment the images into mov-
ing and non-moving regions, applying a temporal filter only
in the non-moving areas. These methods can preserve image
structures under motion, but cannot reduce noise in moving re-
gions. Although noise in moving areas is perceptually masked
to some extent by the motion, it will be visible in slowly mov-
ing areas. Others estimate the motion path of a pixel and the
temporal filtering is performed over its path so that the mov-
ing objects are not distorted. However, the amount of noise
suppression which can be attained with the 1-D temporal fil-
ter is quite limited. In order to increase noise suppression,
larger temporal windows may be used. This leads to a compu-
tationally expensive estimation algorithm for the motion path
since a large number of possible motion trajectories need to be
processed.

The center weighted median (CWM) filter is an extension
of the median filter which gives weight to the center sample
in the window [8]-[10]. This filter allows a degree of control
of smoothing behavior of the filter via the central weight, and
thus is a promising image enhancement technique. Recently a
spatiotemporal version of the CWM filter has been effectively
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applied for image sequence filtering [11]. In this paper, statis-
tical properties of the spatiotemporal CWM filter are investi-
gated for image sequence processing. It is statistically shown
that the spatiotemporal CWM filter can preserve image struc-
tures under motion at the expense of the noise suppression.
To improve the performance of the CWM filter, a spatiotem-
poral adaptive CWM (ACWM) filter having a variable central
weight is presented by extending the 2-D ACWM filter [8] to
three dimensions. We will show that the ACWM filter can sup-
press noise while preserving moving objects without the use of
the motion estimation.

2. STATISTICAL PROPERTIES OF CWM FILTERS

In this section, we first review the spatiotemporal CWM
filter and study its statistical properties.

Let {X(.,.,.)} and {Y(.,.,.)} be the input and output, re-
spectively, of a spatiotemporal filter. Consider a spatiotem-
poral window W defined in terms of the 3-D coordinates
in the neighborhood of the origin (0,0,0). For example, a
(2N + 1) x (2N + 1) x (2N + 1) cubic window is given by
W = {(I,m,n) | =N < I,m,n < N}. The total number of
points in a window is called the window size 2L + 1. Let (i,j)
and (k), respectively, represent the spatial coodinates and the
time coodinate for a spatiotemporal signal.

A CWM filter with window size 2L + 1 and central weight
2D + 1 is denoted by CWM(2L+1,2D+1) and defined by:

Definition 1: The output Y (4, , k) of the CWM filter is given
by

Y (i, §, k) = median{X (i—1, j—m, k—n), 2D copies of X(i,4,k)
| (l,m,n)e W}, (1)

where D is a nonnegative integer. .

The CWM filter is very simple to implement. It has been
shown in [g] that the output value of the CWM filter is the
median of two (lower and upper) order statistics and the central
sample in the window.

Property 1: The output Y (3,7,k) of a CWM(2L+1, 2D+1)
filter is equivalent to

Y(i,j, k) = median{X;,-k(L+1—D;2L+1),X¢jk(L+1+D;2L+1),
XG5k} (2)
where Xijx(r;2L + 1) is the rt* smallest one (order statistic)

among 2L + 1 samples within the window centered at (i, 5, k),
and X(i,j, k) is the central sample of the window.
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By varying the central weight of the CWM filter, various
filter responses are obtained. For example, when D = 0, the
CWM filter becomes the median filter, and when D = L, it
becomes the identity filter (no filtering).

The motion preservation properties can be examined by con-
sidering 3-D simple inputs with moving step edges which are
corrupted by additive white noise.

The input sequence representing a noisy step edge at k < k;
is expressed by

V(i 4, k), i<o
X(3,4,k) = 3)
h+V(i,5,k), j21

where h is a constant representing edge height, V' (4,4, k) is i.i.d.
noise with distribution Fj(z). Let the distribution function of
h + V(i,j,k) be Fy(z). Then, obviously, Fy(z) = Fi(z — h).

Assume that at k = k; + 1, the edge is shifted horizontally
by 71 pixels, i.e.,
V(i’jy kl + 1), ] S jl
X(i1j1kl+ 1) = (4)

We will examine the filter behavior near the noisy edge by us-
ing the expected value of the output and the root mean squared
error (rmse). Here the rmse at (i, j, k) denoted by rmse(3, j, k),
is defined as rmse(i,j, k) = E[Y(i,],k)— §(¢,5,k)]* with
Y (i,j,k) as the filtered output, S(7,5,k) equal to 0 if j < 0,
and equal to A if § > 1. In order to compute these quantities,
we derive the distribution function Fy, (y) of the CWM fil-
tered output Y (4, 7, k) which is taken from m;;x samples with
distribution Fj(z) and 2L+ 1 —m;;;x samples with distribution
Fy(z) among 2L + 1 samples within the window centered at
(3,4, k). Note that the number of samples having Fi(z) in the
window, m;;x, depends on the location of the window.

Property 2: For the noisy step edge input in (3), the output
distribution function Fy;;, (y) of the CWM(2L+1,-2D+1) filter
is given by

2L min(d,m)

FYuk(y) = Z

d=d, -1 I=maz(0,d—(2L-m))
FE )1 - By 2™ Fijn(y)

min(d,m)

(T> (25 _ 1m> Fly)(1 - R)™!

2L
+Y
d=d I=maz(0,d—(2L—m))

1 d-1

FF)(1 - B)E 41 = Fs(®), (5)
wheredy = L+1-D,dy == L+ 1+ D,
Fi(y), 320 and _[mipx-1, j<0
Fik(y) = {F2(1/)1 i3, m= m.‘;k, i1

Using (5), we computed E[Y (i, k)] and rmse(s, 4, k) for
k = k; through numerical intergration. Fig. 1 and 2 show plots
of E[Y (i, §, k)] and rmse(%, ], k), respectively, for the CWM fil-
ters with the 3x3x3 cubic window, when the step edge (h = 4)
degraded by a Gaussian N (0, 1) noise is shifted horizontally by
ji=1and2atk=Fki+1. As expected, the edge preservation

characteristic of the CWM filter improves as the central weight

(M ") Fw - B

i

663

decreases. It is seen that the CWM filter 2D + 1 > 15 effects
a greater degree of edge preservation under motion than me-
dian (CWM(27,1)) filtering. Similar results can be obtained
for vertically and diagonally shifted edges.

In Fig. 1(b), the results associated with rmse(i,j,k) for
j < —1, where the 3x3x3 window of the CWM filter contains
only i.i.d Gaussian inputs with N(0,1), show the noise suppres-
sion characteristics of the CWM filter in flat regions. It is seen
that the CWM filter provides a wide range of smoothing per-
formance depending on the selection of the central weight. The
noise suppression of the CWM filter decreases with increasing
the central weight.

In summary, the CWM filter can preserve edges under mo-
tion at the expense of noise suppression. The central weight
should be carefully selected depending on the characteristics of
both the input image sequence and its noise.

3. SPATIOTEMPORAL ACWM FILTERS

In this section, a spatiotemporal ACWM filter having a vari-
able central weight 2D;;; + 1 is introduced. It will be shown
that the ACWM filter can offer a desirable combination of mo-
tion preservation and noise suppression properties by allowing
a variable central weight adjusted by local characteristics in
the spatiotemporal neighborhood of each pixel.

Definition 2: The output Y (,4,k) of an ACWM filter with
variable central weight 2D;;x + 1 is defined by

Y (3,4, k) = median{X;;x(L+1-Dyji; 2L+1), Xij:(L+1+D;j;
2L+1),X(i,5,k)}  (6)

We will derive the adaptive parameter D;;; by designing
the ACWM filter according to the approach proposed in [12],
which may be stated as follows: First choose a linear filter with
desirable characterstics, and then search for a nonlinear filter
whose linear component is close to the linear filter. Here the
linear component of a 3-D nonlinear filter for i.i.d. inputs is a
linear FIR filter with the impulse response given by

h(r,s,t) = Pr{Y(i,j,k) = X(i —r,j — 8,k — 1), (r,5,8) € W}

(M

which is the probability that X(i — r,j — s,k — t) equals the
output at (¢,7,k).

Using (2) and (7), it is readily seen that the impulse response

of the linear component of the CWM filter for i.i.d inputs is

given by
D4 if (r,5,t) = (0,0,0)
h(r,s,t) = DL (8)
i if (r,s,t) #(0,0,0),

foreach (r,,t) € W. Note that 35, , new h(r,s,t) = 1. Com-
parison of (2) and (6) shows that the impulse response of the
linear component of the ACWM filter with variable central
weight 2D;;x + 1 can be expressed as

Dt if (r,s,2) = (0,0,0)
hiju(r8,1) = 1-Dyjy /L (9)
e i (rys,t) #(0,0,0),

by replacing D in (8) by D;j.

Next we make an interesting observation indicating that the
adaptive filter in [13] gives more weight only to the central
value of each window. The output of a spatiotemporal version



of this adaptive filter for additive white noise suppression can
be represented by

Y(’v]vk) = A(i,],k) + Rijk[X(i’jrk) - A(l,],k’)] (10)

where A(3,j,k) is the average of the values within a window
centered at (4, j, k),

2 .« o
- ;;T?"my if U}(‘,J,k) > 031. (ll)

Rijr =
0, ow.,

where 6% (i, 7, k) is the sample variance of the data inside the
window, and o2 is the variance of additive white noise, which
is assumed to be known. Note that this filter varies between
the average filter and the identity fi'ter depending on the local
statistics.

We rewrite the output Y'(4,7,k) in (10) as

Y(i,5,k)= ), hi(rs,t)X(i-s,j—1) (12)

(ris,t)EW
where
sErr 2L Rije + 1], if (r,s,t) = (0,0,0)
h;jk(’l‘, s,t) =

?Z%.T[l - Rijkl, if (r,8,1) # (0,0,0).
(13)
Note that Y hijx(r,s,t) = 1. It is straightforward to see that
this filter imposes more weight only on the central value of each
window.
Comparison of (9) and (13) shows that the linear component
of the ACWM filter becomes the same as the filter of (12) if

D,‘jk = LR;ji. (14)

Since D;jz must be a non-negative integer, LR;;x may be
rounded.

It may be noticed that the ACWM filter associated with
(14) can become an identity filter if R;jx ~ 1 in some regions.
One simple remedy for this is to limit the central weight by
precluding any value which would cause the ACWM filter to
become an identity filter. The parameter Djji of the proposed
ACWM filter is determined by

Dy = ((L - T)R,‘jk] (15)
where T is an integer, 0 < T < L, and [z] represents rounding
of z. Since 0 < Rijx < 1, we get 0 < Dy < L —T. There-
fore, the ACWM filter varies between the median filter and the
CWM filter with 2D +1 = 2(L —T)+ 1. Generally speaking, it
preserves the motion like the CWM filter with central weight
2(L —T)+1 in the neighborhood of moving areas, and remove
noise like the median filter in non-moving flat regions of an
image. (A rule for the selection of parameter T is discussed in

(10].)

4. EXPERIMENTAL RESULTS
Three successive image frames (k = 7, 8, and 9) of the orig-
inal noise-free image sequence are shown in Fig. 3. Noisy im-
ages were generated by adding zero mean i.i.d. Gaussian noise
of variance 100 to the original image frames, and then were
passed through the spatiotemporal CWM, ACWM (T = 2),
median filters with the 3x3x3 cubic window as well as the

motion-compensated temporal median filter of size 3 in [6].
Fig. 4 shows the noisy image frame (k = 8) and its difference
from the orignal image frame.

Table 1 summarizes the normalized mean square error
(NMSE) of the filters. The minimal NMSE of the CWM filters
is smaller than the NMSE of the median filter. The ACWM
filter yields the smallest NMSE, while the motion-compensated
temporal median filter gives the largest NMSE. Fig. 5 shows
the filtered images and the difference between the original and
the filtered images. As expected, the spatiotemporal median
filter introduces the blur in the image, but performs well in
suppressing noise in non-moving regions. It is seen that the
CWM filter with a proper central weight (2D+1 = 7) preserves
more image structure at the expense of less noise suppression.
The motion-compensated temporal median filter introduces ar-
tifacts in the area of eyes where motion is not tracked. The
motion preserving characteristic of the ACWM filter is clearly
seen. The results in this section indicate that the ACWM filter
is an effective motion-preserving filter that can suppress noise
in image sequences.
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(b)

Table 1 NMSE (Gaussian noise o? = 100)

»
Median | CWM(27,7)| CWM(27,13)| CWM(27,19) | MC-median| ACWM(T=2)

0.39 0.34 0.48 0.68 0.88 0.27

»
MC-median represents the motion-compensated temporal median filter,
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