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Abstract

A class of nonrecursive filters that commute with every
increasing zero-memory nonlinear (ZNL) transformation is charac-
terized.  Specifically, it is shown that a nonrecursive filter com-
mutes with every increasing ZNL transformation if and only if it is
a rank-based sclection (RBS) filter that replaces each input value
with onc of its neighboring input data which is selected depending
on rclative amplitudes of the data. We also show that RBS filters
commuting with every nondecreasing ZNL transformation are stack
filters that can be represented as finite maximum-minimum opera-
tions.

1. TIntroduction

It has been observed that median filters and some of their
cxtension commute with every monotone zero-memory nonlinear
(ZNI,)] transformation [1,2].  As an example, for 1-D median
filters, if {X(m)} and {¥Y(m)} denote the input and output
sequences, respectively, and f(-) denotes a monotone ZNL transfor-
mation, then the commutativity implies that

fY(m)] = median{f{X(m-M)], .., fIXm)], ..., [Xm+M)]} (1)

where Y(m) = median {X(m-M), ..., X(m), ..., X(m+M)} and
IM+1 is the window size. The commutative property of a median
filter is duc to the fact that it selects one of the sample data
within cach window depending on the relative amplitudes (or the
amplitude rank) of the data, and that the amplitude rank is invari-
ant o monotone ZNL transformations. For example, if
X, <%, <Xy, then f(x) < f(x,) < f(x;) for every monotone ZNL
f(-). Maragos and Schafer, in their excellent work on morphologi-
cal filters [2], showed that some median-type filters commute with
thresholding.  Here the commutativity with thresholding is essen-
tially the commutativity with unit-step functions. Due to the com-
mutalivity, any analytical results in [2] obtained for median-type
filters for binary signals were also valid for multi-level signals. In
addition. the commutativity played a major role in their proof
that stack filters in [3] are morphological filters that can be
expressed as finite maximum-minimum operations. Fitch et. al. [4]
proposed an interesting median filtering algorithm by showing that
median filtering of multi-level signals reduces to a sum of median
filters for binary signals. As noted by Maragos and Schafer, this
median filtering approach is in fact a consequence of the commu-
tativity with unit-step functions.

Many median-type nonlinear filters select onc of the samples
inside cach window that moves over an input sequence; its output
sequence consists of the selected samples. For such filters we pro-
posc the name selection filters. If the output of a selection filter
is sclected depending only on the amplitude ranks of the inputs
within cach window then we call it the rank-based selection (RBS)
filters. Obviously, median filters and stack filters” - which can be
represented as finite  maximum-minimum operations - are RBS
filters. In this paper, we analyze sclection and RBS filters in terms

1
What we call ZNL transformations include zero-memory linear
transformations as well.

2

I'hroughout this paper stack filters refers to the morphological
function and set processing filters that commute with thres-
holding, which are defined in [2]. This definition of stack
filters is a slight extension of its original definition in [3].

Yong H. Lee

Dept. of Electrical Eng.

Korea Advanced Institute of Science
and Tech.

P. 0. Box 150, Cheongryang

Seoul, Korea

of the commutativity with monotone ZNL transformations. In Sec-
tion 1T we define rigorously selection and RBS filters and show that
the class of stack filters is a subclass of RBS filters. In Section
I it is shown that the commutativity with arbitrary increasing
ZNL transformations is a defining characteristic of RBS filters. In
Section TV the relation between RBS and stack filters is examined
further. Specifically, it is shown that the commutativity with arbi-
trary increasing and nondecreasing 7ZNL transformations is a defin-
ing characteristic of stack filters.

Throughout this paper we assume, for simplicity, that the
input signals are 1-D. However, the obtained results are also valid
for multi-D signals. This is so because in RBS filtering multi-D
data after isolation through windowing are treated just like 1-D
data - they are ordered and a sample is selected depending on the
amplitude rank.

II. Selection and RBS Filters: Definitions and Notations

Consider a nonrecursive discrete filter represented as
Y(m) = F{X;(m), X,(m), ..., Xn(m)} 2

where Y(m) is the output at time m, X{m) is the i-th input data
from the left of the window at m, and F denotes a filtering opera-
tion. It is assumed that input data are real-valued. If the output
Y(m) is one of the inputs X;(m), ..., Xp(m) for all m, then such
a filter is called the selection filter. As mentioned in the previous
section, a selection filter is an RBS filter provided the selection is
done based only on the amplitude rank of the input data.
Mathematically, we define an RBS filter using a look-up table
which lists all possible ranks of the inputs X;, ..., Xn» and assigns
an output - which is one of the inputs - to each rank. Here the
inputs are ranked using both strict inequalities and equalities. For
example, an RBS filter of span 2 can be specified by assigning out-
puts to ranks "Xy < X", "Xy = X," and "X; > X" We call a
look-up table that defines an RBS filter a rank-output table. In
addition, input ranks associated with strict inequalities and equalities
are called strict ranks. Defining an RBS filter in this manner is
rather naive in practice but, as will be seen later, enables us to
analyze these filters and introduce RBS filters which are not stack
filters. Some examples of selection and RBS filters are presented
below.

Example 1 (The median filter) : The median filter of span 3
is given by

Y = median {X,, X;, X3}~
Its output is determined if the input rank is given as shown in

Table 1(a). Thus the median filter is an RBS filter.

Example 2 (The stack filter) : Consider a stack filter of span
3 defined as

Y = max {min[X;, X,;], min [X;, X4]}.

Table 1(b) tabulates its output for each input rank. Again, this is
an RBS filter.

It is straightforward to see that any stack filter can be
represented by a rank-output table, and thus they are RBS filters.
There are selection filters which are not RBS. For example, the
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filter proposed in [5] adaptively selects one of the data inside each
window and cannot be represented by a rank-output table. Thus it
is a sclection filter but not an RBS filter.

The number of strict ranks  which are re%}lired to define an
RBS filter of span N is NI + X (N-i)! (), which will be
+1

i=1 !

denoted by Np. A rank-output table divides Euclidean N-space,
with N-D vectors X = Xy, X5, -0y Xyy) into Ny subspaces, say R;,
1 < i < Ng, and assigns an output to each subspace. The sub-
spaces are referred to as decision regions and a decision region is
called a boundary if its specification includes at least one equality.
For example, in Table 1 the region specified by Ky <X, =Xy is
a boundary ; furthermore, it is the boundary between the regions
Ky <Xp <X3"and "Xy < X5 < X"

Although specifying an RBS filter using strict ranks (or using
decision regions which discriminates between boundaries and non-
boundaries) is most general, such specification is often redundant:
rank-output tables of many RBS filters can be reduced by using
greater than or equal to relations (<). For example, the rank-
output tables of the median and stack filters in Table 1(a) and
1(b) can be reduced as in Table 2. This is true, because in these

filterig if we let R, be the boundary - with an output Xko -
between decision regions R; and R; with outputs X‘o and on,

respectively, 1 < iy, jy, kg < N, then the output at the boundary is

either x‘n or Xj which are equivalent at the boundary (i.c., for all
o

vectors in Ry, X‘n = on an). This observation suggests to
consider a class of RBS filters that can be specified using soft
ranks which are based on greater than or equal to relations (9.
We call such an RBS filter an owtput-map-continuous (o.m.c.) RBS
filter, since its output varies continuously over the decision regions
(its output at any boundary is equivalent to those of neighboring
decision regions).

It is obvious that not every RBS filter is o.m.c.; an example
is given in Table 1(c). We can show without much difficulty that
median filters are o.m.c. Then a natural question is the following:
is every stack filter o.m.c. ? This will be answered in Scction IV.

OUTPUTS
ORDERINGS
{a) Median (b) Stack
Filter Filter
X1 <X2 <X3 ) X1
X2 <X <X3 X1 X1
X2 <X3 <X X3 X3
X3 le SXZ X1 Xl
X3 <X2 <Xy X2 X2
X1 <X3 <X3 X3 X1

Table 2. Simplified Version of the look-up tables in
Table 1 (a) and (b).

3

The time index m is dropped from Y(m) and Xi(m) to simplify
notation.
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OUTPUTS
ORDERINGS
(a) Median * (b)Stack (c)An RBS

Filter Filter Filter
X <X <X 3 X) X X1
X1<X3X2 X3 X1 Xq
XX X3 Xj X1 X3
X7X 5K X3 X3 X3
XXX X2 X3 X2
X3X <X X X1 *2
XX F=X3 X2 X1 X
XX =X3 X1 X1 X3
XX =X 1 X2 X X1
X37K X X2 X2 X1
X=X 3K X3 X1 X2
X=X X3 X2 X1 X1
X=X X3 X7 X1 X1

Table 1. Look-up tables representing RBS filters of span 3.

"Y = max { min [x ,x4], min [x,x4] }
III.  Selection and RBS filters :

Commutativity with ZNL
Transformations

Given a filtering operation, it is sometimes possible to find an
increasing ZNL transformation that commutes with the filtering.
For example: linear filters commute with a linear transformation,
say f(x) ax; if Y(m) in (2) is given by the product of inputs,
X, X, X, then the operation commutes with f(x) = x°.
However, most filters do not commute with arbitrary increasing
ZNL transformation. In this section, it is shown that only RBS
filters commute with every increasing ZNL transformation. We
start with the following lemma.

Lemma 1 : Given an increasing function f(x), —*<x < =,
we can find an increasing function g(x) in the neighborhood of f(x)
such that g(x;) = f(x;), 1 < i <N, and g(y) = f(y) where x; and
y are some real numbers and N is a finite, positive integer.

This lemma can be proved easily; its proof is omitted. Using
this lemma, a relation between the commutativity and selection
filters is derived.

Theorem 1 : If a nonrecursive discrete filter commutes with
every increasing ZNL transformation then it is a selection filter.

Proof : Suppose that the filter is not a selection filter. Then
therc is at least one output such that Y = F(Xy, .., Xy) * X
for all i, 1 <i < N [see Eq. (2)]. Consider an increasing ZNL
f(x). Then the commutativity implies that f(Y) = F{f(X,). ...,
f(Xy)}. For the output Y % X, 1 <i <N, we can find an
increasing ZNL g(x) in the neighborhood of f(x) such that g(X) =
f(X;) for every i but g(Y) % f(Y) (Lemma 1). Now g(Y) =
Fg(X), .., gX)} = F(X,), ..., (X} = £(Y), which is a con-
tradiction. The contradiction does not occur if Y = X, for some i.
Thus the filter must be a selection filter.

The theorem stated below indicates that only RBS filters have
the commutative property. To prove the theorem we need the fol-
lowing lemma.



Lemma 2 : Given two input vectors X and X in the same
decision region, we can always find an increasing function f(x)
which maps X to X such that X; = f(X;) for each i, 1 <i<N

Proof : An increasing function f(x) mapping X to X can be
found as follows. Suppose, without loss of generality, that
X, <X, < < Xy. Then X; <X, < Xy- Let
for

x + b x <Xy

ax + by forX,.; <x<X,2<n<N

X+ byyy

f(x)

for x> Xy

where a, = (X, — X, (X, — X,_;) and b, are constants for
which f(X,) = X,. Then f(x) is increasing becausc a, > 0 for all
n. This completes the proof.

Theorem 2 : If a selection filter commutes with every increas-
ing ZNL transformation, then it is an RBS filter.

Proof : Suppose that the filter is not RBS. Consider the
decision regions based on ranks.  Since the filter is not RBS, then
there is at least one decision region, say R;, which is associated
with scveral outputs. Assume, without loss of generality, that R;
assigns two outputs X and X;, 1 <n,m < N, n ¥ m such that
if the input vector is in Ril then Y = Y, and in R.z then Y = Y,

where R U R‘*z = R, Consider two input vectors X e R; and
1 1

X e R‘z' Since X and X lie in the same decision region, then we
can find an increasing function f(x) such that X =1X),1<j<
N (Lemma 2). Now we get F{f(X,), .. X} = FIX;, .5 Xy

X, But thc commutativity implies that Fi(X)), .
f(X,,) = Xp, which is a contradiction. Thus the filter must be an
RBS filter.

Following from Theorems 1 and 2, we draw the following
conclusion.

Theorem 3 : A nonrecursive discrete filter is an RBS filter if
and only if it commutes with every increasing ZNL transformation.

Proof : Sufficiency follows from Theorems 1 and 2. Necessity
is obvious because the rank of the data within each window is
invariant to every increasing ZNL transformation.

This theorem shows that the commutativity is a defining
characteristic of RBS filters. The commutativity may play as fun-
damental a role in analyzing nonlinear RBS filters as the superposi-
tion has played in analyzing linear filters.

For the class of stack filters, which is a subclass of RBS
filters, the following result holds.

Lemma 3 : Stack filters commute with every nondecreasing
ZNL transformation as well as increasing ones.

Proof : This is a direct consequence of the following facts:
any stack filter can be represented as finite maximum-minimum
operations [2], and maximum and minimum operations commute
with cvery nondecreasing ZNL transformation [1].

In the next section, we shall show that the commutativity
with every nondecreasing ZNL transformation is a defining charac-
teristic of stack filters.

IV. Output-Map-Continuous RBS Filters

As described in Section II, the median and stack filters in
Table 1 are om.c. In addition, Lemma 3 shows that they com-
mute with cvery nondecreasing ZNL transformation. A question
that may arisc is the following: is there a relation between the
output-map continuity and the commutativity with nondecreasing
functions ? The answer is affirmative, as shown in the theorem
stated below. Before describing the theorem two lemmas are
presented.  The first one witl give a sufficient condition for an RBS
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filter being o.m.c., and the second one is a variation of Lemma 2.

Lemma 4 : In RBS filtering, a nonboundary decision region,
say R; with an output X‘n’ and its boundary, say R, with an output

Xkﬂ, can be combined to yield a single region - based on soft ranks
- which is associated with an output X,“ if for every X e R; and

X e R, we can find a function f(x), which maps X into X, such

A
that f(X;) = X < j < N.
a (X‘“) . where 1 <y, kg < N.
Proof : Since f(xin) = xln then x,o = )‘(ko. This holds for

any vector X e Ry, and thus R; and R can be combined.

Obviously, an RBS filter is o.m.c. if this lemma holds for
every decision region.

Lemma 5 : Given input vectors X € R; and Xe Ry, we can
always find a nondecreasing - but not strictly increasing - function
f(x) that maps X to X, where R, is a nonboundary decision region,
and Ry is its boundary.

This can be proved through slight modification of the proof
of Lemma 2; the proof is omitted.

Theorem 4 : An RBS filter is o.m.c. if and only if it com-
mutes with every nondecreasing transformation.

Proof : Sufficiency. Let Ry be the boundary - with an out-

put an - between decision regions R; and R; with outputs X,“ and

X.

iy respectively, where iy, j, and k; are arbitrary integers between

1 and N. Consider two input vectors X e R; and X e R,. Let
f(x) be a nondecreasing function that maps X to X (Lemma 5).

Now £(X,) = F{f(X,), . FO = FIX, 0 X} = )‘(kﬂ, where
the first equality follows from the commutativity. Now Lemma 4
indicates that the filter is o.m.c.

Necessity. Suppose that an RBS filter is o.m.c. but it does not
commute with every nondecreasing ZNL transformation. Then

o £} FEX) but FEK), e £OG0)

F{f(Xy),

F{X,, ..., Xy} = an. Thus £(X;) = x10 + )‘(ko which is a con-

tradiction. This completes the proof.

Now we shall examine the relation between o.m.c. RBS filters
and stack filters.

”Lemma 6 : An o.m.c. RBS filter can be represented by a
positive Boolean function when its input is binary.

Proof : For binary inputs, we can construct a truth table
corresponding to the rank-output table of a given o.m.c. RBS
filter. Obviously, the truth table can be represented by a sum of
products Boolean expression where each product term corresponds
to a set of binary input vectors producing one as their outputs.
Consider a binary vector (X, ..., Xy) whose output is one. Let X;
lifie Aand X; = 0if je B where AUB = {1, 2, ..., N}
and ANB . Then the o.m.c. condition implies that in the
rank-output table every ordering with X; < X; for all i ¢ B, pro-
duces one of {X;| i€ A} as its output. This, in turn, indicates
that in the truth table the output of every binary vector with X; =
1 for all i e A and X; 1 or O for all j € B is equal to one.
Now we can see that” wX; is a product term of the Boolean

. . ieA
expression. Notice that the product term does not contain any
complements of the input variables. In this manner, it can be
shown that the Boolean function is positive.



Theorem 5 : An RBS filter is a stack filter if and only if it is
o.m.c.

Proof : Sufficiency. This is a direct consequence of Lemma 6
and the fact that an o.m.c. RBS filter commutes with threshold-
ing (Theorem 4).

Necessity.  The assumption that the filter is a stack filter implies
that it commutes with every nondecreasing ZNL transformation

(Lemma 3). Consider two vectors X e R; and Xe Ri. We can
find a nondecreasing function f(x) such that f(X ) = Xn for every

n, 1 <n <N (Lemma 5). Then X‘n = f(Xio) = F{f(X;), -

Xy = FX, ..., Xy} = X, . Since this relation holds for every
vector in any boundary R, the filter is o.m.c.

Following from Theorems 3, 4 and 5 we get the conclusion
described below.

Corollary : A nonrecursive discrete filter is a stack filter if
and only if it commutes with every nondecreasing transformation .

V. Conclusion

It is shown that the commutativity with every nondecreasing
ZNL transformation is a defining characteristic of stack filters. In
[2), [4] the commutativity with thresholding (or unit-steps) has
been successfully applied to analyze and to implement stack filters.
On the other hand, the commutativity with nondecreasing functions
other than unit-steps has not been used. Application of the com-
mutative property requires further research.
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