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ABSTRACT

Based on the facts that the output of a given stack filter
can be determined if the ranks of the input samples is known
and that this output always equals one of the samples in the
input window, rank and sample selection probabilities are
defined. The output distribution function of a stack filter of
size N with continuous. independent identically distributed
(i.i.d.)-inputs can be expressed as a weighted sum of the dis-
tribution functions of the ",/ = 1.2..... N, order statistics.
where the rank selection probabilities are the weights. The
sample selection probabilities equal the impulse response co-
eflicients of the FIR filter whose output spectrum is closest,
of all linear filters. to that of the stack filter for i.i.d. Gaus-
sian inputs. Some statistical properties of stack filters are
then derived. A method to compute the selection probabil-
ities from the positive Booloean function of the stack filter
is also given.

1. INTRODUCTION

Recently. a class of filters called stack filters. which have thresh-
old decomposition and stacking properties but are otherwise uncon-
strained. were introduced '1’. The stack filter is specified by a posi-
tive Boolean function "2 which represents the binary output at each
threshold level of the multi-valued signal. The binary outputs are
combined using threshold decomposition ;3" to give the multi-valued
signal. Stack filters can also be treated as a special case of morpologi-
cal filters {4;. Their definition can then be extended to the continuous
case in a very natural manner. Stack filters include all rank order fil-
ters, standard median and weighted median filters, and a number of
other non-linear filters [5,, which points to the importance of stack
filters in non-linear filtering.

In [1. Wendt et al. derived some deterministic and statistical prop-
erties of stack filters. Subsequently, it was indicated that stack filters
are effective in minimizing the mean absolute deviation of filtered
signals '3]. Based on this error criterion a design method for stack
filters has also been suggested [6]

In this paper we will define selection probabilities and relate them
to the output distribution and spectral characteristics of the stack
filters. A method to evaluate these probabilities from the Boolean
function of the stack filter will be presented. Some statistical prop-
erties of stack filters will also be derived.

The rest of this paper is organized as follows. In Section 2 selection
probabilities are introduced in the context of stack filters. followed
by a discussion of the properties of stack filters with i.i.d. inputs.
In Section 3 a method to evaluate the selection probabilities from a
Boolean function is given. Conclusjons are presented in Section 4

2. SELECTION PROBABILITIES

Consider a stack filter of size N, with continuous valued inputs
X =(X.X , Xn) specified by the Boolean function g(x) where
x = (21,23,...,2y) are the corresponding threshold level binary
signals. Borrowing notations from (1] we will write g(x) as

gx)=m 4 m+ Ty, (1)
where 75,1 < p < m is a product of the variables 2;,2,,....2x and
is given by

Tp = Tiip1)2i(p,2) T jlpmy) (2)

where j(p. ¢) are the indices of the variables in 7, in increasing order
and n, is the number of variables in 7.

The output ¥ can also be written in terms of the input variables
DT CYPRNS X as follows (3!

Y = MAX(MIN(IL, ), MIN(II,),... . MIN(IL,)) (3)
where
MIN(Ip) = MIN(Xjp1) Xjpaye---.2 Xiipng)) (4)

and X, o) are the multi-level signals corresponding to the threshold
level binary signal 2, o).

From (3) and (4) it is clear that the output of the stack filter is al-
ways one of the samples in the input window. Further, the M 4AX and
the MIN operations indicate that if the rank of the samples is known
then it is possible to determine which ranked sample is the output.
It is natural to ask what the probability will be of the 7*" smallest
sample X(;). or the 7t sample X; being the output, 1 < 7,7 < N.
Taking our cue from this we will define rank and sample selection
probabilities and investigate their importance in characterizing stack
filters.

A. Notations and Definitions

The inputs X;,X,,..., Xn can be permuted in N! possible ways
where each permutation of the samples zi, k = 1,2,..., N! is called
an ordering. Any ordering zp,k = 1,2,...N! is an arrangement
of time-indexed samples Xy1). Xg(2)s- -+, Xpevy such that Xy <
Xz ... £ Xyw)- The it ranked sample is denoted by Xyt =
1,2,...,. N and is the i*" smallest sample in any of the N! orderings.
For any given ordering let the output ¥ = Xy =X;1<4,5,< N,
The sets ij and Hfj are defined as follows: Qf“j = {Xpm | n =
1,2,...,i— 1 for the ordering zx, X(;y = X;} and Hf; = {X(») | n =
i+ 1,9+ 2,...,N for the ordering 2z, X(;y = X;}. The superscripts
in gfj and Hfj will be omitted in most cases. Different orderings may
have identical outputs ¥ = X(;) = X; as well as identical sets §;; and
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H;i;. However, having identical outputs does not guarantee identical
sets G;; and H;;. The number of distinct sets G;; (or H;;) for which
Y = X5 = X;,1 £ 4,j < N is denoted by (';;. The rank and the
sample selection probabilities are now defined.

Definition 1 Rank Selection Probability (RSP): The i*" rank selec-
tion probability is denoted by P(Y = X(;)).7 = 1.2...., N and is the
probability that the output ¥ equals the #** smallest sample X;,.

Definition 2 Sample Selection Probability (SSP): The ji" sample
selection probability is denoted by P(Y = X;),j = 1.2,....N and is
the probability that the output ¥’ equals the j*" sample X;.

The distribution function F;(.) of the i*" ranked sample with con-
tinuous i.i.d. inputs is given by

N -

Fify)= ) (‘:)Fé((y)u - Fx(y)™ (3)

r=i

where Fx(.) is the distribution function of the i.i.d. input.
B. Rank Selection Probability and Stack Filters

Comnsider a stack filter defined in the binary domain by the Boolean
function f(z;,z2.73,24) = 7122 + z3z4 and in the continuous do-
main by ¥ = MAX(MIN(X,.X2), MIN(X;.Xy)). For the input
ordering z; @ X; < X, < X; < Xy, the output is found to be
Y = AX(g) = Xg. Here ggg = {_Xl.X:} and Haa = {_\—4}. I( is in-
teresting to note that if the order of the samples X; and X, was
reversed the output would still be the same. In the general case with
Y = X(;) = X;.1 <4,5 < N, if the rank of the samples in §;; and, or
M;;, are permuted the output does not change. This allows us to
lump all such orderings as one event and leads to a representation of
the output distribution in terms of the rank selection probabilities.

Lemma 1: Let zx,k = 1,2,...,N! represent the ordering of the
inputs to a stack filter. If for this ordering the output ¥ = X;, =
X;,1 <4,7 < N, with sets G;; and H;; then the output is the same
for all input orderings z;,1 < k < N! obtained by permuting the
order of the samples within §;; and H;;.

Proof: Let the output ¥ be specified hy (3). If ' = X then there ex-
ists at least one term II,,p = 1,2,...,m with MIN(II,) = X;. This
implies that the samples corresponding to the variables in these terms
I, include X; and, some or none of the samples in H;;. Also each
term II, for which MIN(II,) # X; the we can either have IT, € G;; or
O, € Hij. 11, € Hyj then MAX(MIN(IL I, ... ILy) € Hyj, de.
Y # X;. Thisis a contradiction. Hence for all terms MIN(II,) # X,
we must have MIN(II,) € G;;. Thus ¥ = MAX{G;; U X;}. If
the rank of the samples in H;; are interchanged, X; still remains
the minimum of X; U H;; and thus all terms II, for which we had
MIN(II,) = X; would still output X;. If the rank of the samples
in G;; is interchanged then all terms for MIN(I,) # X; would still
have MIN(II,) € G;;. Since Y = MAX{G;; U X;} the output will
remain the same. ||

From Lemma 1 we conclude that the number of orderings P;; asso-
ciated with a given pair of sets G;;, H;; such that ¥ = X(;) = X;,1 <
t,J < N is given by

Py = (i - DN = i)iCy; (6)
Since each ordering is equally likely we have,
- e Pij -
P(Y = XY = X)) = 58 (7)
and therefore
N
A Fij
PY =Xjy)= > <& {8a)
j=17"
~
P;;
PY=Xx;)=> = (8b)

Lemma 1 merely states that if the output ¥ for a certain order-
ing is known then the output for several others orderings. obtained
by permuting the order of the samples within G;; and H;;, is also
known. It is important to note that two orderings which have iden-
tical outputs do not necessarily have the same sets G;; and H;;. For
example, the outputs of the median filter — which is a stack filter
— of size 3 is same for either of the two inputs. X; < X, < X, and
X; < X, < X, but, the corresponding sets G»» and Hao are differ-
ent. Using Lemma 1 the output distribution of the stack filter with
continuous i.i.d. inputs can be obtained.

Theorem 1: The output distribution function Fy(.) of a stack filter
of size N with i.i.d. inputs is given by

N
Fr(y)= Y P(Y = X;5))Fly) (9)
i=1

where F;(.) and f;(.) are the distribution and density functions re-
spectively, of the i*" order statistic.

Proof: The output distribution Fy(y) is given by

Fy(y) =

:
et
<

i
)= =
(NEIN

P(Y <y.¥ = X;,Y = X;3)

i
i

o

ii

=
[

Il
Sk
e

P(Xiyy 9. Xy =X 84 =Y)

i
o
it

The first equality holds because the probability of two continuous
valued samples having the same value is equals zero. Thus the events
{Y = X;}and {¥ = X;}.7 # k can be treated as mutually exclusive.
The last equality holds because the events {}” < .} = X, ¥ =
X ()} is identical to the event {X;) < . X;; = X;.X|;, = ¥)} for
all values of 7 and j. Using Lemma 1 we can simplify the expression
above as follows
P(Xh <y XyH=X,X4H=Y)
= N P(X 4
distinet sets Gy Y=X5=X;
(11)
where P{X;;, <y.0:;) is the probability X;, < y for some G;;. Since
the input P(X ;) < y.0;;) is identical for each distinct Gi; and is
given by

¥ -
P(X € y.Gij) = / FYHol = Fx(m))  fx(midr {12
-

and the summation in (11) boils down to counting all distinct sets
Gi; which give ¥ = X{;; = X, and has been defined above as i
Thus

PXy <. X=X X =Y)

¥ . Lo
FENm) 1 = Fxle)~ fx(r)dr

-0

=y

G D G gy )

P
= T,?E‘(&’)
= P(Y = X;),Y = X;)Fi(y)

Substituting in (10) and summing over j we get

N
Fyly) =Y P(Y = X()Fi{y) (14)

i=1

The following result follows directly from Theorem 1.

Corollary 1: The output distribution function Fy{(.) of a stack filter
of size N with i.1.d. inputs is given by



(15)
k=1
koK .
I N\ (N -r o
a= Y P(¥ :A(,-])<T>(k_r>(—1)" (16)
izl r=i
k= 1.2.....N, where Fx(.) is the distribution function of the input.

Proof: By substituting equation (5) in {9) we get

Fy(y)
N N
=S N ror= XY ) Fn - Ex)t
i=1 r=i
N N N-r ] i N N _ .
=S e =xa (D) (V)
i=1 r=1i m=0 )
N N N IS N7
- EZEPW:XW(,)(A.‘J(—l)""f’k( )
i=1 =i k=r
N ok kY N ]
- x () (3 2] e

k=1i=1 r=i
(17)
From which (15) and (16) follow. |

Notice that F§(.) is also the output distribution of the largest order
statistic. denoted X1 in a window of size & with i.i.d. inputs. Fy(.)
can then he interpreted as a weighted sum of the distributions of the
largest order statistic of all filters whose size is less than or equal to

N. The example below illustrates Theorem 1 and Corollary 1.

Example 1: The RSP’s of the stack filter specified by the Boolean
function f(x ry122 + 2324 s given by r = (0,%,3.0). Find its
output distribution Fy(.) and density function fy-(.) for uniform i.i.d.
input with distribution Fx(y}=y.0 <y < 1.

From Theorem 1 we have Fy(y) = £ Fo(y) + $ F3(y) with Fa(y)
6y —8y° +3y* and F3(y) = 4y° - 3y* which gives Fy(y) = v*(2 - y)%.
From Corollary 1 we get ¢; = 0.c2 = 4,¢3 = —4, and ¢4 = 1 which
gives the identical result Fy(y) = 43" — 4y + ', |

Y

;.;.p-

The expressions obtained above for the output distribution of the
stack filter are simple, intuitive and easy to implement. Some prop-
erties of stack filters are now derived.

Property 1: The n*" moments E(Y "
of size N with i.i.d. inputs is given by

) of the output of a stack filter

Mz

By = Y P(Y = X)) E(X],) (184)
i=1
N
o E(Y") =Y eE(X[) (180)
k=1
[""““f‘ E( )= 2y fe(y)dy = S PY = X)) [ v fily
= UL PO = X)B(X). Also, BOY) = [% g fy(y)dy =
S{.\:l C fvwky”F; Y(y)fx(y)dy. By definition the the integral

equals E(X7, ) |

Statistical properties of the ¢
largest order statistic, have been studied in great detail in statistica’
literature. These results can be used to derive properties of WM
filters related to its output moments. When the window size is large
(= 9). approximations which are relevant to the expected values can
be applied to the expected value of the stack filter output ¥ [7].

" order statistic, in particular the

Property 2: The mean E(}") of the output ¥ of a stack filter of size
N and i.i.d. inputs is given hy

N .
:;P} = Xi)Fx(577) (19)

where F_;l(.) is the inverse function of the input distribution. |
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In (7] several bounds for the expected value of the i** order statis-
tics have been obtained. Similar bounds for the expected value for
the output of the stack filter can be obtained since it is a linear
combination of the expected values of the it*,i = 1,2,...,N order
statistics.

Property 3: The mean of the output of a stack filter of size N with
ii.d. inputs is bounded by

N-1 N-1

- ———0x S E(Y) < pix + 0 20
px s 0% < (V)< px NG (20)

where yx and o% are the mean and variance of the input. |

Proof: From |7, p. 58] we have
B(X(y) Snux + it T (21a)
- V2N -1
. N -1

E(Xq)) 2 px o X (218)
je forany 1 < i< N, IILX—?,T]V—U)(<E( ") < “X+7T0X

The result follows after multiplying by P(Y
quantity, and adding. [

C. Sample Selection Probabilities and the Stack Filter

= X(;)), each a positive

In an attempt to characterise non-linear filters Mallows [8] hypothe-
sized that a non-linear filter with i.i.d. inputs can be decomposed into
a ‘linear’ and a ‘residual’ part. The input itself can be decomposed
into a sum of processes with Gaussian and non-Gaussian densities
respectively. The linear part of the non-linear filter is the linear fil-
ter which filters the Gaussian part of the input such that its output
is closest to the non-linear filter in the mean-square sense. He also
showed that the spectral content of the output of the non-linear filter
approximates that of its linear part. Since the frequency response
of linear filters is quite well defined, this formulation makes it easy
to characterise the output spectrum of a non-linear filter if its linear
part is known. In general, finding the linear part of a non-linear fil-
ter is rather difficult. However, for filters like the stack filter where
the output is always one of the samples from the input window, it
was shown that the linear part is a finite impulse response (FIR) filter
whose coefficients can be related to the sample selection probabilities.
The result is restated for our purposes in Theorem 2 below.

Theorem 2 [8}: The ‘linear part’ of a stack filter of size N with i.i.d.
inputs is a finite impulse response filter whose coefficients h;,j
1.2.....17 N are given by

hj=P(Y = Xnu1_j) @

2)

where P(Y = X;) denotes the j" sample selection probability. J

The frequency response of the FIR filter closely approximates that
of the stack filter. Its output spectrum is obtained empirically. A re-
sult of simulation is shown in Fig. 1. The examples studied displayed
low-pass behaviour, a feature which is characteristic of all stack fil-

ars.

Observation 1: All stack filters have low-pass characteristics for
ii.d. inputs. J

Proof: Let hj,j = 1,2,...,N be the coefficients of the FIR filter
which is the linear part of the stack filter. Let H(jw) denote the
Fourier transform of its impulse response function. We have

N-1N-1

H(jw) |*= Zh“ +2 S‘ Y hphpimeoswm

n=1 m=1

(23)

The coeflicient of the cosine terms in the equality are always positive
since they are probabilities. The observation follows from the fact
that for {w| < Z all terms in (23) will be additive. J
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Figure 1: Output spectra of a stack filter with g(x) = 2122 -~ 7475 = T3
and the corresponding FIR filter.

D. Stack Filters with Identical Selection Probabilities

For window size 3, stack filters with identical selection probabili-
ties have identical deterministic behaviour. For higher window sizes,
however, it is possible to find stack filters with identical selection
probability, but different deterministic behaviour. Table 1 below lists
some stack filters of size 4 with identical selection probabilities but
different output for the same pair of inputs. Filters of this type are
of considerable interest and are being studied.

[ Boolean Function RSP SSP Sample Inputs v ()nl.])ul
I vy oaarg (0%;.%.0) (]T%%]) AV AV AT AW A
N <Ny <Ny <Xy Ny
s F ooy O LR TERED N <L <Nyl N
X< Na< Xh< X X,
2104+ 223 (0320 (5.5 TN <chaXy<yy he
AN < Xs < Nh <y N3

Table 1: Stack filters with identical selection probabilities
but different outputs.

3. COMPUTATION OF SELECTION PRUBABILITIES

Let a stack filter of size N he specified by the positive Boolean func-
tion g(x) where x = (2;,22,...,zn) and 2; € {0,1},7 = 1.2,...,N
are the threshold level binary signals corresponding to the real-
valued inputs X;,j = 1,2,...,N. For each j . N the
Boolean function g(x) can be rewritten as g(x) = z; f;(X;) + h;(%;).
% = (21,.0.:2;-1.Tj415.-.,2n) and f;(.).h;(.) are the Boolean
functions in %. Cj;'s can then be computed as shown in Theorem 3

below.
Theorem 3: The elements Cy;, ¢,7 = 1,2,..../ N are given by

Cis= 3 Fil%)hi(xg)

%, wil%; )= N1

(24)

where the product is logical and the summation is arithmetic over
the binary values 0 and 1. wg(%;) is the number of 1's in the vector

%; and hj(.) denotes logical negation.

Proof: If f;(%;) = 1 and hj(%;) = 0 then g(x) = z;. This is true at
each threshold level, hence the output ¥ = X;. When wy(%) = N -1
then among the elements in %; there are exactly (i~ 1} 0's and (N —i)
1's. If z; = 0 then among the variables in x there are exactly i 0's
and (N — 1) I's. If z; = 1 then among the variables in x there are
exactly i — 1 0's and (N = 1 — ¢) 1's. In either case it implies that
z; has the same value 7** ranked sample at each threshold level and
thus the output ¥ = X(;) = X;. By counting all the cases where
g(x) = z; and wy(&;) = N — i we get the stated result. ||

Notice that we are computing C;; and P;; foreach 4,5 = 1,2,.... N.
It will therefore be more convenient to refer to them as elements of
matrices. Thus C = {C;;}nxn is called the combination matrix or
the C-matrix and P = {P;;}n«n is called the permutation matrix or
the P-matrix. The following observation follows from (8).
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Observation 2: P(Y = X;)) = (i*" row sum of P)/N! and P(}" =
X;) = (j** column sum of P)/NL |

If the variables z; and z;: are exchanged then the expression
g(x) = 2, £;(%;) + h;(%;) remains unchanged except for the fact that
fi(.) and h'(.) are now exchanged with fin(.) and hj(.) respectively.
The coefficients (';;'s are affected in a similar manner. As a result we
have the following property.

Property 4: For any permutation of the input samples
X1,X,,...,Xn of a stack filter the C(P)-matrix of the new filter
are obtained by an identical permutation of the columns of the orig-

inal C(P)-matrix. §

The proof is rather straightforward and is therefore omitted. The
following result follows from Property 4.

Property 5: TFor any permutation of the input samples
X1,X2,...,Xn: A. The rank selection probabilities P(Y = X;)).7 =
..... / remain unchanged; B. The sample selection probabilities
P(Y = X(3),i=1.2,..., N are permuted in the same manner as the
input variables. [

The property above can be obtained by Observation 2 and Prop-
erty 5. An important consequence of this property is the following.

Property 6: For any permutation of the ii.d. input samples
X1 Aoyl X n the output distribution function Fy-(.) of a stack fil-
ter remain unchanged. |

4. CONCLUSIONS

In this paper rank and sample selection probabilities were used for
the statistical analysis of stack filters. Rank selection probabilities
were used to derive the output distribution By using sample selec-
tion probabilities it was shown that the spectral characteristics of
stack filters is basically low-pass. A method to compure the selection
probabilities was outline and some statistical properties of stack filter
were also presented.
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