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Abstract— In this paper, we analyze the outage performance and
diversity-multiplexing tradeoff (DMT), originally introduced by Zheng
and Tse, for certain classes of multiple antenna systems. In particular,
three types of practical channel models such as Rician model, rank-
deficient model, and spatially correlated model are considered. The
asymptotic behaviors of the outage are analyzed in the limit of high
SNR, large Rician factor, and large antenna array. The corresponding
DMT curves are also investigated.

I. INTRODUCTION

Recent work of Zheng and Tse characterized a fundamental
tradeoff between the diversity and multiplexing gains [1] assum-
ing independent and identically distributed (i.i.d.) Rayleigh fading
channels without channel state information at the transmitter (CSIT).
Such assumptions can be pessimistic. More realistic scenarios include
having a partial CSIT. Such a model is similar to Rician fading
channel models. In this paper, we analyze the diversity-multiplexing
tradeoff (DMT) for Rician channels. In addition, we investigate sev-
eral rank-deficient channel models in poor scattering environments.
The channel model with spatial correlation among multiple antennas
is also examined. We compare and analyze how these three types of
practical channel models affect the outage behaviors and DMT. Most
of our work is based on recently refined results on DMT called the
throughput-reliability tradeoff (TRT) [2].

II. MAIN RESULTS

We assume a flat fading channel. Let nT and nR denote the
number of transmit and receive antennas, respectively. H ∈ CnR×nT

is the channel matrix. ρ corresponds to the average SNR at
each receive antenna. For notational convenience, we define m =
min{nT , nR}, n = max{nT , nR} and all logarithms are assumed
to be to the base 2 throughout the paper.

For a given target rate R, the outage probability with a diagonal
input covariance matrix with equal power allocation can be written
by

Pout(R, ρ) = Pr
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A. MIMO Rician channels and channels with partial CSI

For Rician channels, the channel matrix H is decomposed into

H =

r
K

K + 1
H̄ +

r
1

K + 1
Hw (2)

where K ≥ 0 denotes the Rician factor, H̄ is deterministic, and
the entries of Hw are independent zero-mean unit-variance complex
Gaussian. This can also be considered as a channel model with partial
CSIT where the transmitter knows the mean H̄ of the channel H.

In this section, we show the several distinguishing features of the
outage behavior and analyze the DMT in MIMO Rician channels. It
is first shown that the diversity order, which is the slope of the outage
probability (on a log-log scale), remains the same but the asymptotic
SNR gap (ASG) between Rayleigh and Rician fading channels exists
at high SNR.

Let φ1, φ2, · · · , φm denote the m eigenvalues of H̄. We define the
diversity order for given R, ρ, K, and Φ as

do(R, ρ, K,Φ) = −d log Pout(R, ρ, K,Φ)

d log ρ

where Φ = diag{φi}.
Definition 1: In the limit of high SNR, the ASG ∆a(R, K,Φ), if

it exists, is defined as

∆a(R, K,Φ) , lim
ρ→∞

P I
o (R, Pout(R, ρ, K,Φ), 0,Φ)

ρ
(3)

where P I
o is the inverse function of Pout on the second argument,

i.e., P I
o (R, Pout(R, ρ, K,Φ), K,Φ) = ρ.

Theorem 1: The ASG is given by

∆a(R, K,Φ) =
eK tr(Φ)/mn

K + 1
. (4)

Note that this gap is irrelevant to the target data rate R. The outage
performance is improved by a constant dB gap in high SNR.

The following outage behavior of the Rician channel exhibits the
maximum diversity order (MDO) at a certain SNR. Since such an
operating condition can give us the best diversity order, it is of
practical interest to find when and how much gain is obtained.

Definition 2: Let β denote β = log ρ. The MDO dmax(R, K,Φ)
is defined as

dmax(R, K,Φ) , do(R, ρ∗, K,Φ) (5)

at the corresponding desired SNR

βop(R, K,Φ) , log argmax
ρ

do(R, ρ, K,Φ) (6)

where log ρ∗ = βop(R, K,Φ).
In AWGN channels, i.e., deterministic channels, there exists a

minimum SNR threshold denoted as βG(R) in the log scale, above
which the outage probability in (1) tends to zero. It would be
meaningful to examine the gap between βop(R, K,Φ) and βG(R),
which is defined as the finite-SNR gap (FSG).

Definition 3: As the Rician factor K tends to infinity, the FSG is
defined as

∆f (R) , lim
K→∞

h
2βop(R,K,Φ)−βG(R)

i
. (7)

Theorem 2: In the limit of large K for MISO or SIMO systems,
we get

βop(R, K) = log
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Theorem 3: In MISO or SIMO systems, the FSG is given by

∆f (R) = 4 (10)

which is equal to 6dB.



Note that it is irrelevant to the target data rate R.
In addition to the above outage analysis, we also anlyze the DMT

for Rician. Approaches based on [1], [2] fail to explain the finite-
SNR behavior of Rician channels such as the MDO and FSG. In the
following work, we formulate the differential DMT (DDMT) that can
capture such finite-SNR behaviors.

Definition 4: The differential diversity gain d̄D(r̄D, R, K) of
MISO or SIMO systems is defined by

d̄D(r̄D, R, K) , lim
δ log ρ→0

»
log Pout(R, ρ∗, K)

δ log ρ

− log Pout(R + r̄Dδ log ρ, 2log ρ∗+δ log ρ, K)

δ log ρ

–
(11)

at asymptotically large K where r̄D is the differential multiplexing
gain.

Theorem 4: Let rmax(R) denote the differential multiplexing gain
satisfying d̄D(r̄D, R, K) = 0. For the operating region in the vicinity
of the MDO, the DDMT of the Rician fading channels is obtained
as

d̄D(r̄D, R, K) = dmax(R, K)− dmax(R, K)

rmax(R)
r̄D (12)

where rmax(R) = 1− 2−R.

B. Rank-deficient MIMO channels

We first consider the poor scattering environment where scatterers
are located far enough from both the transmitter and the receiver so
that the angular spread is vanishingly small. Assuming scatters are
grouped into P clusters where there are L scatterers in each cluster,
the channel gain H is given by

H =
1√
P

PX
p=1

Hp =
1√
P

PX
p=1

up · hp · v†p (13)

whose rank is upper bounded by min{P, nT , nR}. up and vp are the
column vectors whose elements are i.i.d. complex random variables
uniform on the unit circle. As L → ∞, hp is approximated as a
complex Gaussian random variable (Rayleigh fading). Based on the
TRT in [2], we can estimate d∗(r) from the simulation results of the
diversity order in rank-deficient channels [3] where DMT curves are
lowered due to rank-deficiency and approach to that of i.i.d. Rayleigh
fading channels as P →∞.

Theorem 5: For nT × nR rank-deficient Rayleigh fading MIMO
channels with P clusters, the optimal tradeoff curve d∗(r) in the limit
of nT , nR →∞ is given by

d∗(r) = P − r. (14)

where d∗max = rmax = P .
For P = 1, there is a slightly different rank-deficient model called

the keyhole model. In this model, the channel H is given by

H = βα† (15)

where α and β are the column vectors whose elements are complex
Gaussian random variables.

Theorem 6: For nT × nR keyhole model, the optimal tradeoff
curve d∗(r) is given by

d∗(r) = m(1− r). (16)

where d∗max = m and rmax = 1.
Although not physically motivated, the following model pro-

vides an alternative model for rank-deficient channels where rank-
deficiency in channel matrix is introduced directly by just forcing
some eigenvalues of HH† to zero.

Theorem 7: If randomly chosen m − k eigenvalues of HH† are
forced to zero in the nT × nR MIMO channel H = [hij ], hij ∼
CN (0, 1), the optimal tradeoff curve is same as that of the (nT +
nR − k)× k MIMO channel G = [gij ], gij ∼ CN (0, 1).

C. Spatially correlated MIMO channels

When there exists the spatial correlation among the receive anten-
nas, H can be represented by

H = Σ
1
2 Hw (17)

where Σ = E[hjh
†
j ], hj is the jth column of H.

Lemma 1: For the nT × nR correlated MIMO channel with
correlation matrix Σ, the optimal tradeoff curve d∗(r) is same as
that of Σ = I.

Hence, DMT is not changed by spatial correlation. The only thing
worth being evaluated here is the amount of such a gap.

Definition 5: In the limit of high SNR, ∆̃a(R,Σ), if it exists, is
defined as

∆̃a(R,Σ) , lim
ρ→∞

P I
o (R, Pout(R, ρ, I),Σ)

ρ
(18)

where P I
o is the inverse function of Pout on the second argument,

i.e., P I
o (R, Pout(R, ρ, I), I) = ρ.

Theorem 8: The ∆̃a(R,Σ) is given by

∆̃a(R,Σ) = |Σ|− 1
m (19)

Note that this gap is irrelevant to the target data rate R. The
degradation appears only as a penalty in SNR gap in dB.

III. DISCUSSIONS AND CONCLUSION

It is shown that the Ricianness and spatial correlation can change
the outage performance by a constant dB gap in SNR, but it cannot
change the DMT, i.e., diversity order at high SNR. For Rician
channels, the MDO shows that there exists an SNR where the
diversity order is maximized, which can be a desired operating point.
We also analyze the DDMT that is suitable for capturing the DMT for
Rician. We next show DMT curves for several rank-deficient channels
are lowered. It is verified that DMT curves of rank-deficient channels
approach to that of the i.i.d. Rayleigh fading channels as the scattering
becomes rich. We refer readers to [3], [4] for more details and proofs.
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