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A b s t r a c t  
Linear combination of WOS(LW0S) filters, that  can be 

thought of as an extension of stack filters, can represent any 
Boolean function(BF) or its extension, which is called the ex- 
tened BF(EBF). In this paper, we present a procedure for finding 
an LWOS filter of the simplest type from LWOS filters which are 
equivalent t o  a given BF or EBF. In addition, a property that  is 
useful for implementing an LWOS filter is derived and an algo- 
rithm for LWOS filteririg is presented. 

I. I n t r o d u c t i o n  
The LWOS filter[l] is a digital filter which is a composition 

of weighted order statistic(WOS)[2][3] and linear combination of 
order statistic(LOS)[4](5] filters. I t  has a window moving over 
an input sequence. At each point, the data inside the window 
are duplicated according to  the weighting parameters and sorted 
as in WOS filtering. Ther. the output is obtained as a linear 
combination of the sorted data(See Fig.1). 

LWOS filters obey the threshold decomposition property[6], 
and can be fully specified in the b ina ry ( s1 )  domain. Conversely, 
it has been shown tha: an arbirary Boolean function(BF) or its 
extension, which is called the eztended Boolean function(EBF), 
can be represented as an LWOS filter if the given BF or EBF 
yields zero for a zero input vector. This fact indicates that the 
class of LWOS filters encompasses a variety of filters which include 
nonlinear stack filters[Z] and linear FIR filters. In [lj, a procedure 
for finding an LWOS filter that  is equivalent to a given B F  or EBF 
is presented. The procedure results in an LWOS filter of a specific 
form, which is referred to  as the canonical LWOS filter. 

While the canonical LWOS filter is useful for representing a BF 
or EBF,  its implementation requires heavy computational load be- 
cause the dimension of the linear combination vector(1 in Fig. 1) 
of a canonical LWOS filter of span N is ZN - 1. In this paper, 
we shall show that in many cases a BF or an EBF can be ex- 
pressed as a i  LWOS filtar which is simpler than the canonical 
one. In addition, an algorithm for implementing LWOP filters is 
presented. 

The organization of this paper is as follows. In Section 11, 
we review some details of LWOS filtering and intorduce our no- 
tations. Section I11 describes a procedure for finding an LWOS 
filter corresponding to a BF or an EBF. In Section IV,  a property 
that is useful for implementing an LWOS filter is derived and an 
algorithm for LWOS filtering is presented. 

11. LWOS Filters 
Let X ( m )  be an input process which takes on integer values 

in {0,1,. . . , M - 1). A window of width N slides across the input 
X(m) .  Then the output Y ( m )  of a LWOS filter, with weights w , ,  
1 5 i 5 N ,  and coefficients for linear combination l j ,  1 _< j 5 K 

is given by 

where Xj (m)  is the j"' sample from the left in the window at 
m, and K = E:=, w i .  In order to simplify notations, the time 
index m  will be dropped from X,(m) and Y ( m ) .  Using vector 
representations, (1-1) may be rewritten as 

where "(.)is a duplicating operator defined as 

w ,  timra w z  tiiiics W N  tiiiirs -- r- w(x) = {XI, , . . 1 XI, Xz, . . . , X 2 ,  . . . , X N , .  . . 1 XN} (2 - 3 )  

WO$ (X) is the vector obtained by ordering the elements of W ( X )  
and prime(/) means transposition. Since LWOS filters obcy the 
threshold decomposition property, its output Y can be rewritten 
as 

M-1 

Y = 1 ' (x )  = 1 ' w;, { I k ( X ) }  (2  - 4) 
k= 1 

where I k ( X )  is an N-dimensional row vector given by Ik[X] = 
{ I k  [XI],  . . . , & [XN]} and (z) is an indicator function defined 
as I k ( 2 )  = 1 if z 2 k and 0 otherwise. As with stack filtering, 
LWOS filters can be specified on the binary(0-0-1) domain. If we 
let z = . . , zN) be a binary input vector, then the output y 
of an LWOS filter corresponding to the input is given by 

Y = 1 .  WAS (2) (2  - 5) 

Note that  W,,, (2) is a vector which consists of successive 1's fol- 
lowed by successive 0's. An EBF f (z) is defined by 

f (z ' )  = y', 15 i 5 P (2 - 6) 

where P = 2N - 1, zi is a binary vector of length N which is the 
radix 2 representation of a positive integer i ,  and y' is the output 
of f (.) for the input z'. An LWOS filter identical to a given EBF 
can be obtained by finding w and I satisfying 
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or equivalently 

where 

[AI = 

[ A ]  . I' = y' 

P 
K tiirier ' ' I  1 ... 1 

Y' 

Y2 

Y3 

YP 

K = CL, w,, and the number of 1's in the it'' row of [ A ]  is 
w' . z', [ A ]  is a P x K matrix. A sufficient condition regarding 
the existecce of w and 1 satisfying (2-7) or (2-8) is described as 
follows: 

Given an EBF. If the weight vector w of 
an LWOS filter satisfies the following two conditions, then we can 
uniquely determine 1,;the LWOS filter with the parameter vectors 
w and 1 is ident.ical to  the EBF. 

Property 2-1 [ I ]  : 

Conditions: 

w'.z' # w I . 2 )  i # j ,  1 5 i , j  5 P (2  - s a )  

K = P. (2 - 9b) 

When these conditions are met, the linear combination vector 1 
can be obtained by solving (2-8). The canoriocal LWOS filter is 
the simplest in the sense that  the dimension K of 1 is equal to  P. 
Specifically, the canonical LWOS filter is one of the LWOS filters 
that  satisfying the conditions in (2-9). I t  has the weight vector 

w = (2N-',2N-2,. . . $ 0 ) .  (2 - 10) 

For this weight vector, we get 

(2  - 11) 

and the elements of 1 is given by 

(2 - 12) 

The canonical LWOS filter can represents any ERF f(z), Nith 
f(0) = 0. In the following section, we shall show that LWOS 
filters which are equivalent to some EBF's can have K smaller 
than P. 

111. Non-Canonical  LWOS Filters 
Representing an EBF 

Suppsos that  some outputs y' and yJr  i # j, 1 5 i ,  j 5 P ,  of a 
given EBF f(z) have the same value, that  is, f(z') = f(zf). The 
weight w of an LWOS filter representing this EBF msy not have to  
satisfy the condition in (2-9 a). The reason is that wz'  = w.zJ will 
result in 1 .  W&<(z')  = 1 .  W & ( z j ) ,  which is true since y' = y'(See 

(2-7), (2-8)). The condition in (2-9 a) has been obtained under 
the assumption that y', 1 5 i 5 P are different each other. When 
some of the outputs of a given EBF have identical values, it is often 
possible to  find a non-canonical LWOS filter which is equivalent to 
the EBF and is simpler than the canonical one. A property which 
is a basis for finding such an LWOS filter is presented next. 

Property 3-1 : Given an EBF f(z). If a weight w satisfies the 
conditions presented below, then we can uniquely determine the 
linear combination vector I ;  the LWOS filter with the parameter 
vectors w and 1 is equivalent to the given EBF. 

(i) W .  z' # W .  zJ whenever f(d) # f(zJ). On the other hand, 

(ii) { w . z ' l l  5 i 5 2N - l} = { 1 , 2 , .  . . , K }  where IC = CE,w, 

Conditions: 

w .  z' may be the same as w .  zJ if /(z') = f(zJ). 

may be less than P .  

Proof : Note that the canonical LWOS filter(K = P) satisfies 
these conditions. Suppose that  only two output values are equiv- 
alent and the rest are different each other, i.e., f(z') = I(.') for 
some i ,  j ,  i # j, and f(z") # f(z"') unless {n,m} = { i , j } .  In 
addition, assume that we were able to find w that meets the con- 
ditions (i) and (ii), with w .  z' = w .  z' and K = P - 1. With this 
w, we can find 1 of an LWOS filter equivalent to the given EBF 
by solving (2-8). In this case [ A ]  is a P x ( P  - 1) matrix, 1 and 
y are vectors with dimension ( P  - 1) and P ,  respectively. Note 
that i-th and j-th rows of [ A ]  are exactly the same and the i-th 
and j-th entries of y are also the same. Therefore, we can reduce 
the dimension of [A]  and y to  ( P  - 1) x ( P  - 1) and ( P  - I ) ,  
respectively, by removing either i-th or j-th row of [A]  and the 
corresponding entry from y. If we denote the resulting matrix by 

[A] and output vector by i ,  then 

Due to  condition (ii), which indicates that  the numbers of succ- 
essive 1's a t  the rows of [ A ]  are different each other, the square 

matrix [ A ]  is nonsingular, and 1 can be determined uniquely. The 
LWOS filter with the obtained parameters w and 1 is identical to 
the given EBF, because (3-1) is essentially the same as (2-8). This 
proof can be extended directly to  the cases where several outputs 
of a given EBF have identacal values 

Consider the problem of finding an LWOS filter with minimum 
possible value of K among LWOS filters which are equivalent to 
a given EBF. Such an LWOS filter can be obtained through the 
following minimization problem 

I 

N 

Minimize w , ,  

Under the conditions in Property 3 - 1 ( 3  - 2)  

This problem can be solved by exhaustively searching all possible 
weight vector, w = (w l , .  . . , W N )  that meet the following con- 
straints: 

, = I  

w, are integers, w, 2 1 for all 1 5 i 5 N 
N 

C W ,  5 P =  2N - 1 
, = I  

At least one w, should equal to  1 
Conditions in Property 3 - 1 ( 3  - 3 )  
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The second constraint ebove comes from the fact that  the canoni- 
cal LWOS filter with K = P can alway be found, and the third is a 
consequence of the second condition in Property 3-1. Notice that  
the first three constraints in (3-3) can be checked trivially. For 
these vectors we examine whether the conditions in Property 3-1 
are met, starting with w = (1,1,. . , ,1) and by increasing CL, w; 
one by one until the vector that  meets all the constraints is found. 
After getting the weight w, the linear combination vector 1 is found 
by solving (3-1). Due to  the second condition in Property 3-1, [;a] 
can be converted into a lower triangular matrix by exchanging its 
rows and the corresponding entries of #[See (2-ll)], and 1 can be 
evaluated systematically as in (2-12). The example below illus- 
trates the process for obtaining an LWOS filter corresponding to 
a BF. 

Consider a Boolean function /(z) = 21 . f z  . 
23 + z1 . z2 .23 + fl - 3 2  e 2 3  +Ti . z2 - E 3 .  For this function, the 
minimization in (3-3) results in w = (1,1,1). Table 1 sliows the 
truth table associated with this j ( z )  and { w  - 2'). It is seen that 
W .  zi # W. z j  whenever f(zi) # /(zj). The input-output relation 
of the f(z) is rewirtten by using the matrix-vector notations as 
in (2-8). 

1 0 0  1 

Example 9-1 : - 

ji ; ij.(;;)=[] Is 0 (3-4)  

1 1 1  1 

After removing the identical rows from [A] and the corresponding 
entries from CJ, we get 

and ( f l , fz , f3)  = (1 1 )  It is interesting to  note that the 
LWOS filter with w = ( 1  1 1)  and 1 = ( 1  -1 1) is the LOS 
filter defined as Y = X ( l )  + X ( 3 )  - X(z) where X ( j )  is the j-th 
largest sample inside a window. Thus the given BF is in fact an 
LOS filter. I 

Usually the BF expression of a stack filter is long and cum- 
bersome. Following the approach presented in this section, stack 
filters can be represented as an LWOS filter which is often simpler 
than the corresponding BF. 

IV. LWOS Filters with Multilevel Inputs 
In this section, we shall show that the output Y of an LWOS 

filter for the M-valued inputs { X i , .  . . , X N }  can be expressed as 
a weighted average of the N input samples, where the weights are 
determined adaptively depending on the input values. In deriving 
this result, i t  is convenient to  represent the rank and the time 
index of each input sample simultaneously. The time index of the 
input with rank j is denoted by q ( j )  so thae Xqf1) 2 . . . 2 
For example, for N = 3 and input ordering X2 2 X3 2 XI we 
get q ( 1 )  = 2, q(2)  = 3, and q ( 3 )  = 1. Clearly j E (1 ,..., N), 
q ( j )  E {1, ..., N} and q ( i )  # q ( j )  if i # j. Throughout it 
is assumed that  the ranks of input samples are dirferent each 
other. When some input samples have the same value, any one 
of them may be condidered as a larger one; we simply assign 
different rank indices to  them. For example, if X2 = X3 > 
X I  then we may choose either {q(l) = 2 , q ( 2 )  = 3,q(3) = 1) or 
(q(1) = 3,q(2) = 2 , q ( 3 )  = 1). Using these notations, our major 

-1 

result is described in the following theorem. 

Theorem 4-1 : The output of a canonical LWOS filter with 
span N can be expressed as 

(4 - 1) 
j=l 

where s ( j )  = w~(~, , ) ,  s(0) = 0, wv(,,,) is the weight corre- 
sponding to X,(, , ,) ,  y'"), and y"(j-') are the outputs of the LWOS 
filter for the binary inputs that  are the radix-2 representations of 
s ( j )  and s(j - l), respectively. 

Pro0 j : 

Y = 1 W&(X) 

Using (2-12), 

f 1 

I , ,  = (y"' - 
r n = i  m=i 

Therefore 

I 
In this theorem, s ( j )  is determined according to the input 

ordering. As an example, consider the following. 

If N = 3 and input ordering is Xz 2 XJ 2 XI, 
then q(1) = 2 , q ( 2 )  = 3,q(3) = 1. Thus s(1) = wz = 2,s(2) = 
q! +- w3 = 3,s(3) = wz + w3 + w1 = 7 and Y = (yz - y") . 
X 2  + (y3 - yz) . X3 + (y' - y3) . X I .  Since N = 3, there are 3! 
possible input orderings; s ( j ) ' s  and filter outputs for the orderings 
are summerized in Table 2. 

s(j) and s ( j  - 1) of a canonical LWOS filter which are the sum 
of the weights w, = 2 N - m ,  1 5 m 5 N, have some properties 
useful for evaluating the outputs of LWOS filters. 

Let s i  and 9,-1 be binary sequences of length N 
that  are the radix-2 representations of s ( j )  and s ( j  - I) ,  respec- 
tively. Then s j  and sj-1 have the following properties: 

(A) q(j)-th significant bits of s j  and si-1 are 1 and 0, re- 
spectively. 

(B) k-th significant bits, k # q ( j ) ,  of s j  and are iden- 
tical; they are 1 if k E {q(l) ,  . . . , q ( j ) }  and 0, otherwise. 

Proof : Since w,, = 2 N - r 1 ~  , only the m-th sigpificant bit 
of the radix 2 representation of w,,, is 1 and all other bits 
are 0. Therefore the k-th significant bit of s j  is 1 only when 

Example 4-1 : 

Lemma 4-1 : 
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k E { q ( l ) ,  . . . ,q(j)}. Clearly, the q(j)-th significant bit of s, is 
1 since q(j) E { q ( l ) ,  ... ,q(j)}. But the q(j)-th significant bit of 
si-1 is 0 because s ( j  - 1) = s ( j )  - wu( , ) :  the k-th significant 
bit of si-1 is 1 only when k E {q(I) ,  . . . , q ( j  - 1)) and it has the 
same value as that  of s, for all k # q(j). 

Since the output of a stack filter is always one of the input 
data  (XI,. . . , XN), y'!j) - in (4-1) is 1 for a j and 0 for 
the others. 

Property 4-1 : For stack filters, ~ ' ( 2 )  - y'(,-') = 1 for a j, ana 
yS(') - = o for all i ,  i # j, 1 5 i 5 N .  

The proof for this is rather trivial, and is omitted. For an 
LWOS filter representing an arbitrary Boolean function, which is 
not a PBF,  ya( j )  - ya(j-') may be -1,  as shown below. 

I 

Property 4-2 : Consider an LWOS filter represented by a 
Boolean function ~BF(Z) which is not a PBF. For this filter, y'(j) - 
y'( j - ' )  in (4-1) is either 1 or 0 or -1. If y'!') - yb(i-l) = - 1  for 
some j, then fBF(Z) includes the complement of zq( , ) ,  say Z,(,). 

Proof: Since the output of fBF(z) is either 0 or 1, it is obvious 
that  y'(') - ya(j-') takes one of 0, 1, and -1.  Suppose that y-"') - 
ya('-') = -1  for some j. Let us express J B F ( Z )  in the following 
sum of product form: ~ B F ( Z )  = q,) .g l (z )  +f,(,) .gz(z)+g3(2), 
where gS(z) represents 211 product terms which include neigher 
z,,(j) nor Z,,(,l, and z,(>l .g1(z) and f,(,l .gz(z) represent all prod- 
uct terms which include zq(,) and f,(,), respectively. Of course, 
neither z,,(j) nor are included in gl(z) and gz(z). From 
Lemma 4-1 (A), y*(,) = ~ B F ( s , )  = g l ( s l )  + g3(s,) and ~ ~ 1 f - l )  = 

~ B F ( s , - I )  = gz(Sj-1) + g3(sj-I), But 93(sl) = gS(sj-1) because 
g 3 ( ~ )  includes neither zo(,l nor Z,(,)[See Lemma 4-1 (B)]. Thus 
y4i) - Y s ( i - l l  = g1(s,)-g2(sl-1). Therefore ya(')--ys(J-'1 = -1 
indicates that  gl(s,) = 0 and gz(s,-l) = 1. Following from this we 
can see thatgz(z)  # Oin ~ B F ( Z )  = zq(j).31(z)+Zq(,).g~(z)+g3(~), 
and that  ~BF(Z) includes zq(,l. I 

For FIR filters, ye(? )  - y"(j-') shou!d equal to the impulse 
response h,,,). This is illustrated in the following property. 

Property 4-3 : For an FIR filter with impulse responge h = 
( h l , .  . . , h N ) ,  whose output is given Y = X. h' , ~ ' ( 1 )  - y J ( ? - l )  = 

The proof IS omitted. Although Theorem 4-1 is derived for 
canonical LWOS filters, it is also true for general LWOS filters. 
This is because an LWOS filter can always be expressed as a 
canonical LWOS filter. For a given LWOS filter, we can evalu- 
ate (4-1) using UJ in (&I-) after obtaining the EBF corresponding 
to this filter. Hence (4-1) can be thought of as an cxprcssion of 
the output of general LWOS filters. 

The rcsull in Tlicorem 4-1 would be useful for evaluating tlie 
outputs of LWOS filters. An algorithm for LWOS filtering, based 
on Theorem 4-1, is described as follows. 

An algorithm for LWOS filtering: 

Step 1 : 
Step 2 : 
Step 3 : 
Step 4 : 

Sort the input samples XI,. . . , XN. 
Evaluate s ( j ) ,  1 5  j 5 N .  
Evaluate yaIJ), 1 5 j 5 N .  
Evaluate Y ,  using (4-1). 

In this algorithm, Step 1 may be implemented by using the 
running sorting algorithm in [5] which requires O ( N )  comparisons. 

In Step 2, s ( j ) ,  1 5 j 5 N ,  can be obtained by j swapping opera- 
tions. Step 3 may be implemented by storing the extended truth 
table. Finally, Step 4 requires 0 ( N )  multiplications and 0 ( N )  
additions. If we implement LWOS filtering directly according to 
its definition, O(N) comparisons, O ( I i )  additions and 0 ( I i )  mul- 
tiplications are required. Since K is the dimension of the linear 
combination vector I and K 2 N ,  the algorithm would be more 
efficient than the direct implementaion when K >> N .  
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