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Abstracts-The Cyclotomic Polynomial (CP) prefilter 
design problem is formulated as an optimization problem 
with linear objective functions by applying the logarithm 
to the transfer function of the CP prefilter. Then this 
problem is solved by mixed integer linear programming 
(MILP). Design examples demonstrate that this method 
leads to more efficient cascaded FIR prefilter-equalizers 
than existing methods. 

I. Introduction 

Considerable attention has been given in the digital 
signal processing literature to the design of efficient FIR 
filters which require fewer arithmetic operations than 
conventional ones. The design methods in [1]-[7], which 
lead to FIR filters with cascade structures, can reduce the 
number of required multiplications and some also reduce 
additions at the expense of some increase in the number 
of delays. The computational savings can be significant 
especially in designing narrow band filters. 

One approach to efficient FIR filter design is based on 
a cascade structure composed of a prefilter, which is often 
multiplierless, followed by an FIR equalizer [2]-[7]. The 
prefilter provides reasonable stopband attenuation, and 
the equalizer makes the overall filter meet the passband 
and stopband specifications. Most prefilters introduced so 
far are based on using the recursive running sum (RRS) 
[3]. The equalizer is designed via a modified Parks- 
McClellan algorithm [2]. 

In a recent paper [7], Hartnett and Boudreaux-Bartels 
proposed the use of cyclotomic polynomials (CP's) [8] to 
form multiplierless prefilters. Their prefilter consists of 
cascaded subfilters whose system functions are 
represented as CP's (Fig.1). This class of CP prefilters 
includes the RRS as a special case. It has been shown that 
the CP prefilter-equalizer method performs better and can 
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Fig. 1. Prefilter-Equalizer cascade structure 
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be applied to a wider range of filter types as compared 
with the other prefilter-equalizer methods. 

Although the CP prefilter design leads to efficient FIR 
filters, the design method is ad hoc and is not able to find 
"best" prefilter for the specification at hand. The objective 
of this paper is to develop an optimal procedure for 
designing CP prefilters with minimal complexity. 

In what follows, we first show that the CP prefilter 
design problem can be formulated as an optimization 
problem with linear objective functions by applying the 
logarithm to the transfer function of the CP prefilter, 
Then the design problem is solved by mixed integer linear 
programming (MILP) [9]. Through design examples, we 
demonstrate that the proposed method leads to more 
efficient cascaded FIR prefilter-equalizers, as compared 
with the existing method. 

11. The CP Prefilter Design Method 

In this section, we will briefly review the CP prefilter- 
equalizer design method proposed in [7], and then 
describe a method for designing prefilters with minimal 
complexity. Both the prefilters and equalizers considered 
in this section are linear phase FIR filters. 

A. Review on the CPprefilter-equalizer design [7] 
The system function of the prefilter P ( Z )  is represented 

as 

P ( 2 )  = fi F, (2)" (1) 
q=1 

where F, (z) are CP's in z - ~ ,  m4 are nonnegative integers 
and Q is a positive integer (Fig. 1). In order to obtain 
multiplierless CP prefilters, only the first 104 CP's which 
contain only the coefficients {o,i, -I} am considered. The 
CP prefilter-equalizer is designed as follows: 

Step 1. Choose the maximum length of the prefilter and 
the equalizer. 

Step 2. Determine the set of eligible CP's whose zero 
locations are "consistent" with the desired filter 
specifications. Among the 104 CP's, keep only those 
containing zeros within the stopband or within some 
intrusion into the transient bands, and eliminate all 
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CP’s with passband zeros. 
Step 3. Determine the order of each eligible CP‘s selected 

in Step 2. In (I), Fq ( z )  are eligible CP‘s obtained in 
Step 2. The orders mq are determined so that P ( Z )  

meets the prefilter specifications of maximum length, 
passband deviation and stopband attenuation. If such 
mq are found, conclude the prefilter design and 
proceed to the equalizer design in Step 4. Otherwise, 
this step is repeated with an increased value for the 
maximum length of the prefilter. 

Step 4. Design the equalizer using either the modified 
Parks-McClellan algorithm or the subset selection 
method. 
In [7], an iterative algorithm for finding the order mq 

in Step 3 are provided. However, this algorithm is ad hoc 
and in general cannot provide a CP prefilter with 
minimum complexity. In implementing the prefilter, 
some prefilter subsections are combined into one efficient 
multiplierless structure, and some are implemented 
recursively. This approach provides savings in number of 
additions at the expense of delays. Next we present an 
optimal method for determining the order mq . 

B. The proposed design method 
The CP prefilter with minimal complexity may be 

designed by solving the following optimization problem. 

Minimize f m , ( a ,  + c . d , )  (complexitymeasure) 

subject to I I p e j a  ) I - s . l ~ ( e i o  111 rp (inpassbands) 

Is.p(eim )I <rs (in stopbands) 

q=l 

(2) 

where aq and ,dq respectively, are the number of adders 
and delays required in implementing the q-th eligible 
polynomial, c is a constant which is determined 
depending on the complexity of an adder and a delay, 
0 < c < 1, D( e” ) is the desired frequency response of the 
cascaded prefilter-equalizer, s is a positive scale factor, 
which keeps s.IP(e”)I$ID(e’”)l, rp and r,, 
respectively, are the ripples of passband and stopband, 
and P(e” ) = nQ F (e’” )”‘ . Our objective is to find 
m q .  It is obvious that this design problem cannot be 
solved by using conventional filter design methods such 
as the remez exchange algorithm. Due to the nonlinearity 
between 5 (e’” ) and mq, linear programming (LP) 
cannot be applied directly to this prefilter design. 
However, after taking the logarithm on IP(P)I, this 

problem can be formulated as an MEP problem. We 
define 

g=1 q 

(3) 
q=1 

where Pa (e’”) = 20loglP(e”)l and FdBg (eJm ) = 20 

loglF,( e j” ) I . Now the optimization in (2) is rewritten as 

Mnzmzze 2 m4 (a4 + cd, ) (complexrtymeasure) 

subject to 2 m F dBq (ep)+sdBIrdBp (Inpassbands) (4) 

Fl 

-1 

2 m 4 d B q  F ( e p ) + s d B  >-r& 

~m,F, , (e” .  )+sa < 20loglQe”)I (scahngconsm1nrs) 

( ~ n  sropbunds) 
G=l 

Fl 

where sa =2Olog(s), rap =-2010gllD(e”)I-rpI and 

r,, =-20log(rS). In (4), optimal mq values and proper 
scale factor s can be determined by using MEP, if c, rap, 
r,, and Faq (e’” ) are given. 

As described in Section 11. A., the number of adders 
required for prefiltering can be reduced either by 
combining some CP’s or by recursively implementing 
them. To exploit this fact, we obtain such efficient 
structures of the CP’s and add them in the set of eligible 
CP’s. Now the number of eligible CP’s is denoted as 
Q’. Q 2 Q  

In designing prefilters, it is important to determine 
proper value of prefilter passband deviation rBp and 
prefilter stopband attenuation ras. In 171, they are 
determined through trial and error. It was observed that 
values of rdBp and raB, which are 6-8dB and 15-20dB, 
respectively, greater than the desired filter specifications 
provide good results. In our algorithm, we systematically 
determine rap and r,, by incorporating the problem for 
deciding rBp and r,, with the optimization in (4). 
Specifically, we assume that 

ras = 6 dBs + arap ( 5 )  
where 6 ,  is the stopband attenuation of the overall filter 
and a is a constant. The problem in (4) is rewritten with 
Q, instead of Q, and the equality constraint in (5). 

Minimize 2 m,  (aq + cd, ) 

Subjectto t m , 4 B q ( e ” ) + s a  <rdBp (in passbands) 

(complaitymeasure) 
‘3-1 

5 m,F,, ( e a  ) + sa 2 ra3 
5-1 

tm,Faq(e’*- I f s d a  < 201oglD(ej* )I (scalingconsrrainrs) 

‘ ax  = ’ d8s + CVhBp 

(in stopbands) ( 6 )  

,-I 
(ripple relanon) 
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This problem can be solved by MILP, treating mq, sa, 
rap and r,, as variables. We solve this problem for 
several values of a. Note that increasing a tends to 
increase ras and the complexity of the prefilter. On the 
other hand, as a decreases rae, tends to decrease and this 
will increase the complexity of the equalizer. For a given 
a, the prefilter designed through (6) will have the 
minimal rap because minimizing the complexity measure 
in (6) minimizes the attenuation r,, which is 
proportional to rap. This fact indicates that the prefilter 
design method in (6) leads to an equalizer with reduced 
complexity. 

The prefilter-equalizer design algorithm is 
summarized as follows: 

Step 1. Determine the set of eligible CP's. This step is 
identical to Step 2 in Section 11. A. 

Step 2. Obtain all possible efficient multiplierless building 
blocks either by combining some eligible CP's or by 
finding recursive structures of the CP's. We add these 
blocks in the set of eligible CP's. 

Step 3. Determine the order mq by solving the 
optimization problem in (6). We repeat this for 
different values of a. Consequently, several prefilters 
are obtained. (For the examples used in this paper, we 
found that considering a, 1 I a s 7 was appropriate.) 

Step 4. Design the equalizer for each prefilter obtained in 
Step 3. Among the prefilter-equalizers we select the 
one with minimal complexity. 

Since this algorithm minimizes the number of adders 
and delays required by the prefilter, estimating the length 
of the prefilter (Step 1 in Section 11. A) is unnecessary. 

IIT. Filter Design Examples 
To compare the proposed CP prefilter design method 

with the previous one, our method is applied to the filter 
design problems considered in [7]. In the following, 
prefilters are designed for a=l, 1.5, ..., 6.5, 7, and 
equalizers are designed by linear programming (LP). 
Using commercial package in [lo], the MILP and LP 
problems were solved within a few minutes in Sparc 2. 

Exumple I (Lowpass Filter): The specifcations in 
normalized ffequency are: 

passband: FE[O, 0.0211, stopband: F~[0.07,0.5], 
ripple: a,, I 0. 2dB9 6,2 60dB 

Conventional linear phase equiripple filter requires 5 1 tap 
to meet the specifications. The set of eligible CP's 
obtained in [7] is 

Fq (z) E (C, (z-')Ir = 2, 3 ,... , 13, 141 

where C, (z-l) is the z-th CP. To obtain efficient 
building blocks, we examined all possible combinations of 
the eligible CP's and found 13 combinations exhibiting 
reduced complexity. For example, one of them is 

C,(Z-~)C~~(Z-~)=(~+Z-~ + z - ~  +z-~+z~)(~-z-~ + z - ~  -z-3 +z4) 
1-z-5 1-2-lo 

1-2-' 1+2-' 1-2-2 
-- -- -- - 

Note that implementing C, )Clo ( Z - I  ) as 

requires 8 additions, while C, (z")Cl0 (z-') 
= (1 - z -lo ) / (1 - z-' ) requires only two additions. These 
efficient building blocks are added to the set of eligible 
CP's. Now Q'=28. We designed 13 prefilters for 1 .c CL I 7 
and the corresponding equalizers by LP. When 01=6.5, the 
equalizer with minimal length, which was 4, was 
obtained. For this a value, the prefilter is 

(1 +z-' +z-2 +z-3 +z4)(1 -z-l +z-2 -z-3 +ZA) 

The frequency response of the prefilter-equalizer is shown 
in Fig. 2(a). Table LA compares the complexity of this 
prefilter-equalizer with the previous results. Our design 
reduced 2 multiplications, 3 additions at the expense of 6 
delays. 

Exumple 2 (Bandpass Filter with Center Frequency 
0.2): The desired specifications are: 

passband: F~[0.189,0.211], 
stopband: FE[O., 0.168]u[O.232, 0.51, 
ripple: 6,, IO5dB, CY,,, 2 60dB 

For these specifications, a length 111 linear phase FIR 
filter is required in conventional design. Examining the 
15 eligible CP's obtained in [7], we generated 62 efficient 
blocks. Thus Q=77. The prefilter corresponding to the 
equalizer with minimal complexity, which was obtained 
when a=6.0, is 

~ ( q =  (i+z-1)z(i-~-z)(1-z-3)3 (1-z-4)(1+z-5)2 (i-~)(i-z-*) 

.(i+z-10)~ (1 -P)( i + ~ - ~ ~ ) (  i - ~  +z4 )' (i-z-3 +z-6 I( - ] 
Here the length of the equalizer was 6. The frecluency 
response of this prefilter is shown in Fig. 2(b). Table 1.B 
summarizes the complexity of this prefilter-equalizer and 
the previous results. The proposed method reduced 5 
multiplications and 7 additions at the expense of 9 delays. 

Example 3 (Multiband Example): The desired 
specifications are as follows: 
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passband F~[0.205,0.245]~[0.36,0.39], 
stopband: FE[O, 0.17]~[0.28,0.33]~[0.42, OS], 

ripple: Sap 5 0.15dB , S,, 2 70dB 
Conventional filters require at least 101 taps to meet the 
specifications. In this multiband design, it turned out that 
Q=7 and Q'=18. The equalizer with minimal complexity 
was obtained when a=1.5, and the length of the equalizer 
was 34. The corresponding prefilter is 

P(z)  = (1 - z-' )4 (1 -z-' ) 5  (1 + f3  )( 1 +z-' )6 (1 - zd )3 (1 - f7  )6 

The fresuency response of the prefilter-equalizer is shown 
in Fig. 2(c). The complexity of the prefilter-equalizer is 
summarized in Table I.C. Our technique reduced 6 
multiplications, 14 addtions and 6 delays. Note that our 
design provided savings in delays as well as in 
multiplications and additions. 
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Table I. Comparison and summary of Examples. 
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(a) (b) (c) 
Fig. 2. Frequency responses of the prefilter (dotted line), the equalizer (dashed line), and the overall cascaded filter (solid 

line) in (a) Example 1, (b) Example 2, and (c) Example 3. 
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