Design of Sparse FIR Filters Based on Branch-and-Bound Algorithm
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Abstract — Branch-and-bound algorithm is ap-
plied to the design of sparse FIR filters having
intentionally zeroed tap positions. It is shown
that this algorithm coupled with a suitable op-
timization technique for filter design can lead to
an optimal sparse FIR filter satisfying given spec-
ifications. Design examples demonstrate that the
proposed method requires less computation than
the conventional optimization such as the subset
selection method.

I. INTRODUCTION

One approach to efficient FIR filters is to design a fil-
ter having intentionally zeroed tap coefficients which are
not necessarily equally spaced [1]-[6]. Such a filter, called
sparse or thinned FIR filters, can lead to either reduction
of multipliers or additional stopband suppression at the
expense of increased delays. In contrast to most of the
other efficient FIR filter design techniques [7]-[11}, which
are mainly useful for narrowband filter design, this ap-
proach is effective in designing wide range of filter types
including wideband and nonlinear phase FIR filters. As a
consequence, sparse filter design can be used in conjunc-
tion with the other methods. For example, sparse equal-
izers in the prefilter-equalizer design [9] and sparse model
filters in the interpolated FIR filter design [11] have been
shown to be useful for reducing arithmetic complexity [6].

The procedure for designing sparse FIR filters consists
of two stages. In the first stage; zeroed tap positions are
selected; and in the second the values of non-zero coeffi-
cients are determined. In the latter stage, designing opti-
mal filter coefficients given zeroed tap positions is rather
straightforward: linear or quadratic programming solv-
ing constrained optimization problems can be used. On
the other hand, finding best tap positions may require an
exhaustive search; several techniques have been proposed
to overcome this difficulty. In [1] and [2], a class of FIR
filters having zeroed taps at every nth tap position was
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considered. In an effort to find optimal zeroed tap posi-
tions for general FIR filters, the subset selection method
that can select a subset of some linearly independent ba-
sis functions that best approximate a given process has
been applied [9]. This method can indeed find the best
tap positions, but it has some chance of evolving into an
exhaustive search. As an alternative approach, the prob-
lem of finding best tap positions was formulated as linear
programming, and solved by using a mixed integer lin-
ear programming (MILP) package [6]. This approach also
leads to an optimal solution but its use is limited to filter
designs with minimax-type error criterion.

In this paper, we propose to use branch-and-bound al-
gorithm for determining optimal zeroed tap positions. It
will be shown that a branch-and-bound method coupled
with a suitable optimization technique for filter design can
lead to a filter satisfying given specifications, with mini-
mal complexity. The proposed method is simpler than the
subset selection method, and can design sparse FIR filters
under various error criterions.

II. SpARSE FILTER DESIGN BASED ON
BRANCH-AND-BOUND METHOD

The design method described in this section can be
applied to any FIR filter design. In what follows, we shall
illustrate our method for the case where the impulse re-
sponse is symmetric and the filter length is odd.

Let h(n),n = 0,1,.--.2N — 2, denote the impulse re-
sponse of a linear phase, sparse FIR filter. If h(n) =
h{(2N—-2—n)forn=0,1, .-, N—2, its frequency response

is given by ( omitting the linear phase term exp™/(¥ ~Dw
)
N-1
H(w) = Z a(k)cos kw (1)
k=0

where a(0) = h(N — 1) and a(k) = 2hA(N — 1 — k) for
1 < k < N —1. The procedure for designing a sparse FIR
filter is described as follows.
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Preliminary Stage: A conventional, non-sparse FIR
filter that satisfies given filter specifications is designed by
using an appropriate optimization technique. The length
of the resulting filter is denoted by 2N, — 1.

The Branch-and-Bound Algorithm: At the begin-
ning we set N in (1) to an integer greater than N.. Then
a design problem for finding {a(k): k=10,1,--- . N—1}
that satisfy the filter specifications is formulated. This
problem is designated as P. Next for each .0 < k <
N — 1, a design problem P is generated by adding the
constraint a(k) = 0 to the original problem P. Fur-
ther branching is performed on each Py: a subprob-
lem Py; is generated by adding a(j) = 0 to P,. Thus
Py; is a filter design problem under the constraints that
a(k) = a(j) = 0. The branching process may be contin-
ued until N — 1 out of N coeflicients are set to zero, as
illustrated in Fig. 1 for N = 4.

The number of subproblems to be solved is substantially
reduced by fathoming: we say that a subproblem is fath-
omed when further branching on the subproblem cannot
yield any useful information. For a fathomed subproblem
branching is not performed. In our case, a subproblem is
fathomed if it is infeasible. For example, Py; is fathomed
if we cannot design a filter satisfying the given specifica-
tions under the constraints that a(k) = a(j) = 0.

When designing a sparse FIR filter, it is unnecessary
to solve the problem P. Following the depth-first branch-
and-bound search [12]. the design process is stated as fol-
lows: First, the subproblem Fy is solved. Since |a(0)|
tends to be larger than |a(k)|.k =1,2,---,N — 1, P, has
high probability of being fathomed. If P, is feasible, its
solution is saved. Then we go down to the lower level
and solve Py;. This procedure continues until a subprob-
lem under consideration is fathomed. After fathoming a
subproblem, we reinitiate the depth-first search process
from an unsolved subproblem. This process continues un-
til the feasibility of all the subproblems are checked. The
branch-and-bound algorithm implicitly enumerate all sub-
problems. The final solution is obtained by comparing the
solutions of the feasible subproblems. The one exhibiting
either the minimal complexity or the best performance is
the desired solution.

III. DEsigGN EXAMPLES

The branch-and-bound algorithm described above
can be applied to the design of sparse FIR filters under
various error criteria. In this section, we illustrate our
method by designing filters having peak-constrained least-
squares stopbands [13].

The integral squared error E, at stopbands is given by

E, = / | H(w) |2 dw
stopbands

= a*'Qa (2)

where @ = [a(0) a(1) -+ a(N — 1))}, Qisan N x N
matrix whose i-th row, j-th column element g¢;; is given by
9ij = fstopbands cos (iw) cos (Jw)dw, 0 <4, j< N-1.In
the first example presented below, we design a sparse filter
with minimum E, under the following ripple constraints.

{IH(w)~1|S<5p
| H(w)| <9,

when w € passband 3)
when w € stopband (

In the second example, sparse filters with minimum com-
plexity are designed under ripple and stopband energy
constraints. The designed sparse filters are compared with
equiripple passband and peak-constrained least-squares
stopband (EPPCLSS) filters in [13]. The filter design
problems were solved by using quadratic programming.

Example 1 ( Lowpass Filter Design, Minimum E; ):
The desired specifications in normalized frequency are as
follows:

passband : F € [0, 0.15], stopband : F € [0.2, 0.5]
dp = 0.072dB, J, = —46.05dB

The Parks-McClellan algorithm determined that the min-
imum impulse response length required to meet the spec-
ifications was 47 (N, = 24). We designed the EPPCLSS
filter of length 47, which minimizes F; subject to the rip-
ple constraints, and a sparse FIR filter with N = 29. The
results are summarized in Table 1. The designed sparse
filter achieved 5.04 dB gain at the expense of 8 delays, as
compared with the EPPCLSS filter. The magnitude re-
sponses shown in Fig. 2 demonstrate the advantage of the
sparse filter. The number of quadratic problems solved for
designing the sparse filter was 65. For comparison, we de-
signed the same filter by the subset selection method. In
this case, 85 quadratic problems should have been solved.
The branch-and-bound algorithm required less computa-
tion than the subset selection method.

Example 2 ( Lowpass Filter Design, Minimal Com-
plexity): The desired specifications are as follows:

passband : F € [0, 0.165], stopband : F € [0.24, 0.5]
dp = 0.043dB. é, = —53.17dB
stopband energy E; < —56.51dB

The minimum length of the EPPCLSS filter satisfying the
given specifications was 37 (N. = 19). We designed a
sparse FIR filter with N = 22. Table 2 compares the EP-
PCLSS and the sparse filter. By sparse filtering, we can
reduce 3 multiplications and 6 additions at the expense of
2 delays. The magnitude responses are shown in Fig. 3.
The number of solved quadratic problems in our branch-
and-bound method was 44; the subset selection method
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required to solve 69 problems.

IV. CoONCLUSIONS

The branch-and-bound algorithm was applied to the
design of sparse FIR filters. This algorithm can effi-
ciently find optimal zeroed tap positions, and enables us
to design optimal sparse filters under various error crite-
rions. Through some design examples, we showed that
the branch-and-bound algorithm requires less computa-
tion than the subset selection method. Further work in
this direction will be concentrated on application of the
branch-and-bound algorithm to the design of unequally
spaced antenna arrays [2].
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Figure 1: A branch-and-bound tree for N = 4 used for

the arithmetic complexity minimization.

Table 1: Comparision between the filters in Example 1.

[

| sparse | EPPCLSS i

E. (dB) -57.24 -52.76
multiplication 24 24
addition 47 47
delay 55 47

Table 2: Arithmetic complexity comparision between the

filters in Example 2.

| sparse | EPPCLSS |

multiplication 16 19
addition 31 37
delay 39 37

(dB)

|HwW) |
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o

Figure 2: Magnitude responses of the sparse filter (solid
line) and the EPPCLSS filter (dotted line) in Example 1.
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Figure 3: Magnitude responses of the sparse filter (solid
line) and the EPPCLSS filter (dotted line) in Example 2.
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