A HETEROGENEOUS SIMULATION FRAMEWORK
BASED ON THE DEVS BUS AND THE HIGH LEVEL ARCHITECTURE

Yong Jae Kim
Tag Gon Kim

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1, Kusung-Dong, Yusung-Gu, Taejun, 305-701, KOREA

ABSTRACT

We describe a heterogeneous simulation framework in
which conventional simulation models and the DEVS
(Discrete Event Systems Specification) models can be
interoperable. The framework conceptually consists of
three layers: the model layer, the DEVS layer, and
the HLA (High Level Architecture) layer. The model
layer has a collection of heterogeneous simulation models,
such as DEVS, CSIM, SLAM, and so on, to represent
various aspects of a complex system. The DEVS layer
provides a common framework, called the DEVS BUS,
so that such simulation models can communicate with
each other. Finally, the HLA layer is employed as
a communication infrastructure, which supports several
good features for distributed simulation. The DEVS BUS
has been implemented on the HLA and a simple example

of communicating two heterogeneous models has been -

developed to validate the DEVS BUS.

1 INTRODUCTION

A heterogeneous simulation includes many simulators
having different simulation methodologies, each of which
is dedicated to an aspect of a complex question. For
example, simulation for a manufacturing system may
include a scheduler, a harbor, a traffic, a factory, an
AS/RS, and an ecological simulator. The simulators run
concurrently for answering the complex question.

High Level Architecture (HLA) has been defined in
the DoD M&S sub-objective 1-1 (DoD 1995): “Establish
a common high-level simulation architecture to facilitate
the interoperability of all types of models and simulation
among themselves and with C4I systems, as well as to
facilitate the reuse of M&S components". The HLA,
however, gives no formal way to model a system.

When an existing simulation model such as CSIM,
SLAM, and so on, wants to join a federation, the
simulation model should be modified so that the model
can send(receive) external messages to(from) the other
federates. Such modifications seem difficult and sometimes
may be impractical. In this paper, we propose an alternative
way to heterogeneous simulation using the DEVS BUS
approach, in which existing simulation models need not
to be modified.

Kim and Kim (Kim and Kim 1996b) proposed
the DEVS BUS that virtually connects the supervisory
simulation model and node simulation models. They also
proposed a very simple protocol conversion method that
can be used only for server models. In this paper, we refine
the DEVS BUS and develop a general protocol converter
using a system theoretic approach (Kim and Kim 1998).

The rest of this paper is organized as follows. Section
2 describes an overview of the framework. Section 3
reviews the DEVS formalism and describes the DEVS
BUS architecture. Section 4 develops a DEVS/CSIM
simulation protocol converter with which a CSIM model
can be attached to the DEVS BUS. Sections 5 and 6 present
an implementation and an execution of a DEVSim-HLA
environment, respectively. Finally, some conclusions and
future works are given.

2 OVERVIEW OF THE FRAMEWORK

The goal of the proposed framework is to provide a common
simulation infrastructure for heterogeneous simulation, in
which constructive simulations, live components, and
human interactions can be interoperable. The infrastructure
should have a simple, well-defined interface so that
a simulator can easily participate in a heterogeneous
simulation.

We propose the DEVS BUS approach as shown in
Figure 1. There are conceptually three layers: the model

Kim and Kim

DEVS model CSIM model SLAM model
MODEL Layer
(hieenica CSIM SLAM
schedulin (process list) (event list)
[I |
1 I
DEVS/CSIM DEVS/SLAM
Converter Converter
DEVS Layer DEVS BUS

Controller

Ips .
DEVS BUS [

I I]
HLA Layer I RTI Interface l RTI Interface I RTI Interface I
i i

Comanication Network

Figure 1: DEVS BUS Approach

layer, the DEVS layer, and the HLA layer. Each simulation
node, called a federate, consists of a simulation model,
a simulation protocol converter, and an HLA simulation
facility. Federates communicate with each other via a
communication network. ’

The model layer has a collection of heterogeneous
simulation models, such as DEVS, CSIM, SLAM, and
SO on, to represent various aspects of a complex system.
There are two main advantages of using heterogeneous
simulation models: modeling power and reusability. The
layer enables a modeler to build a global model with a
combination of world views to answer a complex question.
Also, well-developed simulation models can be reused so
that we can build rapidly an overall simulation model.

The DEVS layer provides a common framework so
that such simulation models could communicate with each
other. Simulation models participating in a heterogeneous
simulation, however, may not communicate directly with
each other due to different simulation protocols: simula-
tion protocol conversion is required. A protocol converter
is an interface module between different simulation pro-
tocols. For example, a DEVS/CSIM converter translates
DEVS requests into CSIM messages and vice versa. Note
that such a converter does not translate each simulation
model into a DEVS model but enable simulation models
to communicate with each other. The DEVS BUS is
virtually located between simulation models. Instrumented
with protocol converters, the DEVS BUS coordinates com-
munications between simulation models while preserving
causal relationships of events.

Finally, the HLA layer is employed as a communica-
tion infrastructure, which supports several good features
for distributed simulation. For example, the Run-Time
Infrastructure(RTI) of the HLA supports a time advance
mechanism based on the conservative approach and sev-
eral message delivery schemes such as receive and time

stamp ordered. Moreover, the layer enables us to enlarge
our simulation framework to include live components and
human interactions.

3 DEVS BUS

Before describing the DEVS BUS, we briefly review the
DEVS formalism and abstract simulators for DEVS models.

3.1 DEVS Formalism

DEVS (Discrete Event System Specification) is a set-
theoretic formalism to specify discrete event systems (Zei-
gler 1984). There are two kinds of models, atomic and
coupled. An atomic model, called AM, specifies the
dynamics of a model and is defined as:

Definition [AM]

AM =< S, XY, bext, bint, A, ta >
where
S: sequential states set,
X: input events set,
Y': output events set,
bert: Q X X — S, external transition function
where Q is the total state set of
Q = {(s,e)|s € Sand 0 < e < ta(s)},
Oint: S — S, internal transition function,
A: S > Y, output function,
ta: S —» R¢__, time advance function

0,00°
where the R __ is the non-negative real numbers

0,00

with oo adjoined.

The interface of an atomic model is defined by X
and Y. The model can process events defined at X and
produce events defined at Y. 6.,; and 6;,; specify how
to change the states of the model. An output event is
produced at a state according to A. Finally, a sojourn time
of a state is defined by ta.

A coupled model provides the way of composition
of several atomic and/or coupled models. When we want
to specify a complex system, we can specify each of
subcomponents individually and construct big one using
the coupled model, which has only structural informations
and is defined as:

Definition [CM]

CM =< X,Y,{M;},EIC,EOC,IC,SELECT >
where
X: input events set,
Y: output events set,
M; : component basic model,

A Heterogeneous Simulation Framework Based on the DEVS Bus and the High Level Architecture

EIC C X x UX; : external input coupling
relation,

EOC C UY; x Y : external output coupling
relation,

IC C UY; x UX; : internal coupling relation,

SELECT : 2M — ¢ — M, tie-breaking selector.

M; can be an atomic and/or coupled model. EIC
specifies how to route external messages to M; and EOC
how to route output events of M; to the outside of CM.
An output event of M; is sent to M; according to IC.
Finally, SELECT is a tie breaking function.

3.2 DEVS Abstract Simulator

Attached to each DEVS model is an associated abstract
simulator, either a simulator for an atomic model or a
coordinator for a coupled model (Zeigler 1984). Consider
Figure 2, where a solid line with ?event corresponds
to an external state transition by an external input event
and dashed one with levent represents an internal state
transition with an external output event. Two simulators,
S1 and S2, are managed by a coordinator, COOR, which
is not shown in the Figure. Assume that S1 wants to send
an output event to S2. After receiving (*,t), S1 produces
an output (y,t) by executing A and sends it to COOR.
Then, S1 changes its state as defined in §;,;, calculates a
sojourn time, tN1, of a new state using ta, and sends a
(done,tN1) to COOR. After receiving (z,t), S2 updates
its state according to 6. and sends (done, t N2) to COOR.
The abstract simulator algorithm is a composition of that
of S1 and S2, as shown in the lower part of Figure 2.

The hierarchical simulation algorithm for a coupled
model, PEL, which has two atomic models, BUFF and
PROC, is shown in Figure 3. BUFF and PROC have
associated simulators of S:BUFF and S:PROC, respectively.
The coupled model, PEL, has the associated coordinator
of C:PEL. Finally, R:PEL is the root-coordinator whose
job is to manage the overall simulation clock.

Assume that the next simulation time is 10 and BUFF
produces an output at 10. First, R:PEL sends (*,t = 10)
to C:PEL. C:PEL routes the message to its component,
whose tN is 10. In this case, C:PEL routes (x,10) to
S:BUFF. S:BUFF requests BUFF to execute consecutively
the output function, the internal transition function, and the
time advance function of BUFF while producing an output
message, (y,10). S:BUFF sends (y, 10) to C:PEL. Then,
C:PEL translates (y,10) into an input message, (z,10),
and sends it to S:PROC. After receiving the input message,
S:PROC requests PROC to execute the external transition
function and the time advance function. Then, S:PROC
reports (done,tN1 > 10) to C:PEL, which indicates the
next event time of S:PROC is tN1. Also, S:BUFF reports
its next event time by sending (done,t N2 > 10) to C:PEL.

(x, 1) : external input

(*. 1) : schedule notification
(y, 1) : external output

(done, tN) : next schedule time

- -

*.0 (done, 1N)

S1: sender S2 : recciver

iidone, N) !(done, IN) |

;i;fl""@

Figure 2: DEVS Simulator Algorithm

PEL(Coupled)
Ic
BUFF PROC
(Atomic) (Atomic)

Global Scheduler

BUFF PROC
8.xy 8y, My fa

Figure 3: Hierarchical Simulation Algorithm for DEVS
Coordinator

The new tN of C:PEL is set to the minimum of two tN's
and reported to R:PEL by sending (done, min(tN1,tN2)).
Once R:PEL receives the message, it updates the simulation
clock into min(tN1,tN2) and sends (x, min(tN1,tN2))
to C:PEL.

There are four kinds of message in the algorithm:
(*,t), (done,tN), (z,t) and (y,t). The former two
messages are used for simulation scheduling and the latter
two for data transfer.

3.3 DEVS BUS Architecture

A computer bus serves as a shared communication link
between various parts of a computer system. A master is a
device that can initiate a communication with a responding
device, which is called a slave. A bus has multiple masters
when there are multiple CPUs or when I/O devices can

Kim and Kim

initiate a communication. An arbitration is a mechanism
to resolve conflicts that arise when more than two masters
try to use the bus at the same time. A device that is
dedicated to the arbitration is called a bus arbiter.

The bus has the two major advantages: low cost and
versatility (Hennessy and Patterson 1990). The cost is low
because a single set of wires is shared by several devices.
We can add new devices to the bus by implementing a
single interconnection scheme already well defined. On
the other hand, a communication bottleneck is the major
disadvantage of the bus. If the bus is in use, a device that
is newly trying to use it should wait until it becomes free.

The basic idea of the DEVS BUS is the same as that
of the hardware bus. The approach may arise a bottleneck
problem as the hardware bus and also has the advantage
of the common interface. When a simulator wants to send
a message to others, it should wait until granted to use
the bus. When a simulator wants to join a heterogeneous

simulation, it comes true if the simulator just implements
the DEVS BUS protocol.

Figure 4 shows the DEVS BUS architecture. There
are four communication paths between the DEVS BUS
controller and node simulators. (z,t) and (y, t) are for data
transfer. (x,t) corresponds to a bus grant of the hardware
bus. (done,tN) has the composite meaning of a bus release
and a bus reservation. The DEVS BUS controller consists
of a dispatcher and an arbiter. Basically, the dispatcher is a
coupling scheme of a coupled DEVS and the arbiter is the
root coordinator of the hierarchical simulation algorithm
for the coupled DEVS. The dispatcher receives data from
source model and forwards it to destination model. The
arbiter selects a simulator among several simulators so
that the simulator exclusively use the DEVS BUS for an
instant.

Once a simulator receives (x,t), it use the bus and
eventually sends (done,tN) as a bus release/reservation.
The bus reservation reports it to the dispatcher that the
simulator should be scheduled at the next event time tN.
So, whenever a simulator receives (*,t) or (z,t), it sends
(done,tN) to the dispatcher. It differs from a bus request
of a common hardware bus, in which a master want to
use the bus not later but immediately.

An addressing scheme should be considered to cor-
rectly transfer data. Actually, a hardware bus arbiter only
deals with control signals. Data read and write operations
are performed between a master and a slave. The master
should select the designated slave among several slaves
according to the predefined addressing scheme. On the
other hand, in the DEVS BUS, the bus dispatcher deter-
mines the destination simulator. The dispatcher has all
connection information, called a coupling scheme. The
coupling scheme is a relation in which all pairs of source
and destination models are specified. When a simulator

DEVS BUS Controller

I Dispatcher Arbiter
x

x0 : Data read
[UA)) : Data write
“.n : BUS grant
(done, tN) : BUS release &

BUS reservation

Figure 4: DEVS BUS Architecture

produces (y,t), the bus dispatcher translates it into (z,t)
and forwards (z, t) to the destination simulator as specified
in the coupling scheme.

Specification of connection information in the coupling
scheme, not in models, gives much flexibility in changing
destination simulator. Consider that some models of 52
are moved into S3. There is no need for S1 to know the
movement. S1 just sends (y,t) to the dispatcher not to
directly S2 or S3.

A possible scenario of the DEVS BUS arbitration
is shown in Figure 5. Initially, both simulators report
their tNs to the arbiter. When the arbiter receives both
messages, it determines that a simulator with the smaller
tN, S1, can use the bus. The arbiter sends (x,3) to SI.
Once S1 receives the message, it produces (y,3) to the
dispatcher. Then, the dispatcher translates it into (z,3)
and forwards (z,3) to S2. After receiving (z,3), S2
reports its ¢tV to the arbiter by sending (done,tN = 5).
Also, S1 produces (done,tN = 10). Then, the arbiter
generates (*,5) so that S2 can use the bus and so on.

Table 1 shows a comparison between the DEVS BUS
and a common hardware bus. There are two differences
between them: bus request and addressing. Scheduled is
a bus request of the DEVS BUS, by which a simulator
reserves the bus for a future use. On the other hand,
immediate is that of the hardware bus, by which a master
can use the bus right away if granted. Because the
dispatcher in the DEVS BUS controller has all addressing
information, the simulator just sends data to the dispatcher.
In the hardware bus, however, the arbiter only controls
bus arbitration and the master should know a destination
address. Specification of connection information in the
dispatcher, not in models, gives much flexibility in changing
the destination address. We did not define a bus protocol
for data transfer such as timing requirements used for a

A Heterogeneous Simulation Framework Based on the DEVS Bus and the High Level Architecture

Table 1: Comparison between DEVS BUS and Hardware BUS

| Feature | DEVS BUS [Hardware Bus |
Bus request (done,0) BR
Bus reservation (done,tN) N/A
Bus grant (*,1) BG
Bus release (done,tN) BREL
Addressing Method | Dispatcher base | Source base

DEVS BUS 2
Controller -

Dispatcher Arbiter

time (done,tN = 3) (done,N = 5)
*.3)
©,3)
(x,3)
(done,tN = 5)
(done,N = 10)
¢.9
(V)
x5)
(done,tN = 20)

Figure 5: DEVS BUS Arbitration

hardware bus. Those requirements are considered useless
for our purpose.

4 SIMULATION PROTOCOL
CONVERSION

41 DEVS/CSIM Simulation Protocol

Conventional simulation environments can be easily added
to the DEVS BUS by using a dedicated simulation protocol
converter. DEVS models are interpreted using the hier-
archical simulation algorithm. Simulation methodologies
for conventional simulation models, however, differ from
that of the DEVS models. When a DEVS model wants
to communicate with a conventional model, a simulation
protocol mismatch exists and should be resolved.

In this section, we consider a heterogeneous simulation
environment that consists of a DEVS simulation model
and a CSIM simulation model. We design a DEVS/CSIM
simulation protocol converter to resolve the mismatch
using a system theoretic protocol conversion methodology
(Kim and Kim 1998). Generally speaking, the protocol
conversion problem is to find a missing component that
is connected with two end components while satisfying a
given high level specification. In the protocol conversion

methodology, the two components and the high level
specification are described in the DEVS formalism and
a protocol converter, the missing component, is found
algebraically.

DEVS CSIM

Figure 6: DEVS-CSIM Communication

Figure 6 describes the DEVS and the CSIM simulation
protocol. The DEVS simulation protocol consists of a
sender, Py, and a receiver, P,. Qo and Q; are those of
the CSIM simulation protocol. The simulation protocols
only include capabilities on communication with other
simulation models. We abstracted the details such as
interactions with models and scheduling algorithms.

Assume that P, sends a message to @Q; at t = 0.
Initially, the DEVS BUS arbiter, Arb, receives two different
messages, (done,tNp = 0) and (done,tNg > 0), from
the DEVS and the CSIM simulator, respectively. (Let’s
assume (done,tNg) can be sent.) The next scheduling
time, tN, is set to the minimum of tNp and tNg, that is
tN = 0. Once tN is determined, Arb grants one of two
simulators to use the bus by sending (x,tN = 0) to the
simulator. In this case, the DEVS simulator is granted.
After receiving (*,0), Py produces an output event, (y,0),
which is eventually sent to Q;. Then, P, reports its next
scheduling time to Arb by sending (done,tNp/). When
P, receives an external input message, (z,t), from Qo, it

Kim and Kim

A*Q.1) 'recv
220 "
@‘ﬂ?ﬂ:ﬁ"&@.&.@ﬂ.@..i‘.‘:ﬂ..@
7send
‘o idoneQ.) {NdoneQ.IN) _doneQ tN)
ftdonc {(doneQ. HdoneQ.) [*

Ceo

e, 20 ..:m..@

Figure 7: DEVS/CSIM Protocol Converter

forwards the message to the destination model and sends
(done,tNp~) to Arb.

On the other hand, @ uses send and recv messages
instead of (done,tN), (x,t), (z,t), and (y,t). When Q,
receives an external recv message, it creates a process to
perform jobs for the message and is internally rescheduled.
If there is an internal result, Q¢ produces a send message
and is rescheduled.

Evidently, the simulation methodology of the DEVS
model is different from that of the CSIM simulation model:
their simulation protocols are mismatched. Because of
the protocol mismatch, the DEVS model can’t directly
communicate with the CSIM model. We should develop
a simulation protocol converter, which makes the CSIM
model interoperable with the DEVS model.

4.2 DEVS/CSIM Simulation Protocol
Conversion

We build a protocol converter that can be decomposed
into two separate parts (Figure 7). Cpc¢ is for the
communication path from P, to Q; and Ccp from Qg to
P,. Cpc and Ccp are individually found using the system
theoretic approach (Kim and Kim 1998). The resulting
converter, C, is constructed by composition of Cpc and
Ccp. When C is to be constructed directly from P and
Q, the complexity may be high. The decomposition of C
into Cpe and Ccp is efficient.

S IMPLEMENTATION OF DEVSIM-HLA

In this section, we describe the connection between the
DEVS layer and the HLA layer. The environment is
developed on the RTI version 1.0.3 (DMSO 1997) using
the D-DEVSim++ simulation environment (Kim et al.
1996a) and the CSIM environment (Schwetman 1988).

5.1 Implementation of the DEVS BUS
Protocol

In the RTI, federates communicate with each other in
two ways: object and interaction. An object represents a
simulation entity and has several attributes for states of
the entity. On the other hand, an interaction is best suited
to represent a message between federates.

The DEVS Bus protocol has four kinds of messages,
each of which corresponds to an interaction. To route
the message correctly, we add some routing informations
such as address and port information. The interactions are
considered as reliable TSO messages.

5.2 Time Management

There are two factors to determine time management
service in RTI: time constrained and time regulating
(DMSO 1996). Time constrained indicates whether the
federate will be constrained by the logical time of other
federates; time regulating indicates whether the federate
proposes to participate in determining the logical time of
other federates. Time constrained federates can receive
time-stamp ordered (TSO) messages and time regulated
federates can send them.

Among four possible different services of time man-
agement according to the two factors, we use the logical
time synchronized service so that a federate participates in
other federate’s time advance decisions and accepts such
participation from other federates. The federates can send
and/or receive TSO messages.

There exists a semantic gap between the RTI time
management and the time advance mechanism of the
DEVS BUS protocol. Consider a logically synchronized
federate. In the RTI, the fact that the current time of the
federate is 2 means that there is no more external TSO
message with a time-stamp less than or equals to 2, that
is ts < 2. The federate can only generate messages with
ts > 2 + lookahead. On the other hand, the DEVS BUS
protocol uses next schedule times, tNs. tN = 2 means
that the arbiter makes (*,2). Once a simulator receives
(*,2), it sends (done,tN) after a set of executions of
the output function, the internal transition function, and
the time advance function. At this time, another tN = 2
is possible if a zero time advance is modeled. So, in
the DEVS BUS, there may be possible tN = 2 after
processing (*,2).

The problem is more difficult when we consider a
(y,t) message routing. Assume that a coupled model,
cg, which is mapped into a federate A, consists of two
atomic models, a; and az which are mapped into another
federate B. Consider a; wants to send (y,2) to ay. Then,
a; should send the message to ¢y because in the DEVS
formalism, a basic model in a coupled model can not

A Heterogeneous Simulation Framework Based on the DEVS Bus and the High Level Architecture

directly send an output message to another in the coupled
model. Once ¢ receives the message at t(FedA) = 2, ¢
should send (z,2), the translated message of (y,2), to as
at t(FedA) = 2. In the RTI, however, it’s illegal because
ts = 2 < 2 + lookahead(> 0).

We solve the problem using two epsilons scheme,
which uses predefined small values, €l and €2, while
preserving the overall logical sequence of events. €l is
used to resolve the zero time advance problem by adding
€l to tN whenever a zero time advance occurs. €2 is used
for the (y,t) message problem. When the message time
of a (y,t) is the same as the federate’s current time, €2 is
added to the request message to the RTI, while preserving
t of (y,t). €l is slightly modified from the e-delay scheme
(Kim et al. 1997) and €2 is from the EPSILON of the
RTI (DMSO 1997).

6 AN EXECUTION

We develop a simple example, called EF_PFEL (Figure 8),
which consists of four different components. The generator
produces jobs at a predefined rate and sends them to the
buffer. Once receiving a job, the buffer forwards it to
the processor if the processor is free, otherwise the buffer
saves it until the processor is available. After finishing the
job, the processor reports a result to the transducer and
sends a message to the buffer so that another job can be
sent. When a termination condition meets, the transducer
sends a stop message to the generator so that no more
jobs are generated.

We build the EF_PEL simulator using two federates.
The processor model is developed as a CSIM model and
mapped into the Federate P2. The others are DEVS
models and mapped into the Federate P1l. To enable
communication between two simulation models, we use
the DEVS/CSIM protocol converter constructed at the
previous section.

The DEVS simulator. and the CSIM simulator run
concurrently. (z,t) and (y,t) messages are well passed
obeying timing constraints. The simulation goes well so
that every jobs generated are processed in the processor
model and finally reported to the transducer model. We
can get the statistics of facilities of the processor model
from the CSIM environment and the overall performance
results from the DEVS environment.

7 CONCLUSIONS AND
FUTURE WORKS

We have described a software bus, called the DEVS BUS,
as a common simulation infrastructure for heterogeneous
simulation. The DEVS BUS provides a well-defined
interface so that a simulator could be easily added

P1 P2
D-DEVSim++ CSIM
Environment Environment

Figure 8: EF_PEL Model

to heterogeneous simulation just by implementing the
interface. = The DEVS BUS controller consists of a
dispatcher and an arbiter. Basically, the dispatcher is
a coupling scheme of a coupled DEVS and the arbiter is
the root-coordinator of the hierarchical simulation algorithm
associated with the coupled DEVS.

We have implemented the DEVSim-HLA, a heteroge-
neous simulation environment based on the DEVS BUS
and the High Level Architecture. Currently, the envi-
ronment consists of the D-DEVSim++ environment and
the CSIM environment on the Run-Time Infrastructure of
the HLA. A DEVS/CSIM simulation protocol converter
is implemented to provide the DEVS BUS. The EF_PEL
model showed that the framework is a feasible solution to
heterogeneous simulation.

To show advantages of our framework, we’ll evaluate
a large, complex example including more than two
federates. Live components and human interactions are
also considered.

REFERENCES

Data Modeling and Simulation Office (DMSO). 1996.
HLA Time Management Design Document Version
1.0, August

Data Modeling and Simulation Office (DMSO). 1997. High
Level Architecture Run-Time Infrastructure Program-
mer’s Guide Version 1.0, May

Department of Defense (DoD), USA. 1995. Modeling and
Simulation (M&S) Master Plan, October

Hennessy, J. L. and D. A. Patterson. 1990. Computer Archi-
tecture A Quantitative Approach. Morgan Kaufmann
Publishers, Inc.

Kim, K. H,, Y. R. Seong, T. G. Kim, and K. H. Park.
1996a. Distributed Simulation of Hierarchical DEVS
Models: Hierarchical Scheduling Locally and Time

Warp Globally. TRANSACTIONS of The Society for
Computer Simulation 13(3): 135-154.

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park.
1997. Ordering of simultaneous events in distributed
DEVS simulation. Simulation Practice and Theory
5(3): 253-268.

Kim, Y. J. and T. G. Kim. 1996b. A Heterogeneous Dis-
tributed Simulation Framework Based on DEVS For-
malism. In Proceedings of the Sixth Annual Conference
On Artificial Intelligence, Simulation and Planning in
High Autonomy Systems, La Jolla, California, USA,
116-121.

Kim, Y. J. and T. G. Kim. 1998. A Circuit Theoretic
Approach to Protocol Conversion. (in preparation.)

Schwetman, H. 1988. Using CSIM to model complex
systems. In Proceedings of the 1988 Winter Simulation
Conference, San Diego, California, USA, 246-253.

Zeigler, B. P. 1984. Multifacetted Modeling and Discrete
Event Simulation. Academic Press Inc.

AUTHOR BIOGRAPHIES

YONG JAE KIM is a Ph.D. candidate in the Department
of Electrical Engineering at Korea Advanced Institute of
Science and Technology (KAIST). He received a B.S.
degree in electrical engineering from Yonsei University,
Korea, and a M.S. degree in electrical engineering from
KAIST.

TAG GON KIM is a professor in the Department of
Electrical Engineering at KAIST. He received B.S. and M.S.
degrees in electronics engineering from Pusan National
University, Korea, and Kyungpook National University,
Korea, respectively. He received a Ph.D. degree in
computer engineering from the University of Arizona,
Tucson, AZ. He is a senior member of IEEE, and a
member of ACM, AAAI, SCS, and ETA Kappa Nu. He
is an associate editor of Simulation and TRANSACTIONS
of SCS.

