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Synopsis

Distribution of fiber orientation in flow molding processes with short-fiber reinforcements is of
great importance because it affects the mechanical properties of molded parts. Due to trade-off
between the computational efficiency and accuracy, a second-order orientation tensor has been
widely used to describe the fiber orientation distribution. For calculation of this fiber orientation
tensor, a closure approximation has been introduced to reduce a higher fourth-order orientation
tensor to a lower second order. In the present investigation, a hybrid closure approximation has been
modified. Two parametric forms of the distribution function, which accurately describe the
random-in-space, random-in-plane, and uniaxial distributions of the fiber orientation were linearly
interpolated. The interpolating factor was obtained as a function of the fiber interaction coefficient
by fitting the distribution function calculations. Test simulation in homogeneous flow and
nonhomogeneous flow fields, respectively, showed that the proposed closure approximation gives
good performance for a wide range ofCI values without showing nonphysical behavior. ©1999
The Society of Rheology.@S0148-6055~99!01603-X#

I. INTRODUCTION

The fiber orientation distribution, which has a large effect on the mechanical proper-
ties of the short-fiber-reinforced composite parts, greatly changes during processing. For
effective production of such products via flow molding processes such as injection mold-
ing and compression molding, it is essential to predict the flow-induced variation of the
fiber orientation distribution. The importance of the distribution of such a fiber orienta-
tion has led to many investigations.

Jeffery~1922! has derived the equation of orientation change of an ellipsoidal particle
immersed in a homogeneous flow field based on hydrodynamics. Folgar and Tucker
~1984! have suggested a phenomenological model of rotary diffusivity to consider the
change in orientation caused by fiber–fiber interactions. Since numerous short fibers exist
in molded parts, it is impossible to consider fibers individually. Thus, the orientation
distribution function~ODF!, which is a probability density function of the fiber orienta-
tion, was introduced to fully describe the fiber orientation distribution in three dimen-
sions. Adopting the ODF description in numerical simulations requires a tremendous
amount of calculations since hundreds of degrees of freedom must be considered at each
spatial point.
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For more efficient numerical simulation of the orientation state of fibers, Advani and
Tucker ~1987! have made use of the orientation tensor which was originally introduced
by Hand~1962!. In this approach, only a few components are required to represent the
state of orientation at each spatial point. This advantage has allowed the orientation
tensor, especially the second-order tensor, to be widely used in the calculation of fiber
orientation in flow molding processes@Altan et al. ~1990!; Bay and Tucker~1992a,b!, de
Frahanet al. ~1992!; Gupta and Wang~1993!; Ranganathan and Advani~1993!; Tucker
and Advani~1994!; Chung and Kwon~1995!; Ko and Youn~1995!#. A weakness of the
orientation tensor approach is that a fourth-order tensor must be approximated by a
known second-order tensor in solving the governing equations. This closure approxima-
tion problem arises in many areas such as polymer dynamics and liquid-crystalline dy-
namics where the time evolution equation for the probability density is expressed in
terms of moments.

So far, the hybrid closure approximation proposed by Advani and Tucker~1987, 1990!
has most widely been used in the simulation of fiber orientations, since it is able to
predict the trends of orientation distribution fairly well and can easily be implemented
into numerical calculations. However, the involved numerical error is not negligible for
some cases according to Bay and Tucker~1992b!. They concluded that for a quantitative
agreement between simulations and experiments an improved closure approximation is
required.

For this purpose, several approaches have been introduced. Bay~1991! proposed a
closure approximation based on the work by Hand~1962! by fitting steady-state orienta-
tion distributions for a simple shear flow. Verley and Dupret~1993! proposed a natural
closure approximation, a polynomial function of the second-order orientation tensor,
which agrees with the analytic solutions of the ODF when assuming no fiber–fiber
interactions. Cintra and Tucker~1995! proposed an orthotropic fitted closure approxima-
tion in which three independent terms of the fourth-order orientation tensor were selected
by assuming orthotropy. These terms were determined by fitting polynomial functions
with numerical calculations of the ODF for selected flow fields. Schieber~1993! and
Chaubal and Leal~1998! introduced parametric density estimation approach for micro-
structured fluids in which a closure equation was constructed by proposing a parametric
form of the ODF. This approach has an advantage over the previous curve fitting ap-
proaches in that it automatically satisfies the important properties of the closure equation.
Considering the accuracy, however, it is less accurate than the fitting approach in general.

In the present investigation, both the parametric density estimation and the fitting
approach were adopted to construct a new closure approximation in which two forms of
the ODF were interpolated by applying the fitting with distribution function calculations.
This closure approximation accurately describes the random-in-space, random-in-plane,
and uniaxial distributions of the fiber orientations, whereas the hybrid closure approxi-
mation accurately describes the random-in-space and uniaxial distributions.

For verification, the predicted fiber orientation distribution using the second-order
orientation tensor equation was compared to analytic and numerical solutions of the
ODF. For numerical calculations of the ODF, finite-element formulations were carried
out and calculations were performed using four different values of the fiber–fiber inter-
action coefficient in various flow fields to ensure the generality and stability of the
proposed closure approximation.

II. FIBER ORIENTATION
A. Description of fiber orientation

The orientation of a single short fiber can be represented by the unit vectorp shown in
Fig. 1. Components of the vectorp are described by the anglesu andf as follows:
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p 5 ~p1 ,p2 ,p3! 5 ~sinu cosf, sinu sinf, cosu!. ~1!

Describing the orientation by individual fibers is ineffective since composites contain
numerous fibers which invoke difficulties in calculating the anisotropy induced by fiber
orientation. Thus, the concept of probabilistic distribution is usually applied. The orien-
tation distribution functionc is defined as a probability density function of fiber orien-
tation as follows:

c~p! 5 c~u,f! [ lim
du,df → 0

P~u < u* < u1du,

f < f* < f1df)/~sinududf!. ~2!

From this definition, the ODF satisfies the following properties:

c~p! 5 c~2p!, or c~u,f! 5 c~p2u,p1f!, ~3!

1 5 R
S
c~p!dA 5 E

u 5 0

p E
f 5 0

2p
c~u,f!sinudfdu, ~4!

where,S denotes the surface of a unit sphere.
In order to use the ODF description in numerical calculations, a great deal of effort is

required to consider the ODF values in every direction at each spatial point. The orien-
tation tensor, defined in the following manner, can greatly reduce such efforts:

second-order tensor: ai j 5 R
S
pi pjcdA, ~5!

fourth-order tensor: ai jkl 5 R
S
pi pj pkplcdA. ~6!

By definition, orientation tensors are symmetric in their indices and have the following
normalized properties:

akk 5 1, ~7!

aijkk 5 aij , ~8!

where repeated indices indicate summation unless otherwise specified. These properties
give the second-order orientation tensor five independent components to be considered.

FIG. 1. Orientation of a single fiber described by the unit vectorp.
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Thus, the second-order orientation tensor can effectively describe various fiber orienta-
tion distributions using minimum information. The fiber orientation distribution can be
visualized by using eigenvaluesl i and eigenvectorsni of the second-order orientation
tensor as shown in Fig. 2.

B. Rate of change of fiber orientation

For description of the motion of a single fiber, all current models employ some form
of the following equation:

ṗi 5 2
1

2
vij pj1

1

2
l~ġij pj2ġklpkplpi!2

Dr

c

]c

]pi
, ~9!

wherev i j 5 ]v j /]xi2]v i /]xj , and ġ i j 5 ]v j /]xi1]v i /]xj are components of the
vorticity and rate of deformation tensors, respectively, with]/]pi being the gradient
operator on the surface of a unit sphere.l is a shape factor of the fiber particle defined as
l [ (r e

2
21)/(r e

2
11). As can be seen, it attains values between 0~sphere! and 1~infi-

nitely slender!, depending on a function of the aspect ratio.Dr is the effective diffusivity
that accounts for interactions among fibers. IfDr 5 0, Eq. ~9! becomes identical to
Jeffery’s equation. In order to consider fiber–fiber interactions in nondilute suspensions,
Folgar and Tucker’s phenomenological model,Dr 5 CI ġ, was used. In this model,CI is
the interaction coefficient andġ 5 A(ġ i j ġ i j )/2 is an effective shear rate.

Regarding the rate of change of the ODF, the following continuity equation is ob-
tained by assumingc to be a convected quantity:

Dc

Dt
5 2

]

]pi
~cṗi!, ~10!

where,D/Dt denotes the material time derivative.
Finally, taking the material time derivative of Eq.~5! and incorporating Eqs.~9! and

~10!, the equation of change of the second-order orientation tensor can be obtained as

Daij

Dt
5 2

1

2
~vikakj2aikvkj!1

1

2
l~ġikakj1aikġkj22ġklaijkl !12CIġ~dij23aij !. ~11!

To solve this equation, the fourth-order orientation tensorai jkl must be approximated as
a function of the second-order orientation tensorai j . As can be intuitively sensed, this
closure approximation has a critical effect on the solution accuracy of Eq.~11!.

FIG. 2. Schematic representation of orientation distribution by the second-order orientation tensor.
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III. CLOSURE APPROXIMATION

The most frequently used closure approximation to date is the following hybrid clo-
sure approximation~HYB! proposed by Advani and Tucker~1987!:

aijkl
HYB

5 ~12 f !ai jkl
LIN

1 f ai jkl
QUA , ~12!

where

aijkl
LIN

5 1
7~ai j dkl1aikd j l 1ail d jk1akld i j 1ajl d ik1ajkd i l !

2 1
35~d i j dkl1d ikd j l 1d i l d jk!, ~13!

aijkl
QUA

5 ai j akl , ~14!

and f 5 1227 det(aij).
This hybrid closure approximation accurately describes fiber orientation for random-in-
space and uniaxial distributions and, in general, shows similar trends with the actual fiber
orientation distribution observed in experiments. However, comparison with the distribu-
tion function calculation shows that the involved error is not always negligible.

Since a closure approximation cannot exactly describe all situations of the fiber ori-
entation distribution, it is important to select reference flow fields that will guarantee the
smallest error for general cases of interest. In this investigation, a new closure approxi-
mation is proposed for obtaining improved results of numerical calculations of the fiber
orientation distribution during flow molding processes.

For simplification, the problem was considered in the principal coordinate system of
ai j . If l i andni 5 (n1

i ,n2
i ,n3

i ) are thei th eigenvalue and is thei th eigenvector, respec-
tively, the second- and fourth-order orientation tensors denoted bybi j andbi jkl can be
represented in this coordinate system as follows:

bij 5 no
i np

j aop 5 lidij , ~no summation oni ! and ~15!

bijkl 5 no
i np

j nq
knr

l aopqr. ~16!

Without loss of generality, the values ofl i ( i 5 1,2,3) lie in the shaded region of Fig.
3 with restriction ofl1 > l2 > l3 . At the three extremity pointsRs , Rp , andU, the
eigenvalues become

FIG. 3. Available region of eigenvalues in thel11l21l3 5 1 plane.
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at Rs : l1 5 l2 5 l3 5 1/3,

at Rp : l1 5 l2 5 1/2, l3 5 0, and

at U: l1 5 1, l2 5 l3 5 0. ~17!

At Rs , various orientation distributions are possible, but in actual situations the most
likely case is the random-in-space distribution. Similarly,Rp and U were assumed to
represent random-in-plane and uniaxial distributions, respectively. These assumptions
lead to the following nonzero components ofbi jkl at each extremity point:

at Rs : b1111 5 b2222 5 b3333 5 1/5, b2233 5 b1133 5 b1122 5 1/15,

at Rp : b1111 5 b2222 5 3/8, b1122 5 1/8, and

at U: b1111 5 1. ~18!

The main assumption of the current closure approximation to be applied to general
cases of the fiber orientation distribution is that the conditions at these three extremities
must be satisfied. This closure approximation will be defined as the modified hybrid
closure approximation.

A. Modified hybrid closure approximation: Model I

The modified hybrid closure approximation, model I, was defined to satisfy Eq.~18!
by assuming the appropriate orientation distribution that exactly describes the conditions
at the three extremities. It is reasonable to expect the orientation distribution to be ex-
pressed as simply as possible, e.g., egg like nearRs , disk like nearRp , and pen like near
U. In this investigation, the following equations were assumed for each distribution:

cegg 5 a1r 1
2
1a2r 2

2
1a3r 3

2 ~a1 > a2 > a3 > 0!, ~19!

cdisk 5 ~12r 3
2!k~a1r 1

21a2r 2
2! ~k > 0, a1 > a2 > 0!, and ~20!

cpen 5 a1~12r 3
2!kr 1

2m ~k > 0, m > 1, a1 > 0!, ~21!

wherer i are components of the orientation vectorp in the direction ofni , andk, m, and
a i are parameters determined from a givenai j . These ODFs are continuous in the
following sense:

ceggua3 5 0 5 cdiskuk 5 0 and cdiskua2 5 0 5 cpenum 5 1 . ~22!

In fact, cpen can cover both disk- and egg-like regions if the condition ofm > 0 is
assumed. However, the combination of these three was employed since it is more physi-
cally meaningful and causes no notable differences in numerical results.

Since the ODF was defined to be symmetric in each coordinate plane, i.e., orthotropic,
the fourth-order orientation tensor has six nonzero components, i.e.,b1111, b2222, b3333,
b1122, b1133, and b2233. Three of them, namely,b1111, b2222, and b3333 and their
eigenvalues can be calculated in terms ofk, m, anda i as shown in Table I. From this, the
relations between the second- and fourth-order orientation tensors can be derived as
follows:
Egg like (l3 > 1/5):

b1111
egg

5 3
35~10l121!, b2222

egg
5 3

35~10l221!, and b3333
egg

5 3
35~10l321!.

~23!
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Disk like (l3 < 1/5, l1 < 3l2!:

b1111
disk

5
12s

8
~7l12l2!, b2222

disk
5

12s

8
~2l117l2!, and b3333

disk
5 ~3s!l3 ,

with s 5 l3 /~112l3!. ~24!

Pen like (l3 < 1/5, l1 > 3l2!:

b1111
pen

5 ~12r !~12s!l1 , b2222
pen

5 ~12s!l22r ~12s!l1 , and b3333
pen

5 ~3s!l3 ,

with r 5 l2 /~l113l2! and s 5 l3/~112l3!. ~25!

Based on the normalized properties of Eq.~8!, b2233, b1133, and b1122 can be deter-
mined as

b2233 5 S2~l12b1111!, b1133 5 S2~l22b2222!, and b1122 5 S2~l32b3333!,

~26!

with S 5 (12b11112b22222b3333)/2.
Thus, the modified hybrid closure approximation, model I, can be defined based on the

above results as

TABLE I. Principal components of the second- and fourth-order orientation tensors in terms of the parameters
in Eqs.~19!–~21!.

Egg like Disk like Pen like

ODF ~c! a1r 1
21a2r 2

21a3r 3
2 (12r 3

2)k(a1r 1
21a2r 2

2) a1(12r 3
2)kr 1

2m

Normali-

zation

1 5 b11b2

1 5
4p

3
~a11a21a3! b1 [ SpE

0

p

~sinf!2k13dfDa1 1 5 SE
0

2p

~cosu!2mduD
•SE

0

p

~sinf!2k12m11dfDa1b2 [ SpE
0

p

~sinf!2k13dfDa2

l1 4p

15
~3a11a21a3!

2k14

4~2k15!
~3b11b2!

~2m11!~2m12k12!

~2m12!~2m12k13!

l2 4p

15
~a113a21a3!

2k14

4~2k15!
~b113b2!

2m12k12

~2m12!~2m12k13!

l3 4p

15
~a11a213a3!

b11b2

2k15

1

2m12k13

b1111 4p

35
~5a11a21a3!

~2k14!~2k16!

8~2k15!~2k17!
~5b11b2!

~2m11!~2m13!~2m12k12!~2m12k14!

~2m12!~2m14!~2m12k13!~2m12k15!

b2222 4p

35
~a115a21a3!

~2k14!~2k16!

8~2k15!~2k17!
~b115b2!

3~2m12k12!~2m12k14!

~2m12!~2m14!~2m12k13!~2m12k15!

b3333 4p

35
~a11a215a3!

3~b11b2!

~2k15!~2k17!

3

~2m12k13!~2m12k15!
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aijkl
model I [ H ai jkl

egg if l3 > 1/5

ai jkl
disk if l3 , 1/5,l1 < 3l2

ai jkl
pen if l3 , 1/5,l1 . 3l2

. ~27!

This equation is a continuous function ofl i since it was based on a continuous ODF.

B. Modified hybrid closure approximation: Model II

As mentioned earlier, model I has an orthotropic property, and thus, is similar to the
orthotropic closure approximation which was proposed by Cintra and Tucker~1995!.
They have proposed two kinds of closure approximations. Orthotropic fitted closure
~ORF! is composed of polynomial functions ofl i that were fitted to the numerical
solutions of the ODF withCI 5 0.01 andl 5 1, and so, it does not explicitly satisfy the
conditions at the three extremities. On the other hand, orthotropic smooth closure~ORS!,
which is described below, is a linear interpolation of the three special cases represented
in Eq. ~18!. In this sense, it can be considered to be a kind of modified hybrid closure.

b1111
ORS

5 20.1511.15l120.10l2 ,

b2222
ORS 5 20.1510.15l110.90l2 , and

b3333
ORS 5 0.6020.60l120.60l2 . ~28!

The above results can be obtained by assuming the following parametric form of the
distribution function:

cORS~r ! 5 cORS~u* ,w* ! 5
b1

4p
1

b2

2p
dS u* 2

p

2 D 1b3dS u* 2
p

2 D d~w* !, ~29!

where,u* andw* are the angles ofr as in Eq.~1! andd~•! is the delta function. The
three parametersb1 , b2 , andb3 can be easily obtained, respectively, from the definition
of the orientation tensor as follows:

b1 5 3l3, b2 5 2~l22l3!, and b3 5 l12l2. ~30!

ORS and model I have the following properties for alll i :

b1111
ORS . b1111

model I, b2222
ORS . b2222

model I, and b3333
ORS . b3333

model I. ~31!

This is evident from the definition of each distribution function. As will be discussed
later, thebi jkl values from the distribution function calculations~DFC! generally lie
between those from model I and the ORS results. Therefore, a more accurate version of
the modified hybrid closure approximation, model II, can be defined by combining model
I and the ORS as

cmodel II 5 ~12FAC!•cmodel I1FAC•cORS, or ~32!

aijkl
model II [ ~12FAC!•ai jkl

model I
1FAC•ai jkl

ORS, ~33!

where FAC is an interpolating factor and can be determined by fitting the DFC results.

IV. CALCULATION OF ODF

In order to check whether the solution of Eq.~11! using the present modified closure
approximation agrees with the exact solution of the orientation distribution, solutions of
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the orientation distribution function are required. Hereafter, ‘‘exact solutions’’ or ‘‘exact
values’’ will imply those obtained from the distribution function calculations. The mate-
rial time derivative in Eq.~10! makes numerical calculations of the ODF nearly impos-
sible if both space and time are considered. Therefore, in this investigation, exact solu-
tions were calculated by analytic or numerical methods where material particles were
followed in homogeneous flow fields.

A. Analytic solution

WhenCI 5 0, an analytic solution of the ODF is available since the orientation vector
p can be expressed in terms of an initial vector and a velocity gradient. Applying the
initial condition pi 5 qi into Eq. ~9! yields

pi 5
Eikqk

~EnlqlEnmqm!1/2, ~34!

where

DEij

Dt
5

1

2
~2vik1lġik!Ekj , ~35!

andEi j 5 d i j initially @Bretherton~1962!#.
Since fibers in regiondq are currently in regiondp, the ODF becomes

c~p! 5 c0~q!
dAq

dAp
5 c0~q!

~EklqlEkmqm!3/2

det~Eij !
5 c0~q!~LklplLkmpm!23/2, ~36!

whereL i j 5 Ei j
21.

From this, the second-order orientation tensor can be determined by@Altan and Rao
~1995!#

aij 5 R
S
pipjc~p!dAp 5 R

S

EikqkEjkql

EmnqnEmoqo
c0~q!dAq . ~37!

B. Numerical solution by the finite-element method

When CI Þ 0, since an analytic solution is not available, the finite-element method
was applied to solve the ODF numerically. Rearranging Eq.~10! with the use of Eq.~9!
yields a differential equation of the ODF in the form of

Dc

Dt
5 2

]

]pi
Scṗi

h
2Dr

]c

]pi
D, ~38!

where

ṗi
h

5 21
2vij pj1

1
2l~ġij pj2ġklpkplpi!. ~39!

Multiplying both sides of Eq.~38! by the arbitrary functionc̄ and integrating overS, with
special consideration of the gradient operator, yields

R
S
c̄

Dc

Dt
dA 5 R

S

]c̄

]pi
Scṗi

h
2Dr

]c

]pi
DdA. ~40!
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Discretizing Eq.~40! with triangular elements, whose shape functions areNa(p) (a
5 1,2,3), yields

mab

Dcb

Dt
5 kabcb~a,b 5 1,2,3!, ~41!

where

mab 5 R
S
NaNbdA, ~42!

kab 5 R
S

]Na

]pi
SNbṗi

h
2Dr

]Nb

]pi
DdA. ~43!

Representing the three nodal points of a triangular element ‘‘e’’ by p1, p2, andp3, the
shape functions can be defined as

N1~p! 5 ~p233p31!3p23
•~p2p2!/4A2 [ c1•p1d1 ,

N2~p! 5 ~p313p12!3p31
•~p2p3!/4A2 [ c2•p1d2 , ~44!

N3~p! 5 ~p123p23!3p12
•~p2p1!/4A2 [ c3•p1d3 ,

where,pab 5 pb2pa andA is the area of the triangular regionVe . From this,mab and
kab can be derived as

mab 5 R
Ve

~ca•p1da!~cb•p1db!dA, ~45!

kab 5 R
Ve

~ca•ṗh!~cb•p1db!dA2Dr R
Ve

$~ca•cb!2~ca•p!~cb•p!%dA. ~46!

For numerical calculations, the surface of a unit sphere was discretized by 2700 triangular
elements and the backward time derivative was employed with a time step of approxi-
matelyDt 5 0.1/ġ to ensure stability.

V. RESULTS AND DISCUSSION

In order to determine appropriate FAC values for the modified hybrid model II and to
examine the validity of the proposed closure approximations, orientation calculations
were performed for homogeneous flows. Calculations were also performed for nonhomo-
geneous flow fields to test the stability and generality of the current approximations.
Since Folgar and Tucker’s modelDr 5 CI ġ prevents relaxation of fiber orientation,
calculation of the fiber orientation in start-up flow is considered in the present investiga-
tion. In all calculations, slender fibers (l 5 1) with initial random orientations were
assumed.

A. Determination of FAC

Since the right side of governing Eq.~11! is a first degree homogeneous function of
the velocity gradient, the time and velocity gradient can, respectively, be nondimension-
alized as
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t* 5 Gt and S]vj

]xi
D* 5

1

G

]vj

]xi
, ~47!

where,G represents an arbitrary constant of dimensiont21.
In this investigation, calculations were made using these nondimensionalized variables

and five representative flow fields were selected for the verification study as shown in
Table II @Cintra and Tucker~1995!#, wherev i /G is shown. Calculations of the orienta-
tion tensor were performed forCI values ranging from 0 to 0.1 with the closure approxi-
mations as summarized in Table III.

For simple shear flow~SS!, model I and ORS were applied directly to the exact
solution ofai j to estimatebi jkl and compared with the exact solutions ofbi jkl as shown
in Fig. 4. The comparison in Fig. 4~a! whenCI 5 0 shows that the exact solution lies
between the results of model I and ORS for the entire region. WhenCI 5 0.1, the
comparison in Fig. 3~b! shows the same trend, but the exact solution can be seen to be
closer to the results of model I. Similar trends could be observed for other flow fields and
other CI values. Such results show that the assumed parametric forms ofCmodel I and
CORS act as the lower and upper bounds, respectively, and therefore, it was construed
that a combination of model I and ORS, if properly interpolated, would provide improved
results.

To find the appropriate FAC for model II, numerical simulations were performed for
all five flow fields with an assumed FAC value. The root-mean-square errors of all the
nonzero components ofbi jkl were calculated for each flow field and the FAC was chosen
to minimize the sum of those five or four error values depending on the amount of
deviation. In Table IV, the determined FAC values are shown for selectedCI values.
From these values, the FAC was approximated as a function ofCI as

FAC 5 0.5220.9655•CI
1/2 ~0 , CI , 0.1!. ~48!

TABLE II. Five representative flow fields for the verification study@Cin-
tra and Tucker~1995!#.

Flow field Velocity field (v1 /G,v2 /G,v3 /G)

SS ~simple shear! (x2,0,0)
SSA ~shearing/stretching A! (2x1110x2 ,2x2,2x3)
SSB ~shearing/stretching B! (2x11x2 ,2x2,2x3)
UE ~uniaxial elongation! (2x1 ,2x2 ,2x3)
BE ~biaxial elongation! (x1 ,x2 ,22x3)

TABLE III. Summary of closure approximations used in the current in-
vestigation.

Closure approximation Source

HYB ~hybrid! Advani and Tucker~1987!, Eq. ~12!
ORS ~orthotropic smooth! Cintra and Tucker~1995!, Eq. ~28!
ORF ~orthotropic fitted! Cintra and Tucker~1995!
Model I ~modified hybrid model I! Eq. ~27!
Model II ~modified hybrid model II! Eq. ~33!
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B. Homogeneous flow fields

Comparisons of the calculation results using the five closure approximations as listed
in Table II and the exact values are shown in Figs. 5~a! and 5~b! for the case of simple
shear flow withCI 5 0 andCI 5 0.01, respectively. It can be seen that model II out-
performs HYB, ORS, and model I as expected and nearly reproduces the exact values. It
can be seen in Fig. 5~b! that model II and ORF make better predictions than the other

FIG. 4. Comparisons ofbi jkl between the exact solution and approximate values for a simple shear flow with
~a! CI 5 0 and~b! CI 5 0.1.

TABLE IV. FAC values determined for selectedCI values.

CI 0.0 0.001 0.01 0.1

FAC 0.52 0.49 0.42 0.22
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closure approximations both transiently and steadily, while in Fig. 5~a! ORF can be seen
to deviate from the exact value as time increases, indicating the beginning of oscillation.
Also, model I can be seen to give better results than the HYB whenCI 5 0, but oscil-
lation occurs whenCI 5 0.01.

For the simple shear flow, calculation results with differentCI values, namely, 0.001
and 0.1 are shown in Figs. 6~a! and 6~b!, respectively. Only the ORF and model II are
compared to the exact solution in Figs. 6~a! and 6~b!. The results show that whenCI
5 0.001, both the ORF and model II accurately follow the exact solution initially, but as

time increases, model II has a maximum error of about 0.1 while the ORF starts to
oscillate with a magnitude 0.15. Further calculations aftert* 5 40 revealed that model II
also oscillates for some time but with a smaller magnitude that eventually becomes
steady. WhenCI 5 0.1, Fig. 6~b! shows that both the ORF and model II accurately
predict the exact solution.

FIG. 5. Comparisons ofai j between the exact solution and simulations based on various closure approxima-
tions for simple shear flow with~a! CI 5 0 and~b! CI 5 0.01.
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Poor performance of the ORF at lowCI values is due to the fact that the ORF was
obtained from the exact solution whenCI 5 0.01. Thus, the fiber orientation prediction
becomes inaccurate for other values ofCI . If the ORF was obtained by fitting the ODF
at variousCI values, then this specific error might decrease, but the overall error for the
general cases would most probably grow.

For a quantitative measure of the errors, the concept of average and steady errors was
employed@Cintra and Tucker~1995!#. In this method, the scalar magnitude of errors at a
given time is defined as follows:

e 5 A~ei j ei j !/2, where ei j 5 ai j
exact

2ai j
closure. ~49!

The average and steady errors using the various closure approximations for the five
homogeneous flow fields are summarized in Table V. ForCI 5 0.0 and 0.001, the ORF
shows oscillation behavior making the error values meaningless. Model II is very accu-

FIG. 6. Comparisons ofai j between the exact solution and simulations based on various closure approxima-
tions for simple shear flow with~a! CI 5 0.001 and~b! CI 5 0.1.
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rate compared to the hybrid closure approximation for all cases and is equally or more
accurate than the ORF depending on theCI value. The only exception is the case of SSA
at CI 5 0.01, where model II is less accurate than the ORF.

The results show that the HYB has some transient and steady-state errors, but it is a
very stable approximation that never behaves nonphysically. Also, calculation by the
HYB quickly reaches the steady state, which corresponds to a more aligned orientation
state. The ORF can be seen to be more accurate than the HYB forCI 5 0.01, but for
lower values ofCI the errors increase drastically. Thus, overall, it can be concluded that
model II offers accurate solutions for a wide range ofCI values.

C. Nonhomogeneous flow fields

The first verification of fiber orientation calculations using the current closure approxi-
mations in nonhomogeneous flow fields was performed in the combined flow field rep-
resented by the following nondimensionalized velocity gradients@Cintra and Tucker
~1995!#:

F]vi

]xj
G* 5 F0

0

0

1

0

0

0

0

0
G for 0 < t* , 10, ~50!

F]vi

]xj
G* 5

1

20F 21

0

0

0

21

0

0

20

2
G for 10 < t* , 20, ~51!

TABLE V. Average ~avg! and steady~std! errors between orientation tensor computations using various
closure approximations and exact solutions for homogeneous flow fields.

CI Flow

HYB ORF Model II

avg std avg std avg std

SS 0.050 0.023 0.134 0.070 0.005 0.005
SSA 0.094 0.046 0.033 0.027 0.015 0.002

0.0 SSB 0.058 0.021 0.008 0.009 0.007 0.004
UE 0.053 0.015 0.009 0.015 0.008 0.002
BE 0.011 0.001 0.002 0.001 0.004 0.001

SS 0.103 0.115 0.055 0.022 0.039 0.053
SSA 0.068 0.006 0.034 0.003 0.014 0.010

0.001 SSB 0.034 0.003 0.008 0.004 0.004 0.002
UE 0.031 0.003 0.009 0.005 0.004 0.002
BE 0.010 0.001 0.003 0.002 0003 0.001

SS 0.132 0.159 0.024 0.026 0.029 0.029
SSA 0.057 0.034 0.013 0.015 0.030 0.037

0.01 SSB 0.035 0.003 0.004 0.002 0.006 0.010
UE 0.032 0.003 0.004 0.004 0.005 0.008
BE 0.013 0.006 0.003 0.004 0.003 0.003

SS 0.050 0.060 0.007 0.009 0.006 0.008
SSA 0.023 0.026 0.005 0.006 0.003 0.004

0.1 SSB 0.073 0.077 0.024 0.036 0.004 0.002
UE 0.070 0.072 0.025 0.038 0.004 0.002
BE 0.022 0.025 0.004 0.006 0.002 0.003

583HYBRID CLOSURE FOR FIBER ORIENTATION



F]vi

]xj
G* 5

1

2F2

0

0

0

21

0

0

2

21
G for 20 < t* < 30. ~52!

The second test was performed for a center-gated disk flow in which the velocity field
and velocity gradient are, respectively, given as follows:

vr 5
3Q

8p•rb S12
z2

b2D 5 S 3Q

8p•b2D 1

r*
@12~z* !2#, vu 5 vz 5 0, ~53!

F]vi

]xj
G 5 S 3Q

8p•b3D 1

~r* !2F2@12~z* !2#

0

0

0

@12~z* !2#

0

22r*z*
0

0
G, ~54!

where,Q and b are the volume flow rate and half-gap thickness, respectively, withr*
5 r /b and z* 5 z/b. For simplification, the velocity field and time were nondimen-

sionalized with the factor 3Q/8pb3 as the constantG in Eq. ~47!.
The detailed procedure for solving the orientation tensor in the center-gated disk flow

is available in the literature@Altan and Rao~1995!#. In this study, the orientation tensors
were calculated along ther direction atz* 5 0.2, 0.5, and 0.7.

The errors induced by the HYB, ORF, and model II in combined and center-gated disk
flows are summarized in Table VI. As can be seen in Table VI, the results are similar to
the case of homogeneous flows. As before, model II is more accurate than the HYB. The
ORF oscillates whenCI 5 0 or 0.001, and model II gives nearly the same results as the
ORF whenCI 5 0 or 0.01. The maximum error based on model II in the case of the
combined flow occurred whenCI 5 0.01, while for the center-gated disk flow it oc-

TABLE VI. Average~avg! and maximum~max! errors between orientation tensor computations using various
closure approximations and exact solutions for nonhomogeneous flow fields.

CI Flow

HYB ORF Model II

avg max avg max avg max

0.0

Combined 0.078 0.206 0.026 0.066 0.005 0.015
Disk (z* 5 0.2) 0.110 0.116 0.016 0.056 0.008 0.013
Disk (z* 5 0.5) 0.061 0.063 0.217 0.348 0.015 0.017
Disk (z* 5 0.7) 0.039 0.040 0.385 0.513 0.014 0.015

0.001

Combined 0.086 0.172 0.030 0.067 0.024 0.052
Disk (z* 5 0.2) 0.097 0.118 0.042 0.141 0.005 0.009
Disk (z* 5 0.5) 0.075 0.145 0.219 0.364 0.045 0.078
Disk (z* 5 0.7) 0.151 0.219 0.245 0.332 0.063 0.093

0.01

Combined 0.086 0.154 0.017 0.045 0.025 0.063
Disk (z* 5 0.2) 0.064 0.112 0.028 0.050 0.009 0.019
Disk (z* 5 0.5) 0.103 0.179 0.013 0.021 0.029 0.034
Disk (z* 5 0.7) 0.143 0.177 0.018 0.026 0.029 0.040

0.1

Combined 0.067 0.096 0.014 0.028 0.008 0.021
Disk (z* 5 0.2) 0.039 0.064 0.009 0.011 0.006 0.007
Disk (z* 5 0.5) 0.046 0.056 0.009 0.010 0.007 0.008
Disk (z* 5 0.7) 0.052 0.058 0.010 0.010 0.008 0.009
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curred atz* 5 0.7 with CI 5 0. These two cases are shown in Fig. 7, and as can be
seen, although the error values are maximum, model II tracks the variation reasonably
well for both cases.

D. Contribution to extra stress

In the above verification tests, the flow fields were assumed to be independent of the
fiber orientation. However, in reality extra stress is induced by the fiber orientation.
Therefore, it must be checked whether the extra stress can be predicted accurately using
the proposed closure approximations.

Considering the effects of fiber orientation, the stress equation can be written in the
following form @Tucker ~1991!#

tij 5 hsġij1hsc$Aġklaijkl1B~ġikakj1aikġkj!1Cġij12FaijDr%, ~55!

FIG. 7. Comparisons ofai j between the exact solution and simulations based on the HYB; ORF, and model II
for ~a! combined flow withCI 5 0.01 and~b! center-gated disk flow atz* 5 0.7 with CI 5 0.001.
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wherehs is the solvent viscosity,c is the particle volume fraction, andA, B, C, andF are
material constants. Since the fitting procedure used to obtain model II involved minimiz-
ing the errors ofai jkl and model II was found to accurately predictai j , it is construed
that the extra stress can be accurately predicted by using model II in solving the orien-
tation tensor.

For example, in the coupled lubrication region, Eq.~55! can be simplified as

t2a 5 hsġ2a12hsNp$ġ12a2a121ġ32a2a32% ~a 5 1,3!, ~56!

whereNp is the material constant and the subscript 2 denotes the thickness direction. If
simple shear flow is assumed in this case, the ratio of the extra stress becomes 2Npa2112.
The comparisons ofa2112between the exact solution and simulations based on the HYB,
ORF, and model II for SS flow withCI 5 0.001 and 0.01 are shown in Figs. 8~a! and

FIG. 8. Comparisons ofa2112, which denotes the contribution of extra stress induced by fiber orientation in
total stress, between the exact solution and simulations based on various closure approximations for simple
shear flow with~a! CI 5 0.001 and~b! CI 5 0.1.
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8~b!, respectively. The results show that model II is the most accurate and that it can be
sufficiently used to predict the extra stress term.

E. Further requirements for the closure approximation

In the viewpoint of application, rather than accuracy stability is important because of
the complex flow history. Recently, Edwards and O¨ ttinger ~1997! derived the necessary
requirements for a closure approximation to behave physically from the time structure
invariance criteria as follows:

aijkl [ amn

]aijkl

]amn
, ~57!

anjlmdki2aljkndim1ainmldjk2ailkndmj1aijmndlk2aijkldnm1alo

]aijkn

]amo
2ano

]aijml

]ako

1aol

]aijkn

]aom
2aon

]aijml

]aok
12apokn

]aijml

]apo
22apoml

]aijkn

]apo
5 0. ~58!

The natural closure approximation approximately satisfies Eq.~58! since it was con-
structed from analytic solutions whenCI 5 0. Thus, it does not behave nonphysically as
Cintra and Tucker~1995! have observed. However, the steady-state errors need to be
reduced whenCI . 0. Both the ORF and model II do not satisfy these constraints, and
so, nonphysical behavior may occur for these cases. However, the nonphysical behavior
should be negligible for model II since it was fitted and verified using variousCI values.
The fitting approach is a very efficient method to obtain quantitatively accurate closure
approximations, but it is not easy to satisfy Eq.~58! simultaneously. Therefore, in order
to obtain more accurate closure approximations, it may be viable to modify the existing
stable closure approximations by fitting them to the DFCs.

The orthotropic property, inherent in the ORF and model II, is another limitation on
the accuracy of the closure approximations. In general, the nonzero and nonorthotropic
components of the fourth-order orientation tensor exist, and therefore, must be treated to
further improve closure approximations.

Another critical point that should be mentioned is that the current orientation formu-
lation relies on the Folgar and Tucker fiber-interaction model. If other fiber-interaction
models are used, closure approximations proposed in this investigation might no longer
guarantee its performance.

VI. CONCLUSIONS

In this investigation the modified hybrid closure approximation was constructed using
the parametric form of the orientation distribution function which can accurately describe
random-in-space, random-in-plane, and uniaxial distributions. Two parametric forms,
model I and the ORS, were employed. Model I was assumed to be a simple distribution
and the ORS is the linear interpolation of the three extremity cases. These two parametric
forms were linearly interpolated to yield model II. The interpolating factor was obtained
as a function of the interaction coefficientCI by fitting the distribution function calcula-
tions.

Numerical tests were conducted in homogeneous flow fields as well as nonhomoge-
neous flow fields. It was found that model II gives good performance for a wide range of
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CI values without showing nonphysical behavior. Also, model II was used to accurately
calculate the extra stress term for the given cases.

Although the currently developed modified hybrid closure approximation does not
strictly satisfy the constraint equations~58!, the present numerical simulations demon-
strate reasonable physical behavior for the simulation flow fields considered. However,
further investigation of the stability and accuracy of the current closure approximation is
still helpful.
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