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Photonic band-gap structures of core-shell simple cubic crystals
from holographic lithography
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We report the investigation of photonic band-gap properties of a core-shell simple cubic structure
�air core with a dielectric shell� using a two-parameter level-set approach. The proposed structure
can be obtained by partially backfilling high refractive index materials into a polymeric template
fabricated by multibeam interference lithography. We find that the shell formation in the inverted
simple cubic structure increases the complete photonic band-gap width by 10%–20% in comparison
to that of a completely filled structure. The band gap between the fifth and sixth bands begins to
appear at a refractive index contrast of 2.7. This study suggests the importance to investigate the
core-shell formation in three-dimensional photonic crystals through backfilling, which may offer an
additional control over their photonic band-gap properties. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2187438�
A three-dimensional �3D� photonic crystal �PC� that pos-
sesses a complete photonic band gap �PBG� is highly desir-
able to confine, manipulate, and guide photons for a broad
range of applications, including low-threshold lasers,1 light-
emitting devices,2 optical biosensors,3 and microphotonic
devices.4 To fabricate 3D photonic crystals, many methods
have been used, such as self-assembly of colloidal particles
and block copolymers,5,6 layer-by-layer photolithography,7

direct-write assembly,8 and two-photon lithography.9 Among
them, interference �or holographic� lithography10 is a very
promising candidate, which enables rapid production of
defect-free 3D crystals over a large area with considerable
control over both lattice size and symmetry.

In holographic lithography, the focused laser beams in-
terfere to generate periodic patterns in photosensitive poly-
mers, which, however, typically have low refractive indices.
For example, the refractive index of SU-8 photoresist is
�1.6. Therefore, backfilling with a higher index material is
needed, followed by removal of the polymer template to fab-
ricate PC with a complete PBG. Chemical vapor deposition
and liquid phase deposition were used to infiltrate high index
materials, such as titania �n=2.5–3.0�,11 silicon �n=3.5�,12

and germanium �n=4.0�13 into sacrificial polymeric tem-
plates. It should be noted that the deposition reaction usually
occurs between the liquid or vapor precursors and the corre-
sponding functional groups on the template surface. A shell
structure is formed at first, which grows continuously normal
to the initial surface to fill the interstitial voids �e.g., Figs.
1�b� and 1�c��. Previously it was found that in a partially
filled inverted face-centered cubic opal, the shell formation
could enhance the PBG, and the bandwidth of a directional L
stopgap could be tuned with the core-to-shell ratio.14,15

In this letter, we use a two-parameter level-set approach
to investigate the PBG properties of core-shell formation in a
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simple cubic P �Pm3m� structure. Of the various PC struc-
tures, diamond D and gyroid G have received much attention
due to their large gap width and robustness.16–19 However, it
is not straightforward to produce these structures by multi-
beam interference lithography, because each term in the
level-set equation is dependent on all 3D �x, y, and z� coor-
dinates. The accessible lattice size is limited by the choice of
beam parameters and the wavelength of the laser. In com-
parison, the simple cubic P �Pm3m� structure can be size
scalable via triple exposures of a two-beam interference pat-
tern, where the angle between the beams of the individual
gratings can be varied.20 This primitive structure shows a
relatively wide and full PBG with a maximum gap to midgap
ratio of 13% between the fifth and sixth bands for a dielectric
contrast of 13:1 and a volume fraction of 0.26.21 Moreover,
the pseudogaps along the �100� direction �X gap� in the
simple cubic structure are very wide and appeared over a
large range of filling ratios.22 The position of the pseudogap
between the second and third bands is more sensitive to the
lattice constant than that of the L gap in the fcc structure,
which makes the simple cubic structure attractive for tunable
photonic crystals and optical sensors. In this letter we inves-
tigate the photonic band-gap properties of the core-shell P
structure.

FIG. 1. �Color online� Templating method to produce PC of high refractive
index materials. �a� Template, �b� air core/dielectric shell, �c� air core, and

�d� completely filled structure.
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The formation of the P structure was analyzed via the
level-set approach.23 In this approach, the surface of a porous
dielectric structure is represented by the solution to scalar-
valued functions F�x ,y ,z� of three independent variables,
and the volume fraction can be controlled by varying the
parameter, t. Therefore, the structure is defined as

F�x,y,z� � t for dielectric and F�x,y,z� � t for air.

�1�

Using a similar approach, we propose two level-set sur-
faces of interference patterns to simulate triply periodic
structures with a shell-like morphology given by

t1 � F�x,y,z� � t2 for dielectric,

and

t1 � F�x,y,z� and t2 � F�x,y,z� for air. �2�

This structure is divided into the inner-core �air� and the
outer-shell �dielectric� surfaces defined by t2 and t1, respec-
tively. The resulting two level surfaces share the same nor-
mal vectors such that they are in parallel to each other. Be-
cause the shell morphology can be formed from either liquid
phase deposition or chemical vapor deposition �CVD� pro-
cess, the use of two t parameters closely approximates the
deposited surfaces. For example, Fig. 1 shows a schematic of
a simple cubic structure formed from interference lithogra-
phy, and the evolution of its replicas from air-core-shell to
completely filled structures. Because the sum of a level sur-
face and the surface translated by half a lattice period gives a
constant maximum value in the level-set equation, i.e.,
F�−x ,−y ,−z�=−F�x ,y ,z�, the volume fraction is symmetri-
cally related to the exposure intensity. Therefore, the desired
volume fraction of the primitive photonic crystals with high
refractive index �Fig. 1�c�� can be obtained from templates
�Fig. 1�a�� with controlled exposure intensity.

In the band-gap calculation, we use the level-set surface
of F�x ,y ,z�=sin�x�+sin�y�+sin�z� for Eq. �2� and two pa-
rameters, t1 and t2, for the outer and inner surfaces of dielec-
tric materials �n=nd�, respectively.20 The band structures of
the PC are calculated using the MIT photonic bands �MPB�
software package.24 We first calculate the complete PBG
with only a single parameter t1 �i.e., completely filled struc-
ture� ranging from 0.6 to 0.9. A band-gap appears between
the fifth and sixth bands. The maximum PBG is found at t1
=0.83–0.85 with nd=3.50, and the corresponding volume
fraction is 0.25–0.26, which agrees well with the results from
literature.20 Then, we optimize t2 to maximize the complete
band-gap width while keeping the t1 fixed �i.e., core-shell
structure�. For t1 ranging from 0.65 to 0.90, the maximum
PBG is obtained at t2=2.5–2.7, which is smaller than t2
=3.0 required for a completely filled simple cubic structure
�see Fig. 2�a��. Therefore, the formation of shell in a simple
cubic structure increases the complete PBG by 10%–20%
within the range of aforementioned t1. By analogy, it was
reported that the band gap of two-dimensional�2D� square
lattice can be increased by the introduction of an additional
square lattice of smaller unit atoms, which effectively re-
duces the crystal symmetry.25 Figure 2�b� shows the calcu-
lated photonic band structure of a core-shell P structure with
the maximum PBG. It is found that the introduction of an air
core lifts the sixth band especially at wave vector M �the

bottom of the sixth band�, resulting in the increase of PBG.
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The inset shows the optimized structure. Compared to the
volume fraction of 0.26 for completely filled structures, the
optimized core-shell P structure has a slightly lower volume
fraction of 0.25. However, such photonic band-gap enhance-
ment is not observed in core-shell diamond and gyroid struc-
tures.

Figure 3 shows the gap/midgap ratios of the P structure
shown in Fig. 2�b� as a function of the refractive index. The
band-gap is calculated from the P surface with the largest
PBG, that is t1=0.84 for complete filling, and t1=0.84 and
t2=2.70 for a core-shell structure. Previously, it was reported
that the minimum refractive index required to open a com-
plete PBG is approximately 2.0 for D, 2.2 for G, and 2.8 for
P structures.21,22 In the core-shell P structure, the minimum
index contrast required to open a complete PBG is found to
be less than 2.7. Thus, in practice, a simple cubic photonic
crystal with a complete PBG at optical wavelengths can be
achieved by the deposition of anatase titania into photoresist
templates.11

In conclusion, we investigated the photonic band-gap
properties of a core-shell simple cubic structure using a two-

FIG. 2. �Color online� �a� Complete photonic band gap of the simple cubic
lattice with core-shell and completely filled structures, respectively. The t2 is
optimized with respect to t1 to maximize the band-gap width. �b� Photonic
band structure of the simple cubic lattice with t1=0.85 and t2=2.7 or 25%
filled, and nd=3.50, showing complete PBG between the fifth and sixth
bands.
parameter level-set approach. The 3D structure is defined by
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the inner-core �air� and the outer-shell �dielectric� surfaces.
The proposed structure can be fabricated by backfilling a
sacrificial polymer template created by multibeam interfer-
ence lithography. The photonic band-gap width is found in-
creased in the core-shell primitive structure in comparison to
that of the completely filled one. A complete band gap be-
tween the fifth and sixth bands begins to appear at a refrac-
tive index contrast of 2.7. This suggests that the core-shell
formation may offer additional controls over photonic prop-
erties. The two-parameter level-set approach presented in
this letter may provide a useful guidance for the fabrication
of 3D photonic structures through backfilling.
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FIG. 3. Gap/midgap ratio as a function of refractive index contrast in the
simple cubic structure shown in Fig. 2�b�.
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