
254 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

A Cost-Effective VLSI Architecture for Anisotropic
Texture Filtering in Limited Memory Bandwidth

Hyun-Chul Shin, Jin-Aeon Lee, and Lee-Sup Kim, Senior Member, IEEE

Abstract—Texture mapping is one of the techniques that ex-
press realism in three-dimensional (3-D) graphics. To produce
high-quality images, various anisotropic filtering methods have
been proposed for texture mapping. These methods require more
texels than isotropic (trilinear) filtering method. In spite of in-
creases to texture memory bandwidth, however, texture memory
bandwidth is still a bottleneck of texture-filtering hardware. Con-
sequently, an exact filtering method is required for good-quality
images in a limited texture memory bandwidth. In this paper,
we propose anisotropic texture filtering based on edge functions.
Our method proposes an exact footprint-shape approximation
with edge functions for generating weights. For real-time filtering,
the weight plays a key role in effective filtering of the restricted
texels loaded from memory. The normalized value of the edge
function gives the distance relative to the contribution of texels
to a final intensity. Calculating a Gaussian filter using this nor-
malized value, generates a good weight. The quality of rendered
images is superior to other anisotropic filtering methods with the
same restricted number of texels. For images of the same quality,
our method requires less than half the texels of other methods.
Consequently, the improvement in performance is more than
twice that of other methods. With low hardware overheads, our
method can be implemented at a reasonable cost. In practice, the
algorithm is demonstrated through VLSI implementation. The
hardware, which is described by verilog and synthesized with a
0.35- m 3.3-V standard cell library, is operated at 100 MHz and
it generates 100 M texture-filtered RGB pixel-color values per
second.

Index Terms—Anti-aliasing, computer graphics, costs, filtering,
performance.

I. INTRODUCTION

TEXTURE mapping is a technique that effectively improves
the realism of computer-generated scenes in three-dimen-

sional (3-D) graphics. Trilinear filtering has been popular be-
cause of its simplicity and ease of hardware implementation.
However, since this method approximates a quadrilateral foot-
print to a square footprint with one texel size, it is not suitable
for filtering a long and narrow quadrilateral footprint to which
a pixel is projected in texture space. The quality of the rendered
image, therefore, deteriorates as the viewing angle changes from
0 to 90 .

As the desire for high-quality images increases, anisotropic
texture filtering, which adjusts the shape and size of the

Manuscript received May 27, 2003; revised August 12, 2005.
H.-C. Shin is with the SOC CT Group, LG Electronics Company, Seoul 137-

724, Korea (e-mail: hcshinjc@lge.com; hcshinjc@gmail.com).
J.-A. Lee is with Samsung Electronics Company, Suwon 446–711, Korea

(e-mail: jalee@samsung.com).
L.-S. Kim is with the Department of Electrical Engineering and Computer

Science, Korea Advanced Institute of Science and Technology (KAIST), Taejon
305–701, Korea (e-mail: lskim@ee.kaist.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2006.871761

footprint, has superceded trilinear filtering. For example, the
NVIDIA GeForce 4 supports anisotropic texture filtering
with anisotropy up to 8:1. Recently proposed methods, such
as footprint assembly, fast elliptical lines, and fast footprint
MIP-mapping generate good-quality images but still require
many texels [7]. These methods show poor-quality images
when the texels loaded from memory for real-time filtering are
restricted. The restriction is due to the limitation of memory
bandwidth and so on. For instance, the recent NVIDIA graphics
card supplies up to eight texels per clock cycle at each texture
pipeline through a cache. However, 64 texels are required if the
anisotropy is up to 8:1.

In this paper, to exactly filter the limited texels loaded
from memory, we propose edge-function-based anisotropic
texture filtering. The edge function closely approximates a
footprint shape and plays an important role in calculating
good weights. The rendered images show the best quality of
various anisotropic filtering methods using the same restricted
number of texels. To produce images with the same quality,
our method requires less than half the number of texels used in
other methods. This economy of texels considerably improves
performance.

In the next section, we discuss, in detail, previous works on
anisotropic texture filtering. In Section III, we describe the al-
gorithm of edge-function-based anisotropic texture filtering. In
Section IV, we compare the image quality and the performance
of proposed anisotropic filtering method with the image quality
and performance of other filtering methods. In Section V, we
describe the hardware architecture of the proposed filtering
method and compare the cost of the hardware with that of other
methods. Finally, we discuss the VLSI implementation of the
proposed filtering method.

II. PREVIOUS WORKS

In this section, we first discuss elliptical weighted average fil-
tering, followed by the footprint assembly and Feline methods.
We then discuss fast footprint MIP-mapping in detail.

A. Elliptical Weighted Average (EWA)

As shown in Fig. 1, the elliptical weighted average (EWA)
filtering, proposed by Heckbert, approximates a footprint as an
ellipse by approximating a pixel with a circle [3]–[5], [12]. The
ellipse approximates the projection of a circular Gaussian pixel
filter from screen space to texture space. The normalized ellipse
function denoted as represents the distance squared
from the center of the pixel when the texel position is mapped
back to screen space. This value indicates the contribution of the
texel to a final intensity and is used to index the Gaussian filter
weight ROM. Texels whose is less than one were sampled,

1063-8210/$20.00 © 2006 IEEE

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 255

Fig. 1. Elliptical weighted average.

Fig. 2. Footprint assembly.

Gaussian weighted, and accumulated. The result was divided by
the sum of the weights.

Although this method requires intensive computation power
and texel values, it generates high-quality images, which pro-
vide a benchmark for various other filtering techniques.

B. Final Stage Footprint Assembly: TEXRAM

The footprint assembly (TEXRAM) method [10] approxi-
mates a footprint with a parallelogram formed by the two vec-
tors, and , as shown in Fig. 2.
In this method rough samples are taken of the area inside the
parallelogram by assembling trilinear filter probes along the
major axis, which is the longer of the two vectors. The probe
filter width is determined by the minor axis, which is approxi-
mated by choosing the shortest of the two side vectors and the
diagonals and

. As shown in (1), the number of probes
is given as the ratio of the major axis length to the minor axis

(1)

This value is rounded to the nearest power of two and
each probe is equally weighted. Using this method, high-quality
images are generated even when the projection angle is nearly
90 . Although the hardware size is also amenable to implemen-
tation in VLSI, the intensive computation requires many texels
[1]. In particular, for a highly distorted projection, this method
requires more probes and the rendering performance severely
deteriorates. When the number of loaded texels is limited, the

Fig. 3. Error of footprint shape.

method inevitably generates poor-quality images. This phenom-
enon is due to poor filtering caused by the adoption of trilinear
filtering and an equal weighting of each probe.

C. Fast Elliptical Lines: Feline

The filtering of the fast elliptical lines (Feline) method is
closer to the EWA filtering method because it compensates for
the TEXRAM method [8]. The length of the major axis in the
TEXRAM method is usually much shorter than the major diam-
eter of an ellipse, which is the true sampling line length. Thus,
the Feline method computes a more appropriate length for the
major axis and it applies to the number of probes

(2)

The Feline method replaces an equal weight of the TEXRAM
method with a Gaussian weight [9]. However, although an
image rendered by the Feline method exhibits far fewer aliasing
artifacts than an image rendered by the TEXRAM method, the
computation is more intensive, requiring twice the number of
texels than the TEXRAM method.

D. Fast Footprint MIP-Mapping: FFPMM

The fast footprint MIP-mapping (FFPMM) method filters
texels in a rectangle that covers a quadrilateral footprint with
weights [6]. This method considers that the loaded texels are
inevitably restricted due to constraints such as memory band-
width. The number of texels that can be loaded from memory
for real-time filtering is denoted as . To load more texels that
contribute to filtering at the given limit , the FFPMM method
determines the level of detail (LOD) by using the aspect ratio
of a footprint. To filter the loaded texels efficiently, the weight
of the area coverage is used. Therefore, the performance of the
system and the quality of the images do not deteriorate severely
if texels are restricted. The quality of the images compares with
the images produced by the TEXRAM.

Nonetheless, weight generation has shortcomings. For real-
time filtering, the weight is precalculated with the four corner
points of the footprint. These points are transformed to integer
positions before the precalculation and the change in the posi-
tion of the four corner points cause an error in the footprint shape
and weight, as shown in Fig. 3. Since the weight is multiplied
by the texel at filtering, the error causes a degradation in the

256 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

quality of the rendered images. In terms of the image quality, an
area coverage filter is inferior to a Gaussian filter. In addition,
the size of the weight table increases rapidly as the limit in-
creases. The number of possible combinations for the positions
of the four points determines the size of the weight table. Since
the number of combinations increases rapidly as the limit in-
creases, it is too large to be implemented as real hardware.

III. EDGE-FUNCTION-BASED ANISOTROPIC TEXTURE

FILTERING

Texture mapping plays a key role in the overall performance
of graphics hardware and the quality of rendered images. In
spite of the texture cache, the limit of the memory bandwidth
is still a bottleneck for texture mapping hardware. To maintain
image quality and performance, texture filtering should be effi-
cient enough to render an image of high quality using only the
restricted texels loaded from memory for real-time filtering.

Efficient texture filtering should load more texels that con-
tribute to filtering at the restricted number of texels. In addition,
efficient filtering should post-filter the loaded texels with the
weights. The post-filtering is done while taking into account the
contribution of the texel to a final intensity, which is relative to
the distance from the center of a pixel at screen space when the
texel is mapped back to screen space [13]. For example, the el-
lipse function of EWA indicates this distance. The post-filtering
plays a more important role in efficient filtering.

In this paper, we propose edge-function-based anisotropic
texture filtering (EFATF). For correct post-filtering, EFATF uses
the edge function representation of a footprint. The edge func-
tion approximates the footprint shape clearly. The normalized
value of an edge function gives the distance from the center of
the pixel at screen space when the texel is mapped back. Ap-
plying this distance to a good filter, such as a Gaussian filter,
generates a good weight. To load more texels that contribute to
filtering, EFATF uses an LOD selection scheme with the aspect
ratio of a footprint. The LOD scheme of FFPMM is efficient.

The edge function approximation of a footprint and the
weight generation from the edge function are now discussed.

A. Footprint Approximation Based on Edge Function

Other filtering methods poorly approximate the footprint. In
the case of the TEXRAM and Feline methods, the number of
probes is limited in order to maintain the perfor-
mance. To meet this limited number, the length of the minor axis
is widened and the footprint is under sampled, that is, poorly
approximated. In the FFPMM method, to prevent the size of
the weight table from increasing dramatically, the four corner
points of the footprint are inevitably restricted to integer posi-
tions, causing the footprint-shape approximation error that in-
duces the degradation of the image quality.

To more accurately approximate the footprint shape that
greatly affects the weight, our algorithm represents the edges
of a footprint with edge functions as shown in Fig. 4.

The edge function is used in the anti-aliasing of polygon ren-
dering that is one of the important algorithms of 3-D graphics
[11]. Since the edge function represents the edge with the direc-
tion, it has a negative value on the left side of the edge and a
positive value on the right side with respect to the direction of

Fig. 4. Footprint representation with edge function.

Fig. 5. Edge function representing the edge that directs from P to P .

Fig. 6. Relation between an area of texel and an edge function.

the edge, as shown in Fig. 5. That is, the sign of an edge func-
tion at an arbitrary point, determines whether the point is inside
or outside the edge. The absolute value of an edge function at a
point, represents the distance from the edge to the point.

The edge function is expressed as follows:

(3)

with .
The expressions of , , , and are as follows:

and

Both and are calculated using the formula of Man-
hattan distance instead of Euclidean distance. Manhattan dis-
tance is more useful in representing the area coverage of the
texel because all edges that have a given distance from the center
of the texel form a square. The texel that is covered by the posi-
tive, or inside plane, defined by the footprint edge, is determined
by the edge function value as shown in Fig. 6. If the edge func-
tion value is less than 0.5, the texel is not covered by the in-
side plane defined by the footprint edge. Finally, the four edge
function approximates the footprint shape clearer, by selecting
the texels whose four edge functions are greater than 0.5, as

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 257

Fig. 7. Relation between the distance and the normalized edge function.

shown in Fig. 4. This edge function also plays a key role in the
generation of filter weights through normalization.

Therefore, in contrast to the TEXRAM, Feline, and FFPMM
methods, our scheme does not cause any degradation of the
image quality due to the weight generation based on the poor
approximation of the footprint shape.

B. Filter Weight Generation

For correct filtering, the relative contribution of each texel to
a final intensity should be considered. The contribution is de-
termined by the distance from the center of the pixel in screen
space where the texel is mapped. However, the distance is not
easily obtained and other methods do not consider the contribu-
tion of the texel. The cross-sectional shape of the filter is also
important [4]. Theoretically, the ideal low-pass filter
should be used, but it is impractical due to its infinite width-of-
impulse response. In practice, a finite-impulse response (FIR)
filter should be used, such as the box, triangle, cubic B-spline,
and Gaussian filter.

In our method, we used a Gaussian filter, which is the best
of the FIR filters. Other filters produce sharper images without
introducing more aliasing artifacts. However, these filters have a
radius of two or three pixels, which increases the work required
to compute a textured pixel by a factor of four or nine. None of
these are as mathematically tractable as the Gaussian filter [8].

A Gaussian filter is expressed as a function of the distance ,
which is from the center of the pixel at screen space to where
the texel is mapped back. The distance is normalized to one.
To take into account the contribution of each texel in calculating
weights, we proposed a scheme in which the distance could be
obtained easily through normalization of an edge function.

In the EWA method, a circular pixel is projected to an ellip-
tical footprint. As shown in Fig. 1, the iso-value contour of the
distance from the pixel center is also projected to a concentric
ellipse in a texture space. Similarly, a square pixel is projected to
a quadrilateral footprint in a texture space. The iso-value con-
tour of the distance from the pixel center is a square. This is
represented as the concentric quadrilateral in a texture space as
shown in Fig. 7.

The concentric quadrilateral iso-value contour appears to be
formed by the same values of four normalized edge functions
that range from zero to one. The normalization is performed by
dividing the edge function by the value of the edge function at
the center of the footprint where the pixel center is projected. As

shown in Fig. 7, the distance is the complement to the normal-
ized edge function. In detail, the distance at an arbitrary point,
is the complement to the smallest of four normalized edge func-
tions. Consequently, the distance is computed by subtracting
the smallest normalized edge function from one. Furthermore,
in the footprint inclusion test of the texel, normalized edge func-
tions are used in place of nonnormalized edge functions. If all
four normalized edge functions of an arbitrary point are posi-
tive, the point is located inside a footprint.

Being similar to the elliptical function of the EWA method,
the edge function of EFATF approximates a footprint shape and
represents the distance from the center of a pixel when a texel
is mapped back to screen space. Therefore, in contrast to the
TEXRAM, Feline, and FFPMM methods, our method calculates
a better filter weight. The computation cost is reduced through
a parallelogram approximation of a footprint, which works well
in most cases [8]. This is discussed in detail in Section V.

IV. RESULTS AND COMPARISONS

A. Image Quality

To compare the image quality of various anisotropic filtering
algorithms, we used the mean square signal-to-noise ratio

, which is as follows:

(4)

with

test image that measures the quality;

reference image used for the measurement.

We used two textures with a resolution of 256 256 texels
such as checkerboard patterns and text fonts. These textures
clearly show the quality degradation of images that are inad-
equately loaded and filtered. The resolution of rendered im-
ages was 640 480 pixels. The reference images were ren-
dered using EWA filtering. The test images were rendered using
TEXRAM, Feline, FFPMM, and EFATF with a parallelogram
approximation of a footprint. The limit , which is the number
of texels fetched, changed from 8 to 64. In TEXRAM and Fe-
line, the maximum number of probes is given by dividing
by eight since the probe filter requires eight texels. In detail, we
used trilinear filtering as the probe filter. The portion of an image
with aliasing artifacts is easily recognized even though the por-
tion is very small. Accordingly, the quality of the portion with
aliasing artifacts has a significant meaning.

Figs. 8–11 show the image quality of each filtering algorithm
with two textures. The image quality of the checkerboard pat-
terns are lower than the quality of the text fonts because the
checkerboard patterns contain higher frequencies.

As shown in Figs. 8–11, the results of the TEXRAM and
Feline methods have a poor quality; that is, a low when

is small. However, as the limit increases, the im-
proves rapidly. The rate of increase for the in the Feline
method is lower than in the TEXRAM method because Feline
requires more probes than TEXRAM. Consequently, at the same

258 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 8. Plane image quality of filtering algorithms for text fonts.

Fig. 9. Teapot image quality of filtering algorithms for text fonts.

Fig. 10. Plane image quality of filtering algorithms for checkerboard patterns.

Fig. 11. Sphere & torus image quality of filtering algorithms for checkerboard
patterns.

limit , the of Feline is lower than that of TEXRAM.
TEXRAM performs well when the loaded texels are sufficiently

Fig. 12. Plane images of anisotropic filtering algorithms for text fonts (M :
16). (a) Whole image of EWA for text fonts. (b) Portion of image of EWA for
text fonts. (c) Portion of image of TEXRAM for text fonts (M : 16). (d) Portion
of image of feline for text fonts (M : 16). (e) Portion of image of FFPMM for
text fonts (M : 16). (f) Portion of image of EFATF for text fonts (M : 16).

available. The difference between EFATF and TEXRAM, di-
minishes as the limit increases.

Compared with the of the TEXRAM method, the
of the FFPMM method is higher at a small but lower at a
large , as shown in Figs. 8–11. The higher quality at a small

is due to an effective LOD selection scheme that considers
the restricted number of loaded texels. The lower quality at a
large is caused by the weight error, which prevents the image
quality from being improved. The difference between EFATF
and FFPMM increases as the limit increases.

EFATF achieves a higher value than any other filtering
algorithm at each limit because the weight generation is
based on a more exact footprint-shape approximation with an
edge function and the relative contribution of each texel is ap-
plied to a good filter through the normalization of an edge func-
tion. The of the EFATF method is higher than that of the
TEXRAM method by about 1–6 dB; it is higher than that of the

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 259

Fig. 13. Teapot images of anisotropic filtering algorithms for text fonts (M :
16). (a) Whole image of EWA for text fonts. (b) Portion of image of EWA for
text fonts. (c) Portion of image of TEXRAM for text fonts (M : 16). (d) Portion
of image of feline for text fonts (M : 16). (e) Portion of image of FFPMM for
text fonts (M : 16). (f) Portion of image of EFATF for text fonts (M : 16).

Feline method by 5–8 dB, and higher than that of the FFPMM
method by 2–7 dB.

Fig. 12(a) and (b) shows the entire plane image with the text
fonts using the EWA method, as well as, a portion of the image.
Fig. 12(c)–(f) shows portions of the images with other algo-
rithms. Fig. 13 shows the teapot images with the text fonts.
Fig. 14 shows the plane images with the checkerboard patterns.
Fig. 15 shows the sphere & torus images with the checkerboard
patterns. The entire images as shown in Figs. 12(a)–15(a), are
shrunk to half their original sizes.

From Figs. 8–11, the relation of between EFATF and
the other filtering algorithms is shown in Table I. In Table I, the
algorithm on the right side of the equation has the highest

Fig. 14. Plane images of anisotropic filtering algorithms for checkerboard pat-
terns (M : 16). (a) Whole image of EWA for checkerboard patterns. (b) Portion
of image of EWA for checkerboard patterns. (c) Portion of image of TEXRAM
for checkerboard patterns (M : 16). (d) Portion of image of feline for checker-
board patterns (M : 16). (e) Portion of image of FFPMM for checkerboard
patterns (M : 16). (f) Portion of image of EFATF for checkerboard patterns
(M : 16).

of three algorithms, TEXRAM, Feline, and FFPMM at the given
limit . For example, for the of EFATF at of 8 in the
plane scene with text fonts, FFPMM at of 16 achieves the
same as EFATF at of 8. TEXRAM and Feline require
the at larger than 16 to achieve the of EFATF at

of 8. If the number of texels required by three algorithms to
achieve the same as EFATF is greater than 64, the relation
is not represented because the current graphics card supports the
anisotropy up to 8:1, that is, 64 texels. If some graphics cards
support the anisotropy up to 16:1, these use bilinear filtering
instead of trilinear filtering as the probe filter.

260 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 15. Sphere & torus images of anisotropic filtering algorithms for checker-
board patterns (M : 16). (a) Whole image of EWA for checkerboard patterns.
(b) Portion of image of EWA for checkerboard patterns. (c) Portion of image
of TEXRAM for checkerboard patterns (M : 16). (d) Portion of image of Fe-
line for checkerboard patterns (M : 16). (e) Portion of image of FFPMM for
checkerboard patterns (M : 16). (f) Portion of image of EFATF for checker-
board patterns (M : 16).

TABLE I
SNR RELATION BETWEEN EFATF AND OTHER FILTERING ALGORITHMS

B. Performance

The anisotropic texture filtering methods are performed at
the specialized texture mapping hardware. The specialized tex-
turing hardware is implemented as pipeline architecture. The

TABLE II
CYCLE TIME OF FILTERING ALGORITHMS WITH TEXT FONTS

TABLE III
CYCLE TIME OF FILTERING ALGORITHMS WITH CHECKERBOARD PATTERNS

current VLSI technology is quite capable of handling the com-
putational overheads of texturing hardware. On the contrary, in
spite of the texture cache, the limit of the memory bandwidth
is still a bottleneck in texturing hardware. In detail, the texture
cache guarantees a fixed supply of texels per clock cycle. How-
ever, since the number of texels supplied by the texture cache
is small, it takes the texture cache several cycles to supply the
number of texels that anisotropic filtering methods require. This
phenomenon being a bottleneck for the texturing hardware de-
termines the time required for anisotropic filtering. For instance,
the recent NVIDIA graphics card supplies up to eight texels per
clock cycle at texture pipeline through a cache. If the anisotropy
is up to 8:1, the 64 texels are required. It takes a cache 8 cycles to
supply 64 texels. Similarly, it takes the texturing hardware eight
cycles to generate a filtered value.

The cycle time required for anisotropic filtering is represented
as the ratio of the number of texels required by the anisotropic
filtering to the number of texels supplied by the texture cache
per clock cycle. This is as follows:

(5)

with

number of texels required by anisotropic filtering;

number of texels supplied by texture cache.

Tables II and III show the cycle time of each filtering algo-
rithm assuming that a cache supplies eight texels per cycle. The
time required for anisotropic filtering is obtained by multiplying
the cycle time by the clock period. The clock period of recent
graphics chips is about 3–4 ns.

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 261

TABLE IV
CYCLE TIME RELATION BETWEEN EFATF AND OTHER FILTERING METHODS

Fig. 16. Relationship between image quality and performance at plane image
with text fonts.

From the relation in Table I and the cycle time in Ta-
bles II and III, the relation of cycle time between EFATF and the
other filtering methods for the same quality of images is gener-
ated and is shown in Table IV. From Table IV, to produce images
of the same quality, the other methods require at least double the
number of cycles of EFATF with text fonts and at least triple the
number of cycles with checkerboard patterns.

The performance of texturing hardware is inversely propor-
tional to the cycle time and is as follows:

(6)

For the same quality of images, the performance gain of
EFATF compared with that of other anisotropic filtering in-
creases by more than 200% for text fonts and 200% 300%
for checkerboard patterns.

In addition, the relationship between image quality and
performance is shown in Figs. 16–19. The image quality is
represented as and the performance is represented as the
number of texture-filtered pixels, assuming that the number of
texture filtered pixels are 100 M pixels per second at a given
limit . The image quality is inversely proportional to the
performance. The performance quality product is represented
as a rectangle. From Figs. 16–19, the performance quality

Fig. 17. Relationship between image quality and performance at teapot image
with text fonts.

Fig. 18. Relationship between image quality and performance at plane image
with checkerboard patterns.

Fig. 19. Relationship between image quality and performance at sphere & torus
image with checkerboard patterns.

product of EFATF is best of all anisotropic filtering algorithms
at each limit .

V. HARDWARE ARCHITECTURE

In this section, we describe the texture mapping hardware. In
addition, the hardware cost is compared with the cost of other
anisotropic filtering algorithms.

262 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 20. Hardware architecture of texture mapping.

A. Hardware Architecture of Texture Mapping

Texture mapping hardware consists of the mapping part and
filtering part, as shown in Fig. 20.

The mapping unit calculates the texture coordinates to which
the screen coordinates correspond, along with the partial deriva-
tives of the texture coordinates. The calculation requires the di-
vision operation. If the values are calculated with errors due to
the lack of precision of the bit width, the rendered image shows
the distortions. Hence, high precision is required. The mapping
unit is common to trilinear and anisotropic filtering algorithms.
Using the texture coordinates and their partial derivatives, the
filtering unit generates the texture memory address and weights
used during the post-filtering. The filtering unit, which com-
prises the generation of the texture address and the setup for the
weights, weight generation, and post-filtering blocks, has dif-
ferent operations whose sequence follows the texture filtering
algorithms.

The bit width of the texture mapping unit is settled by per-
forming precision modeling within a C/C++ simulation envi-
ronment. This process allows fixed-point precision to be applied
to each part of the filtering procedure. From the simulation, the
bit width of the mapping unit is different from the filtering unit.
The bit width of the mapping unit is 32 bits with 18-bit frac-
tional precision. To prevent distortion of the image, high pre-
cision is required to calculate the texture coordinates and their
partial derivatives. The filtering unit requires 24 bits with 13-bit
fractional precision. The integer parts of the texture coordinates
are required to calculate the texture memory address. The mod-
erate precision of the fractional parts of the texture coordinates
and the partial derivatives are sufficient to calculate the weight.
During the simulation, the image quality is hardly degraded
when the bit width of the filtering unit is reduced to 24 bits.
The sub-blocks of the filtering unit are now discussed.

1) Texture Address Generation and Setup for Weights: In the
bock, our filtering method selects the LOD and then generates
the address and sets up the weights in parallel. In relation to the
weight setup, the partial derivatives of a normalized edge func-
tion and its initial value at the center of a footprint are calculated
because the normalized edge function is expressed as the linear
equation of coordinates.

The normalized edge function is expressed as

with at the footprint center,

(7)

Fig. 21. Parallelogram approximation of a footprint.

The value 0.5 is included in (7) because a texel whose edge
function value is more than 0.5 should be included in a foot-
print. By substituting and of (3)

with

The linear equation of a normalized edge function is, there-
fore, expressed as follows:

(8)

with

and

The values of (8) at texels are given by interpolating the
initial value of with the coefficients and

. The initial value is calculated at the nearest integer
coordinates of the center of the footprint. The integer coordi-
nates denoted by are expressed as
and . From and in (8), the
initial value is as follows:

(9)

In this simplified equation, the error term and range
from 0.5 to 0.5. That is, a small portion of the integer part
of and is used. Therefore, 24 15-bit multiplication
is used in place of 24 24-bit multiplication.

Since TEXRAM’s parallelogram approximation of the foot-
print shape works well in most cases [8], it is used to calculate
the corner point positions of the footprint, as shown Fig. 21.
Fig. 21 also shows that and of the parallel edges, have
the opposite sign and same absolute value. In addition,

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 263

and of the parallel edges have the same feature as
and . This relationship is expressed as

(10)

As a result, the partial derivatives of the normalized edge
functions that are parallel, are the opposite sign and same ab-
solute value. The partial derivatives of two intersecting edges
are calculated and the operational cost of calculating the partial
derivative is accordingly reduced by half. In generating the par-
tial derivatives in (8), two division operations are required. Since
the denominators of the partial derivatives are common for each
edge, the two division operations are replaced by the reciproca-
tion of the common denominator of the partial derivatives and
the two multiplication operations that use the reciprocal. Con-
sequently, the hardware cost is further reduced.

The texture mapping unit operates in parallel with other units,
which generally have short latency in comparison with the tex-
ture mapping unit. Since the buffer size for the output of the
other units increases in proportion to the latency of the texture
mapping unit, the latency of the division operation must be short
and the convergence division method is selected [2]. In practice,
a divider is implemented in the pipeline for the throughput and
the convergence division method is used for the reciprocation.
Since the value of the dividend is always one at reciprocation,
the divider architecture is simplified and the hardware cost is
reduced.

2) Weight Generation: To generate the weights for the
texels, which are generated in parallel, the normalized edge
functions are first interpolated and then, compared to obtain the
distance for each of the texels. The weights are obtained
by indexing in parallel the weight tables of the Gaussian filter
with each distance .

As shown in Fig. 21, the sum of the normalized edge functions
that were parallel to each other is two at any texel. This relation
is expressed as

(11)

The distance of each edge is defined as the complement
to the normalized edge function of each edge, and (11) is con-
verted to . Consequently, one of the two normal-
ized edge functions that were parallel is interpolated, which re-
duces the hardware cost. Since the only positive distance is
valid, we evaluated the absolute values that were interpolated.
The distance is determined by comparing two absolute values.
The Gaussian filter is pre-computed and stored in a ROM with
64 bytes, or bits, for speed. For parallel operation in a
given limit , the number of ROMs required is .

3) Post-Filtering: Post-filtering is performed through
8 8-bit multiplication of the texel value by the weight. In our

TABLE V
COUNT OF OPERATIONS IN MAPPING UNIT (RECIP: RECIPROCATION; MUL:

MULTIPLICATION)

TABLE VI
COUNT OF OPERATIONS AT TEXTURE ADDRESS GENERATION AND SETUP

FOR WEIGHT BLOCK OF FILTERING UNIT (COMP: COMPARATOR; INC/DEC:
INCREMENT OR DECREMENT; 2’S COM: 2’S COMPLEMENT)

TABLE VII
COUNT OF OPERATIONS IN THE WEIGHT GENERATION BLOCK OF THE

FILTERING UNIT

filtering method, we obtained the final filtered value by dividing
the sum of the weighted color values by the sum of the weights.
Because the division was performed for four-color channels
(RGBA), we replaced the division by the sum of the weights
with multiplication by the reciprocal of the sum of the weights.

B. Hardware Cost

In this section, the hardware cost of various anisotropic fil-
tering algorithms is compared. The computation cost of each
block is calculated through the count of various operations, such
as addition. We represented the hardware cost of each arithmetic
unit as a relative ratio among various arithmetic units. The gate
equivalents of the arithmetic units were estimated through syn-
thesis using a 0.35- m 3.3-V standard cell library.

Tables V–VIII show the count of various operations at each
block. Since we assumed that operations were performed in par-
allel at a given limit , the count of some operations are ex-
pressed as a function of the limit . The division is counted as
a reciprocal calculation and the multiplication by its reciprocal.
The bit width of the filtering unit is taken as a reference. The
terms 32 b, 11 b, and 8 b in parentheses, represent the other bit
width. In Table VIII, 11 b represents the integer part of the bit

264 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

TABLE VIII
COUNT OF OPERATIONS IN POST-FILTERING BLOCK OF FILTERING UNIT

TABLE IX
HARDWARE COST RATIO OF ARITHMETIC UNITS COMPARED TO 24 BIT ADDER

Fig. 22. Average hardware cost distribution.

width, and the value shown in parenthesis at the shift operation
represents the shift range.

Table IX shows the hardware cost of the arithmetic units
required by filtering algorithms. The hardware size of a 24-bit
adder was normalized to one. The hardware cost of square root
logic was assumed to be equal to the divider. The one bit of
ROM table was assumed to be a quarter of a gate equivalent.
From Tables V to IX, Fig. 22 shows the average hardware cost
distribution of each block of texture mapping hardware. On the
average, the mapping unit occupies 34% of the entire texture
mapping hardware. The setup for weight sub-block of filtering
units occupies 28%. The post-filtering sub-block subsequently
occupies 21% and the weight generation sub-block occupies
17%. Figs. 23–25 show the hardware cost ratio of each block of
the filtering unit in texture mapping hardware, while the limit

changes from 8 to 64. The hardware cost ratio is given as the
ratio of other anisotropic filtering algorithms to the TEXRAM
algorithm. Since the hardware cost of the TEXRAM algorithm
is zero in the weight generation sub-block, Fig. 24 shows the
hardware cost ratio of each filtering algorithm to the Feline

Fig. 23. H/W cost ratio of weight setup block of filtering unit.

Fig. 24. H/W cost ratio of weight generation block of filtering unit.

Fig. 25. H/W cost ratio of post-filtering block of filtering unit.

algorithm. On the contrary from Fig. 23, the EFATF method has
less hardware cost than the TEXRAM method. The FFPMM
method also has less hardware cost than the TEXRAM method.
However, the simple setup for weight of the FFPMM method
increases the hardware cost of the weight generation sub-block
dramatically. In the weight generation sub-block, since the
weight is obtained directly from the fractional part of the
texture coordinates, the TEXRAM method does not have the
hardware cost as shown in Fig. 24. In this block, the EFATF
method requires about 4.3 5.3 times the hardware cost of the
Feline method. However, because the Feline method requires
only ROM tables by B, the hardware cost of EFATF
method, in fact, is small. In the post-filtering sub-block, because

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 265

TABLE X
HARDWARE COST RATIO OF FILTERING ALGORITHMS COMPARED TO TEXRAM

Fig. 26. Detailed hardware architecture of a filtering unit.

these methods require the division by the sum of weights, the
EFATF method has more hardware cost than the TEXRAM
method, as shown in Fig. 25. Table X shows the hardware cost
ratio of each anisotropic filtering algorithm for the TEXRAM
method. The cost is based on the data in Tables V–IX. The
hardware cost ratio of the Feline method to the TEXRAM
method changes from 1.13 to 1.15 as the limit increases. For
the FFPMM method, the hardware cost ratio changes from 0.86
to 32.72 due to the large size of the area weight table, which
makes hardware implementation impossible. For the EFATF
method, the hardware cost ratio changes from 1.07 to 1.23. In
practice, the real additional overheads of EFATF to TEXRAM
are from 7% to 11% because the limit , which the graphics
card supplies, ranges from 8 to 16.

In comparing the hardware cost, the EFATF method costs
slightly more than the TEXRAM or Feline methods. However,
the continuous development of VLSI technology is reducing the
hardware overheads of EFATF.

VI. VLSI IMPLEMENTATION

The proposed algorithm was demonstrated through VLSI
implementation. The hardware architecture of the proposed
algorithm was described by Verilog and synthesized using
a 0.35- m, 3.3-V standard cell library. The layout was per-
formed by an automatic place-and-route tool. The functionality
was verified through test vectors. The only filtering block
that differed from each filtering algorithm was implemented
because the mapping block is common for all texture filtering
algorithms.

Fig. 26 shows the detailed hardware architecture of the fil-
tering unit, which consists of datapath blocks, finite state ma-
chines (FSMs) and first-in first-out (FIFO) buffers. Each data-
path block is implemented in a pipeline for the throughput. The
FSM controls each datapath and the FIFOs, while the MI_FSM,
which is shown in Fig. 26, generates controls for the memory
interface. By functioning as a buffer between adjacent data-
path blocks, the FIFO reduces the dependency between adja-
cent blocks in the data path. Thus, the performance degradation
of a particular block does not directly affect the adjacent blocks.

TABLE XI
TOTAL AREA AND POWER OF FIFOS ON THE DEPTH (GES: GATE EQUIVALENTS;

DEPTH: IN_FIFO, TA_FIFO, PW_FIFO)

This hardware is also implemented to perform the parallel op-
eration in a given limit of eight.

A multiplier in a datapath is synthesized as a Wallace tree
multiplier using the Synopsys Design Compiler. The Design-
Ware Foundation of Design Compiler has technology-indepen-
dent soft-macros and enables a higher performance implemen-
tation. A divider is implemented in a pipeline for the throughput.
Since the other units, which operate in parallel with the tex-
ture mapping unit, have short latency, it is desirable for the la-
tency of division to be short. Accordingly, we implement the
divider with the convergence division method instead of a high-
radix method. In the convergence method, three cycles were re-
quired to calculate the reciprocal. Four cycles were needed to
perform the division operation. The latency is the same as in
the 32-bit fixed-point division operation in the mapping block.
In the radix-4 division method, because two stages per cycle
were feasible, four bits of quotient per cycle were generated.
Seven cycles are, therefore, required for the 24-bit division op-
eration and nine cycles were required for the 32-bit division. In
the 24-bit division, the radix-4 method required 1.75 times the
cycles of the convergence method. In the 32-bit division, the
radix-4 method required 2.25 times the cycles.

In FIFO synthesis, the depth of FIFOs such as IN_FIFO and
TA_FIFO, as shown in Fig. 26, ranges from two to eight. In par-
ticular, the depth of PW_FIFO, which buffers the post-filtering
weights, ranges from four to sixteen when the texture cache miss
and so on are considered. In this case, we assume that the miss
penalty is very small. If the miss penalty is large, the depth of
PW_FIFO is very large and the prefetching scheme must be used
to prevent the performance degradation. Table XI shows the total
area and power of FIFO as the depth of FIFO changes. The per-
centage in parentheses represents the ratio of FIFOs to the en-
tire hardware. In area, the FIFO occupies 3.2%–12.26% of all
the hardware. The power of FIFO corresponds to 5.03%–6.43%
of all the hardware. The area and power of all the hardware are
given in Table XIV.

A pipeline register occupies a considerable part of the
entire hardware because the filtering unit takes the pipeline
architecture. In general, the pipeline register with a control
signal, such as a load, consists of a flip-flop and a multi-
plexer. The multiplexer of the pipeline register recirculates
data when the register is idle, which means the load signal is
low. Consequently, pipeline registers in synchronous systems
are clocked every cycle even when idle, resulting in wasteful
power dissipation. To reduce the wasteful power dissipation
in registers, we used clock gating with the pipeline register,
enabling the clock registers function to be disabled when idle.
The number of pipeline registers in the entire hardware was
about 3500. Table XII shows that registers with multiplexers
required 43.96% more area than registers with a gated clock.

266 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

TABLE XII
AREA OF PIPELINE REGISTERS (DIFF :REG �REG ;

TOTA: TOTAL AREA OF THE HARDWARE)

TABLE XIII
POWER OF THE PIPELINE REGISTERS (DIFF : REG �

REG ; TOTP: TOTAL POWER OF THE HARDWARE)

This phenomenon occurs because although the multiplexer is
required per bit, the gated clock drives several flip-flops. The
difference is less than 5.42% of the entire hardware. The per-
centage in parentheses represents the area ratio of the registers
to the entire hardware.

Table XIII shows the power of pipeline registers. The pa-
rameter Probstall in Table XIII, represents the probability of
pipeline stall. The pipeline may stall if the texture memory does
not supply the required texels due to the texture cache miss. An
FSM makes the datapath stall by generating a low-load signal.
The probability of the pipeline stalling is proportional to the tex-
ture cache miss and the miss penalty. Specifically, the proba-
bility of the pipeline stalling is given as the multiplication of the
miss rate by the ratio of the miss penalty to the clock period.
From the texture cache related papers [14] and [15], the texture
cache miss rate is less than 1% but the miss penalty is given as
several tens times the clock period. Thus, the probability of the
pipeline stalling is given as less than several tens percentage.
Table XIII shows that as the probability of pipeline stall in-
creases, the power of the register with the multiplexer increases
but the register with the gated clock decreases. In the register
with the multiplexer, a pipeline stall increases the switching ac-
tivity of the load signal. The switching activity increases in the
circuits with the multiplexers connected to a load signal. How-
ever, in the register with the gated clock, the pipeline stall dis-
ables the clock and decreases the switching activity of the cir-
cuits in the flip-flops connected to the clock. Consequently, as
the stall probability changed, the power of the registers with
the gated clock decreased to 5.12% 29.52% compared to the
registers with the multiplexers. These differences are less than
1.49%–7.90% for the entire hardware. The percentage shown in
parentheses in Table XIII represents the power ratio of the reg-
isters to the entire hardware.

The area and power of sub-blocks are given in Table XIV.
The area and power were obtained if the depth of the FIFOs
was (2,2,4) and the probability of a stall was zero. The value

TABLE XIV
AREA AND POWER OF SUB-BLOCKS (WS: WEIGHT SETUP; WG: WEIGHT

GENERATE; PF: POST-FILTERING)

TABLE XV
VLSI DESIGN CHARACTERISTICS

Fig. 27. Layout of the filtering pipeline hardware.

in parentheses represents the information about dividers. From
this value, dividers occupy 32.81% and 32.61% of the entire
hardware in area and power, respectively.

The VLSI design characteristics are summarized in
Table XV. An operating frequency of 100 MHz at 3.3 V,
the proposed anisotropic texture filtering hardware generates
100 M of texture-filtered RGB pixel color values per second.
The area of the entire hardware is about 0.15 million gate
equivalents. The total power dissipation is 21 mW/MHz if the
filtering pipeline is fully operated without the pipeline stalling.
The layout is shown in Fig. 27.

VII. CONCLUSION

Texture mapping hardware plays a key role in the overall
pixel throughput of the rendering system and in the quality
of rendered images. In spite of the texture cache, the limit of

SHIN et al.: A COST-EFFECTIVE VLSI ARCHITECTURE FOR ANISOTROPIC TEXTURE FILTERING IN LIMITED MEMORY BANDWIDTH 267

the memory bandwidth is still a bottleneck of texture mapping
hardware.

To solve the conflict between the quality and the performance,
we propose the EFATF method. With the edge function, the pro-
posed algorithm approximates a footprint shape more exactly.
The normalized value of an edge function gives the distance
from the center of the pixel at screen space when the texel is
mapped back. The distance represents the contribution of the
texel to a final intensity. Applying the distance to a Gaussian
filter generates a good weight.

The quality of images rendered by the EFATF method is su-
perior to that of other methods using the same number of texels.
To achieve the same image quality, other methods require more
than twice the number of texels of the proposed method. Com-
pared with other methods, the performance gain of the pro-
posed method is at least 200% for text fonts and 200% 300%
for checkerboard patterns. The additional overheads of the pro-
posed algorithm, compared with the overheads of the TEXRAM
method, are about 7%–11% as the limit increases from 8 to
16. The proposed method can be implemented in hardware at a
reasonable cost. In practice, the VLSI implementation demon-
strates the algorithm and the feasibility of hardware implemen-
tation. The hardware is described by Verilog and synthesized
with a 0.35- m, 3.3-V standard cell library. The hardware is
operated at 100 MHz and generates 100-M texture-filtered RGB
pixel color values per second under a sufficient texture memory
bandwidth. The filtering hardware can be used as a system on a
chip with intellectual property.

REFERENCES

[1] R. J. Cant and P. A. Shrubsole, “Texture potential MIP mapping,” ACM
Trans. Graph., vol. 19, no. 3, pp. 164–18, Jul. 2000.

[2] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, 1993, ch. 8, pp. 153–158.

[3] N. Greene and P. Heckbert, “Creating raster omnimax images from
multiple perspective views using the elliptical weighted average filter,”
IEEE Comput. Graph. Appl., vol. 6, no. 6, pp. 21–27, Jun. 1986.

[4] P. S. Heckbert, “Survey of texture mapping,” IEEE Comput. Graph.
Appl., vol. 6, no. 11, pp. 56–67, Nov. 1986.

[5] P. S. Heckbert, “Fundamental of texture mapping and image warping,”
M.S. thesis, Comput. Sci. Div., Univ. California, Berkeley, CA, 1989.

[6] T. Hüttner and W. Straßer, “Fast footprint MIP mapping,” in Proc. EU-
ROGRAPHICS/SIGGRAPH Workshop Graphics Hardware, 1999, pp.
35–44.

[7] D. B. Kirk, “Unsolved problems and opportunities for high-quality,
high-performance 3D graphics on a PC platform,” in Proc. EURO-
GRAPHICS/SIGGRAPH Workshop Graphics Hardware, 1998, pp.
11–13.

[8] J. McCormack, R. Perry, K. I. Farkas, and N. P. Jouppi, “Feline: Fast
elliptical lines for anisotropic texture mapping,” in Proc. SIGGRAPH
Ann. Conf. Comput. Graphics, 1999, pp. 243–250.

[9] J. McCormack, R. McNamara, C. Gianos, L. Seiler, N. Jouppi, K.
Correll, T. Dutton, and J. Zurawski, Neon: A (big) (fast) single-chip
3D workstation graphics accelerator. Compaq Western Research Lab.,
Palo Alto, CA, WRL Research Report 98/1, 1999, Revised.

[10] A. Schilling, G. Knittel, and W. Straßer, “Texram: A smart memory for
texturing,” IEEE Comput. Graph. Appl., vol. 16, no. 3, pp. 32–41, May
1996.

[11] A. Schilling, “A new simple and efficient antialiasing with subpixel
masks,” ACM Comput. Graph., vol. 25, no. 4, pp. 133–141, Jul. 1991.

[12] L. Williams, “Pyramidal parametrics,” Comput. Graph., vol. 17, pp.
1–11, Jul. 1983.

[13] R. C. Landsdale, “Texture mapping and resampling for computer
graphics,” M.S. thesis, Dept. Elect. Eng., Univ. Toronto, ON, Canada,
1991.

[14] H. Igehy, M. Eldridge, and K. Proudfoot, “Prefetching in a texture
cache architecture,” in Proc. SIGGRAPH/EUROGRAPHICS Workshop
Graphics Hardware, 1998, pp. 133–142.

[15] A. Vartanian, J.-L. Bechennec, and N. Drach-Temam, “Evaluation of
high performance multicache parallel texture mapping,” in Proc. 12th
Int. Conf. Supercomputing, 1998, pp. 289–296.

Hyun-Chul Shin received the B.S. degree in elec-
tronics engineering from Pusan National University,
Pusan, Korea, in 1996, and the M.S. and Ph.D. de-
grees in electrical engineering and computer science
from Korea Advanced Institute of Science and Tech-
nology (KAIST), Taejon, Korea, in 1998 and 2004,
respectively.

He is a Senior Engineer at LG Electronics Com-
pany, Seoul, Korea. His research interests include
multimedia VLSI design.

Jin-Aeon Lee received the B.S. degree in elec-
tronics engineering from Hanyang University, Seoul,
Korea, in 1989, and the M.S. and Ph.D. degrees in
electrical engineering and computer science from
Korea Advanced Institute of Science and Tech-
nology (KAIST), Taejon, Korea, in 1994 and 2000,
respectively.

He is a Principal Engineer at Samsung Electronics
Company, Suwon, Korea, where he is responsible for
Mobile Multimedia IP (2D/3D Graphics engines and
Video Source coding IPs) developments.

Lee-Sup Kim (SM’05) received the B.S. degree in
electronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1982 and the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1986 and 1990, respectively.

He was a Post-Doctoral Fellow at the Toshiba
Corporation, Kawasaki, Japan, during 1990–1993,
where he was involved in the design of the high-per-
formance DSP and single chip MPEG2 decoder. He
has been at the Korea Advanced Institute of Science
and Technology (KAIST), Taejon, Korea, since

March 1993. In November 2002, he became a Full Professor. His research
interests include multimedia VLSI design, hardware implementation of signal
processing algorithms, and low-power IC design.

