구조변화가 발생한 단순 상태공간모형에서의 적응적 예측을 위한 베이지안접근

(A Bayesian Approach for The Adaptive Forecast on the Simple State Space Model)

전 덕 빈*, 임 철 주**, 이 상 권***, 박 명 환****

- * 한국과학기술원 테크노경영대학원
- ** 공군사관학교 산업공학과
- *** 삼성경제연구소
- **** 한성대학교 산업공학과

Abstract

Most forecasting models often fail to produce appropriate forecasts because we build a model based on the assumption of the data being generated from the only one stochastic process. However, in many real problems, the time series data are generated from one stochastic process for a while and then abruptly undergoes certain structural changes. In this paper, we assume the basic underlying process is the simple state–space model with random level and deterministic drift but interrupted by three types of exogenous shocks: level shift, drift change, outlier. A Bayesian procedure to detect, estimate and adapt to the structural changes are developed and compared with simple, double and adaptive exponential smoothing using simulated data and the U. S. leading composite index.

1. 서론

어떤 시계열에 하나의 특정 모형을 적용시켜 예측을 하는 경우 구조변화가 발생하게 되면 그모형에 의한 예측치는 비정상적인 예측오차를 발생시킨다. 따라서 구조변화(structural change)에 대해 능동적으로 반응하고자 하는 예측방법의 개발은 현재까지도 중요한 주제로 연구되어지고 있다. 자주 발생하는 구조변화의 유형으로는 수준이 상승하거나 하강하는 수준변화(level shift), 추세가 변화하는 기울기변화(drift change) 그리고 한 시점에서 비정상적인 행태를 보이는 일시적변화(outlier) 등이 있다. 이러한 구조변화를 인식하고 능동적으로 반응할 수 있는 예측방법 개발에 관한 연구는 오랜동안 활발히 이루어져왔다.

Trigg and Leach(1967)는 지수평활모형에서 예측오차에 따라 평활상수가 변하는 모형을 제시하였으며 Whybark(1973)는 평활상수의 제한범위내에서만 평활상수를 변화시킬 것을 제시하였다. Chernoff and Zacks(1964), Gardner(1969)는 constant mean model에서 베이지안 접근을 통해 수준변화를 인식하고자 하였으며, Ferreira(1975), Holbert and Broemeling(1977) 등은 베이지안방법을 이용하여 회귀모형의 변환을 분석하였다. Harrison and Stevens(1976)는 state-space model을 이용하여 구조변화의 문제를 해결하고자 하였다. 그들은 각각의 구조변화에 대한 모형을 설정하여 각 모형에 따라 예측치를 따로 구하고, 모형에 대한 확률값으로 각 예측치를 가중합하여 예측을 시도하였다.

Jun and Oliver(1985), Jun(1989)은 simple state-space model에 dummy variable을 도입하여 수준변화모형을 표현하여 exponential smoothing model에서의 수준변화와 기울기변화를 인식하기위한 통계량을 유도하였다. Jun and Joo(1993)는 state-space model을 이용하여 경기선행지수의기울기변화를 인식하여 전환점을 예측하였다. Lee(1991)는 simple state-space model을 통하여 지수평활모형에서의 수준변화와 일시적 변화를 인식하기 위한 베이지안방법을 제시하였다.

전통통계학적인 접근으로는 Chang, Chen and Tiao(1988), Hillmer(1984), Tsay(1986) 등이 구조변화시점과 변화유형을 인식한 후 간섭모형을 분석하였으며, Chen and Liu(1993)는 구조변화인식과 모수추정을 동시에 할 수 있는 방법을 제시하였다.

구조변화에 능동적으로 반응하는 예측방법은 궁극적으로 구조변화를 빠르게 인식하여 예측오차를 최소화하는 것을 목적으로 한다. 이를 위하여 본 논문에서는 Jun(1989)이 유도한 방법을 통해 확정적 기울기가 있는 단순 상태-공간모형에서 수준변화, 기울기변화, 일시적변화에 대한 통계

량들을 구한 후 이를 이용하여 구조변화의 발생여부를 검정하고 이를 예측에 적용하는 절차를 소 개하였다. 이 절차의 성능을 시험하기 위해 모의실험을 통하여 ARIMA(0,1,1)의 시계열을 생성하 여 임의시점에 임의의 구조변화를 인위적으로 발생시킨 후 제시된 절차를 적용하여 그 결과를 단 순 지수평활모형, 이중 지수평활모형, 적응적 지수평활모형(Trigg and Leach, 1967) 등을 적용한 결과와 비교 분석하였다. 그리고 이 절차가 실제자료에서 어떻게 반응하는지를 알아보기 위해 미 국의 경제선행지수에 적용하여 다른 방법들을 적용한 결과와 비교하였다.

2. Model Description

1) 변화가 없는 경우

Simple state-space model에 deterministic drift ξ 를 추가시킨 모형은 다음과 같다. (1a)

$$Z_t = L_t + a_t$$

$$L_t = L_{t-1} + \xi + b_t$$
(1b)

여기서 $L_0 \sim N(l_0, p_0)$, $a_t \sim i.i.d.$ $N(0, \sigma_a^2)$, $b_t \sim i.i.d.$ $N(0, \sigma_b^2)$ 이다. ξ 는 확정적 기울기를 나타내 는 상수이고 Z_t 와 L_t 는 각 시점 t에서의 관찰치와 수준을 의미한다. L_0 , $\{a_t\}$, $\{b_t\}$ 는 상호독립이 며 {a}, {b}는 서로 상관관계가 없다고 가정한다. 이 경우 수준의 평균과 분산의 재귀식 (recursive equation)은 Harrison and Stevens(1976)의 재귀식에 확정적 기울기를 추가한 형태로 식(2b), 식(2c)와 같다. (2a)

$$L_t \mid z_t, \dots, z_1 \sim N(l_t, p_t)$$

$$l_{t} = \xi + l_{t-1} + \frac{p_{t-1} + \sigma_{b}^{2}}{2 + \sigma_{b}^{2} + \sigma_{b}^{2}} (Z_{t} - l_{t-1} - \xi)$$
(2b)

$$l_{t} = \xi + l_{t-1} + \frac{p_{t-1} + \sigma_{b}^{2}}{p_{t-1} + \sigma_{a}^{2} + \sigma_{b}^{2}} (Z_{t} - l_{t-1} - \xi)$$

$$p_{t} = \frac{\sigma_{a}^{2} (p_{t-1} + \sigma_{b}^{2})}{p_{t-1} + \sigma_{a}^{2} + \sigma_{b}^{2}} \quad t = 1, 2, 3, \dots$$
(2b)
$$(2c)$$

 $Z_t | z_{t-1}, z_{t-2}, \dots, z_1$ 의 기대값 (f_t) 과 분산 (ν_t) 은 각각 다음과 같다.

$$f_t = l_{t-1} + \xi$$
 (3a)
 $\nu_t = p_{t-1} + \sigma_a^2 + \sigma_b^2$ (3b)

(3b)

2) 시점 *M*에서 변화가 있는 경우

Jun and Oliver(1985), Jun(1989)과 같은 방법으로 가변수를 도입하여 수준변화, 기울기변화, 일시적변화를 나타낸 것이 식(4), (5), (6)이다.

모형 1 (수준변화):

$$Z_t = L_t + a_t \tag{4a}$$

$$Z_{t} = L_{t} + a_{t}$$

$$L_{t} = \begin{cases} L_{t-1} + \xi + \Delta^{(L)} + b_{t}, & t = M \\ L_{t-1} + \xi + b_{t}, & t \neq M \end{cases}$$
(4a)

모형 2 (기울기변화):

$$Z_t = L_t + a_t \tag{5a}$$

$$Z_{t} = L_{t} + a_{t}$$

$$L_{t} = \begin{cases} L_{t-1} + \xi + b_{t}, & t < M \\ L_{t-1} + \xi + \Delta^{(D)} + b_{t}, & t \ge M \end{cases}$$
(5a)

모형 3 (일시적변화):

$$Z_{t} = \begin{cases} L_{t} + \Delta^{(O)} + a_{t}, & t = M \\ L_{t} + a_{t}, & t \neq M \end{cases}$$

$$L_{t} = L_{t-1} + \xi + b_{t}$$
(6a)
$$(6b)$$

$$L_t = L_{t-1} + \xi + b_t \tag{6b}$$

 ${\it \Delta}^{(\cdot)}$ 는 각 구조변화의 변화량을 의미하며 ${\it L,\,D,\,O}$ 는 각각 수준변화, 기울기변화, 일시적변화 를 나타낸다. 베이지안분석을 위해 변화량의 사전확률분포를 다음과 같이 가정한다.

$$\Delta^{(\cdot)} \sim N(\lambda_0^{(\cdot)}, \pi_0^{(\cdot)}) \tag{7}$$

이때 $\Delta^{(\cdot)}$, L_0 , a_t , b_t 는 서로 상관관계가 없다.

3) 시계열의 조건부 확률분포

기울기변화와 일시적변화가 발생한 경우 변화량 $\Delta^{(\cdot)}$ 와 변화시점 M을 알고 있을 때 M시점 이후의 Z_t 의 조건부 확률분포는 Jun(1989)이 수준변화에서 구한 것과 같은 방법으로 구할 수 있다. 각 구조변화에 따른 Z_t 의 조건부 확률분포는 다음과 같다.

$$Z_t \mid z_{t-1}, \dots, z_1; \Delta^{(L)}; M \sim N(f_t, \nu_t)$$
(8a)

$$t = 1, 2, ..., M-1$$

$$Z_t \mid z_{t-1}, \dots, z_1; \Delta^{(L)}; M \sim N(f_t + k_t^{(L)} \Delta^{(L)}, \nu_t)$$
 (8b)
 $t = M, M+1, \dots$

구조변화를 보정해주는 역할을 하는 상수 $k_{\cdot}^{(\cdot)}$ 는 수준변화의 경우

$$k_t^{(L)} = \begin{cases} 1 & t = M \\ \prod_{j=M}^{t-1} \frac{\sigma_a^2}{\nu_j} & t = M+1, M+2, \dots \end{cases}$$
(9a)

와 같으며 기울기변화는

$$k_t^{(D)} = \begin{cases} 1 & t = M \\ 1 + \sum_{i=M}^{t-1} \prod_{j=i}^{t-1} \frac{\sigma_a^2}{\nu_j} & t = M+1, M+2, \dots \end{cases}$$
(10a)

이다. 일시적변화의 경우는

$$k_t^{(O)} = \begin{cases} 1 & t = M \\ -\left(1 - \frac{\sigma_a^2}{\nu_M}\right) & t = M + 1 \\ -\left(1 - \frac{\sigma_a^2}{\nu_M}\right) \int_{i=M+1}^{t-1} \frac{\sigma_a^2}{\nu_i} & t = M + 2, M + 3, \dots \end{cases}$$
(11a)

와 같다.

 f_t 는 구조변화를 고려하지 않은 예측치이므로 변화가 발생한 시계열과 차이가 발생하게 된다. 따라서 변화시점 M이후에는 f_t 에 $k_t^{(\cdot)} \Delta^{(\cdot)}$ 만큼의 보정이 필요하다. M시점이후 구조변화에 의해 나타나는 예측오차는 구조변화에 의해 비정상적인 행태를 보인다. 따라서 구조변화량에 의한 보정이 $k_t^{(\cdot)} \Delta^{(\cdot)}$ 만큼 이루어지게 된다.

4) 변화량의 사후확률분포

Jun and Oliver(1989)는 변화시점 M을 알고 있을 때 수준변화량의 사후확률분포를 유도하였으며 이는 기울기변화와 일시적변화에서도 동일하게 적용될 수 있다. 식(12)는 변화량의 사후확률 분포를 나타낸다.

$$\Delta^{(\cdot)} \mid z_t, \dots, z_1; M \sim N(\lambda_t^{(\cdot)}, \pi_t^{(\cdot)})$$

$$\Leftrightarrow \forall \exists \lambda \exists$$
(12a)

$$\lambda_{t}^{(\cdot)} = \begin{cases} \lambda_{0}^{(\cdot)} & t = 1, \dots, M-1 \\ \pi_{t}^{(\cdot)} \left(\frac{\lambda_{0}^{(\cdot)}}{\pi_{0}^{(\cdot)}} + \sum_{j=M}^{t} \frac{k_{j}^{(\cdot)}}{\nu_{j}} e_{j} \right) & t = M, M+1, \dots \end{cases}$$

$$(12b)$$

$$\pi_{t}^{(\cdot)} = \begin{cases} \pi_{0}^{(\cdot)} & t = 1, \dots, M-1 \\ \left(\frac{1}{\pi_{0}^{(\cdot)}} + \sum_{j=M}^{t} \frac{k_{j}^{(\cdot)2}}{\nu_{j}}\right)^{-1} & t = M, M+1, \dots \end{cases}$$
(12c)

3. 가설의 확률분포 및 예측

1) 가설

현재시점을 t라하고 한 번 이하의 구조변화가 발생하는 '관측구간'의 시작시점을 þ로 정의한 다. 그러면 관측구간의 마지막시점은 t-1이 된다. 즉, 현재시점에서 보았을 때 구조변화가 발생 했다고 간주할 수 있는 구간이 [p,p+1,...,t-1]이다. 왜냐하면 시점 t에서는 변화유형을 알 수 없 기 때문이다. 이 관측구간내의 시점 M에 대해 다음과 같은 가설을 설정한다.

 H_N : 시점 M에서 아무런 변화도 발생하지 않았다.

 H_L : 시점 M에서 수준변화가 발생하였다. H_D : 시점 M에서 기울기변화가 발생하였다.

 H_O : 시점 M에서 일시적변화가 발생하였다.

가설검정을 위해 사용되는 정보는 두 종류이다. 하나는 관측구간내의 예측오차이며 다른 하나 는 검정하고자하는 시점 이전구간 즉, 구간 [1,2,...,M-1]에서 발생했었던 구조변화의 추세이다.

2) 가설의 사전확률

가설의 사전확률은 구조변화의 추세만을 정보로 나타나는 확률이다. 구조변화의 추세를 나타 내기 위해 다음과 같이 확률변수를 정의한다.

시점 M에 대한 각 확률변수의 확률값을 다음과 같이 정의한다. $\varphi_i \equiv \Pr(I_M^{(i)} = 1),$

 $i \in \{$ 변화없음, 수준변화, 기울기변화, 일시적변화 $\}$

여기서 $\varphi_N + \varphi_L + \varphi_D + \varphi_O = 1$.

M-1시점까지 구조변화의 횟수에 관한 정보를 D_{M-1} 로 나타내자. 이때 $I_i^{(\cdot)}$ 와 $I_{i-1}^{(\cdot)}$ 이 독립시 행이면 M-1시점까지의 각 변화횟수는 다항분포를 따른다. 이 다항분포의 모수는 변화유형별 발 생확률이 되며 모수의 사전확률분포를 다항분포에서의 사용되는 공액분포인 Dirichlet분포를 사용 한다. 사전정보가 없는 경우에 사전확률분포의 모수는 (1,1,1,1)으로 설정한다. 그러면 시점M-1에서 각 변화의 발생확률에 대한 사후확률분포는

$$(\varphi_{N}, \varphi_{L}, \varphi_{D}, \varphi_{O}) \mid D_{M-1}$$

$$\sim \text{Dirichlet } (1 + \sum_{j=1}^{M-1} I_{j}^{(N)}, 1 + \sum_{j=1}^{M-1} I_{j}^{(L)}, 1 + \sum_{j=1}^{M-1} I_{j}^{(D)}, 1 + \sum_{j=1}^{M-1} I_{j}^{(O)})$$
(13)

이 된다. 이를 이용하여 가설의 사전확률을 구하면 다음과 같다.

$$\Pr(H_i \mid D_{M-1}) = \frac{1 + \sum_{j=1}^{M-1} I_j^{(j)}}{4 + (M-1)},$$
(14)

i∈{변화없음, 수준변화, 기울기변화, 일시적변화}

3) 가설의 사후확률

현재시점 t에서 가지고 있는 정보집합을 $\Omega = \{\{z_p, z_{p+1}, \dots, z_d\}, D_{M-1}\}$ 로 나타내고 주어진 정보로 부터 관측구간내의 시점 M에서의 가설에 대한 사후확률을 구하면 다음과 같다.

$$\Pr(H_i \mid \Omega_i)$$

$$= \Pr(H_{i} | z_{p}, z_{p+1}, \dots, z_{t}; D_{M-1})$$

$$= \frac{\Pr(z_{p}, z_{p+1}, \dots, z_{t} | H_{i}; D_{M-1}) \Pr(H_{i} | D_{M-1})}{\sum_{j} \Pr(z_{p}, z_{p+1}, \dots, z_{t} | H_{j}; D_{M-1}) \Pr(H_{j} | D_{M-1})}$$

$$= \frac{Q_{i} \Pr(H_{i} | D_{M-1})}{\sum_{j} Q_{j} \Pr(H_{j} | D_{M-1})},$$

$$i, j \in \{\text{\text{U}} \text{ as } \text{check}, \ \text{γ-Ct\text{U}} \text{ as }, \ \text{j-Ct\text{U}} \text{ as }, \ \text{j-$\text{U}} \text{ as }, \ \text{j-Ct\text{U}} \text{ as }, \ \text{j-U} \text$$

여기서

$$Q_{N} = 1$$

$$Q_{L} = \sqrt{\frac{\pi_{t}^{(L)}}{\pi_{0}^{(L)}}} \exp\left\{\frac{1}{2} \left(\frac{\lambda_{t}^{(L)^{2}}}{\pi_{t}^{(L)}} - \frac{\lambda_{0}^{(L)^{2}}}{\pi_{0}^{(L)}}\right)\right\}$$

$$Q_{D} = \sqrt{\frac{\pi_{t}^{(D)}}{\pi_{0}^{(D)}}} \exp\left\{\frac{1}{2} \left(\frac{\lambda_{t}^{(D)^{2}}}{\pi_{t}^{(D)}} - \frac{\lambda_{0}^{(D)^{2}}}{\pi_{0}^{(D)}}\right)\right\}$$

$$Q_{O} = \sqrt{\frac{\pi_{t}^{(O)}}{\pi_{0}^{(O)}}} \exp\left\{\frac{1}{2} \left(\frac{\lambda_{t}^{(O)^{2}}}{\pi_{t}^{(O)}} - \frac{\lambda_{0}^{(O)^{2}}}{\pi_{0}^{(O)}}\right)\right\}$$
(15b)

4) 예측

일단 구조변화를 인식하게 되면 이를 반영하여 새로운 예측치를 구한다. 새로운 예측치는 2장 에서 구한 Z_t 의 조건부확률분포를 이용하여 구한다. 즉.

$$\Pr(Z_{t+1} \mid z_t, z_{t-1}, \dots, z_p; M; I_M)$$

$$= \int \Pr(Z_{t+1} \mid z_{t}, z_{t-1}, \dots, z_{p}; \Delta^{(\cdot)}; M; I_{M}) \times \Pr(\Delta^{(\cdot)} \mid z_{t}, z_{t-1}, \dots, z_{p}; M; I_{M}) d\Delta^{(\cdot)}$$

$$\propto \int \exp\left[-\frac{1}{2}\left\{\frac{(Z_{t+1} - f_{t+1} - k_{t+1}^{(\cdot)} \Delta^{(\cdot)})^{2}}{\nu_{t+1}}\right\}\right] \times \exp\left[-\frac{1}{2}\left\{\frac{(\Delta^{(\cdot)} - \lambda_{t}^{(\cdot)})^{2}}{\pi_{t}^{(\cdot)}}\right\}\right] d\Delta^{(\cdot)}$$

$$\propto \exp\left[-\frac{1}{2}\left\{\frac{(Z_{t+1} - f_{t+1} - k_{t+1}^{(\cdot)} \lambda_{t}^{(\cdot)})^{2}}{\nu_{t+1} + k_{t+1}^{(\cdot)} \lambda_{t}^{(\cdot)}}\right\}\right]$$
(16)

이 된다. 따라서 새로운 예측치와 분산은 $f_{n+1}^{(R)} = f_{n+1} + k_{n+1}^{(\cdot)} \lambda_t^{(\cdot)}, \quad n = t+1, t+2, \dots$

$$f_{n+1}^{(R)} = f_{n+1} + k_{n+1}^{(\cdot)} \lambda_t^{(\cdot)}, \quad n = t+1, t+2, \dots$$
 (17c)

$$\nu_{n+1}^{(R)} = \nu_{n+1} + k_{n+1}^{(\cdot)^2} \pi_t^{(\cdot)}, \quad n = t+1, t+2, \dots$$
(17d)

이다. 변화량을 계속 추정하지 않고 t+k 시점에서 끝낸다면 예측치와 분산은 다음과 같다.

$$f_{t+k+1}^{(R)} = f_{t+k+1} + k_{t+k+1}^{(\cdot)} \lambda_{t+k}^{(\cdot)}, \tag{18a}$$

$$f_{n}^{(R)} = f_{n-1}^{(R)} + \xi^* + \left(1 - \frac{\sigma_a^2}{\nu_{n-1}^{(R)}}\right) (Z_{n-1} - f_{n-1}^{(R)}), \quad n = t + k + 2, t + k + 3, \dots$$
(18b)

$$\nu_{t+k+1}^{(R)} = \nu_{t+k+1} + k_{t+k+1}^{(\cdot)^2} \pi_{t+k}^{(\cdot)}, \tag{18c}$$

$$\nu_n^{(R)} = \frac{\sigma_a^2 (2\nu_{n-1}^{(R)} - \sigma_a^2)}{\nu_{n-1}^{(R)}} + \sigma_b^2, \qquad n = t + k + 2, t + k + 3, \dots$$
(18d)

여기서

4. 인식-예측 절차

3장에서는 가설의 사후확률과 일단 변화가 인식된 후의 예측치를 구했다. 이제 가설의 사후확률을 가지고 어떻게 변화시점과 변화유형을 결정할 것이며, 이를 어떻게 예측에 반영하고 다시 발생하는 구조변화를 인식하게 되는가에 대한 절차를 제시한다.

<인식-예측 절차>

단계 1 : 관측구간내의 모든 시점 M에 대해 가설의 사후확률을 계산한다.

$$\Pr(H_i \mid z_p, \dots, z_t; D_M; M) \tag{19}$$

 $i \in \{$ 변화없음, 수준변화, 기울기변화, 일시적변화 $\}$ $M = p, p+1, \ldots, t-1$

단계 2 : 관측구간내의 각 시점에서 최대사후확률값 MAX_M,를 찾는다.

$$MAX_{M,i} = \max_{i} \Pr(H_i \mid \Omega_t; M)$$
 (20)

M = p, p+1, ..., t-1

단계 3 : 관측구간내에서 최대사후확률값 MAX M. # 를 찾는다.

$$MAX_{M,i^*} = \max_{M} MAX_{M,i^*}$$
(21)

$$M \in [p, p+1, ..., t-1]$$

단계 $4:i^*$ ='변화없음'이면 단계 5를 실행하고, 그렇지 않으면 M^* 가 변화시점인 가설 H_{i^*} 를 채택하여 t+1시점 이후의 예측치를 보정한 후 관측구간의 첫 번째 시점 p를 t로 대체한다. 예측치를 보정할 때 변화시점 M^* 이전에 구조변화가 있었다면 가장 최근에 발생했던 구조변화의 추정치를 M^*-1 시점까지만 반영하고 고정시킨 후 새로 발견된 구조변화량을 추정하면서 새로운 예측을 한다. 단계 6으로 간다.

단계 5 : 가장 최근에 발견된 구조변화를 추정하여 t+1시점의 예측치를 구한다.

단계 $6: Z_{t+1}$ 이 얻어지면 t = t+1로 대체하고 단계 1로 돌아간다.

5. 모의실험

시뮬레이션을 통해 본 논문에서 제시한 인식-예측 절차의 성능을 알아보았다. 코딩에 사용된 프로그래밍언어는 범용언어인 Borlandc사의 C++을 이용하였다. 먼저 원시자료를 생성하기 위해 표준정규분포로부터 생성시킨 후 다음과 같은 ARIMA(0,1,1)형태의 시계열로 전환시켰다.

$$Z_1 = \varepsilon_1 \tag{22a}$$

$$Z_t = Z_{t-1} + \varepsilon_t - \theta \varepsilon_{t-1} \qquad t = 2, \dots, 100$$
(22b)

여기서 $\varepsilon_i \sim N(0,1)$ $i=1,\ldots,100$

모두 500개의 시계열을 생성시켰으며 각 시계열의 크기는 100이다. 시계열 생성에 사용된 모

수는 0.1, 0.3, 0.5, 0.7, 0.9의 다섯 가지였다. 각 시계열에는 41시점부터 100시점사이에 인위적인 구조변화를 발생시켰다. 구조변화의 횟수는 한 번에서 열 번사이의 임의의 횟수를 사용하였고, 각 변화시점마다 변화유형과 변화량도 모두 임의로 설정하였다. 즉 각 시계열마다 변화횟수와 시점을 임의로 정하고 매 변화시점마다 변화유형은 수준변화, 기울기변화, 일시적변화 중 하나를 임의로 선택했으며 변화량은 수준변화와 일시적변화의 경우 $-5\sigma_{\varepsilon}$ 에서부터 $1\sigma_{\varepsilon}$ 단위로 $+5\sigma_{\varepsilon}$ 까지 임의로 부여했고 기울기변화의 경우 $-2\sigma_{\varepsilon}$ 에서부터 $0.5\sigma_{\varepsilon}$ 단위로 $+2\sigma_{\varepsilon}$ 까지 임의로 부여했다. 기울기변화의 변화량을 작게 설정한 이유는 현실적으로 변화량이 큰 경우가 거의 없으며 있다하더라도 쉽게 인식할 수 있기 때문이다.

각 시계열에 대해 본 논문의 인식-예측 절차, 단순지수평활, 이중지수평활, 지수평활에 Trigg and Leach(1967)의 tracking signal을 적용한 방법 등 5가지 방법에 대해 적용하였다. 비교의 용이성을 위해 각 방법을 적용할 때 모든 모수는 실제 자료생성에 사용했던 값을 사용했다. 즉 모수 θ 와 σ_c^2 은 알려져 있다고 가정하였다. 각 방법에 대해 1단계예측오차의 구간별 제곱평균을 구한 후그 크기를 비교했다. 구간은 구조변화를 부여한 구간, 즉 41시점부터 100시점까지의 예측오차를 비교하였으며 그 결과가 표 1에 제시되었다.

음영으로 나타난 부분이 통계적으로 유의한 부분이다. 즉, θ 의 실제값이 0.1과 0.3 그리고 0.9일 때 본 논문의 인식-예측절차를 적용한 1단계예측오차의 제곱평균이 그 다음으로 좋은 결과를 나타낸 이중지수평활을 적용한 1단계예측오차의 제곱평균보다 나은 결과를 보인다고 할 수 있고 θ 의 실제값이 0.7인 경우에는 이중지수평활의 결과가 본 논문보다 좋은 결과를 나타내고 있다고 말할 수 있다. θ 의 실제값이 0.5인 경우에는 인식-예측절차와 이중지수평활의 차이를 단언할 수 없음을 나타내고 있다.

표 1의 결과로 보아 본 논문의 인식-예측절차가 random walk에 가까운 시계열에서 구조변화에 적응하는 성능이 우수함을 보이고 있고, 비교적 안정적인 시계열에서도 인식과정을 통해 구조변화에 의해 발생하는 예측오차를 신속하게 보정 함으로써 구조변화에 적응하는 시간이 긴 다른 방법들보다 나쁘지 않음을 알 수 있다. 이런 점은 특히 θ =0.9인 시계열에서 극명하게 나타나고 있다. 단순지수평활이나 이중지수평활이 오차보정에 많은 시간이 소요되는 반면 구조변화에 능동적으로 대처할 수 있도록 고안된 Trigg and Leach(1967)의 방법이나 본 논문의 인식-예측방법은 상대적으로 빠른 시간에 보정이 이루어지므로 좋은 결과를 보인 것이다.

θ	단순지수평 활	이중지수평 활	단순 T&L	이중 T&L	인식-예측 절차
0.1	4.221	3.788	5.112	4.885	2.481
0.3	5.647	2.952	4.915	4.682	2.507
0.5	9.148	2.535	4.834	4.599	2.652
0.7	21.152	2.716	4.873	4.637	3.009
0.9	129.044	14.893	5.052	4.812	3.747

표 1. 예측오차의 제곱평균

6. 현실자료에의 적용사례

본 논문에서 제시한 인식-예측 절차가 실제자료에서 어떤 성능을 보이는 지 알아보기 위하여 미국의 경제연구기구인 Conference Board에서 제공한 미국의 경기종합선행지수를 사용하였다. 자료는 1962년 6월부터 1997년 12월까지의 월별자료로 구성되어있다. 자료를 도식화하면 그림 2와 같다.

모수의 추정을 위해 1962년 6월부터 1966년 3월까지 46개월간의 자료를 이용하였다. 이 구간에 대해 우도(likelihood)를 최대로 하는 모수의 추정치를 구한 후 1966년 4월부터 발생하는 1단계예측오차를 1997년 12월까지 구하여 제곱평균을 구했다. 단순지수평활과 이중지수평활, 지수평활에 Trigg and Leach의 tracking signal을 적용한 방법 등에 대해서도 역시 같은 방식으로 1단계예측오차의 제곱평균을 구했다.

본 논문에서 제시한 인식-예측절차를 적용했을 때의 오차제곱평균은 0.100이었다. 단순지수평활의 경우 오차제곱평균은 0.145이었으며, 이중지수평활은 0.117로 나타났다. 단순지수평활에

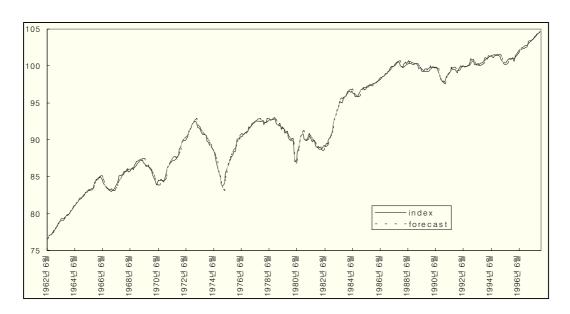


그림 2. 1966년 6월부터 1997년 12월까지의 미국경기선행지수 Trigg and Leach(1967)의 tracking signal을 적용한 경우에는 오차제곱평균이 0.275, 이중지수평활에 tracking signal을 적용한 경우에는 0.314였다. 이 결과는 본 논문에서 제시한 인식-예측절차가예측력에 있어 다른 방법들보다 상대적으로 우수함을 보여주고 있다.

7. 결론

구조변화에 능동적으로 반응하는 예측방법은 구조변화의 변화시점, 변화유형, 변화량을 빠른 시간 내에 정확하게 인식하여 이를 예측에 반영하는 것을 목표로 한다. 이러한 목표를 위해 본 논문에서는 단순상태공간모형에서 세가지 유형의 구조변화에 대해 베이지안관점의 이론적 배경을 바탕으로 구조변화를 인식하고 이를 예측에 반영해나가는 절차를 제시하였다.

모의실험을 통해 인식-예측절차의 성능을 자주 사용되고 있는 다른 몇 가지 예측방법들과 비교 하여 우수성을 입증하였으며, 현실자료에서도 역시 우수함을 나타내고 있음을 미국 경기선행지수 예측을 통해 알아보았다. 이 인식-예측절차의 우수성을 더욱 객관화하기 위해서는 향후 더 많은 예측방법들과의 비교가 필요할 것이다.

참고문헌

- [1] Box, G. E. P., G. M. Jenkins and G. C. Reinsel, Time Series Analysis: forecasting and control, Prentice Hall, 1994.
- [2] Chang, I., G. C. Tiao and C. Chen, 'Estimation of Time Series Parameters in the Presence of Outliers', Technometrics, 30, 193-204, 1988.
- [3] Chen, C. and L. M. Liu, 'Forecasting Time Series with Outliers', Journal of Forecasting, 12, 13–35, 1993.
- [4] Chernoff, H. and S. Zacks, 'Estimation the Current Mean of a Normal Distribution Which Is Subjected to Changes over Time,' Annals of Mathematical Statistics, 35, 999–1089, 1964.
- [5] Ferreira, R. E., 'A Bayesian Analysis of a Switching Regression Model: Known Number of Regimes,' Journal of the Americal Statistical Association, 3, 84-97, 1975.
- [6] Gardner, L. A. Jr., 'On Detecting Changes in the Mean of Normal Variates', Annals of Mathematical Statistics, 40, 116–126, 1969.
- [7] Harrison, P. J. and C. F. Stevens, 'Bayesian Forecasting', Journal of the Royal Statistical Society, Series B, 38, 205-247, 1976.
- [8] Hillmer, S. C., 'Monitoring and Adjusting Forecasts in the Presence of Additive Outliers', Journal of Forecasting, 3, 205–215, 1984.
- [9] Holbert, D. and L. D. Broemeling, 'Bayesian Inference Related to Shifting Sequences and Two Phase Regression', Communications in Statistics, A6, 265-275, 1977.

- [10] Jun, D. B. and R. M. Oliver, 'Baysian Forecasts Following a Major Level Change in Exponential Smoothing', Journal of Forecasting, 4, 293-302, 1985.
- [11] Jun, D. B., 'On Detecting and Estimating a Major Level or Slope Change in General Exponential Smoothing', Jornal of Forecasting, 8, 55-64, 1989.
- [12] Jun, D. B. and Y. J. Joo, 'Predicting Turning Points in Business Cycles by Detection of Slope Changes in Leading Composite Index', Journal of Forecasting, 12, 197–213, 1993.
- [13] Lee, S. K., On Identification of a Transient or Level Change in Exponential Smoothing, MA dissertation, Korea Advanced Institute of Science and Technology, Korea, 1991.
- [14] Lim, C. Z., A Bayesian Approach to Detect Structural Changes in a Simple State-space Model, MA dissertation, Korea Advanced Institute of Science and Technology, Korea, 1996.
- [15] Trigg, D. W. and A. G. Leach, 'Exponential Smoothing with an Adaptive Response Rate', Operations Research Quarterly, 18, 53–59, 1967.
- [16] Tsay, R. S., 'Time Series Model Specification in the Presence of Outliers', Journal of the American Statistical Association, 81, 132–141, 1986.
- [17] Whybark, D. W., 'A Comparison of Adaptive Forecasting Techniques', Logistics Transp. Rev., 9, 13-26, 1973.