
The Design of a Grid-enabled Information Integration
System Based on Mediator/Wrapper Architectures

Jihwan Song1 Sanghyun Yoo1 Chang-Sup Park2 Dong-Hoon Choi3 Yoon-Joon Lee1

1Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology

Daejeon, 305-701, South Korea
2Department of Internet Information Engineering

The University of Suwon
Hwaseong-si, 445-743, South Korea

3National Technical Information System (NTIS) Division
Korea Institute of Science and Technology Information

Daejeon, 305-333, South Korea

Abstract - The advance of Grid computing allows people
not only to solve huge scientific problems using distributed
computing resources but also to access heterogeneous and
distributed data sources through the standard interface of
Grid computing. By adopting the merits of Grid computing,
traditional mediator/wrapper-based Information Integra-
tion Systems are evolving into Grid-enabled systems such
as OGSA-DAI, GDMS, OGSA-DQP, etc. However, these
systems have difficulties in the dynamic virtual organiza-
tion environment because their administrators must create
mediation schemas integrating all data sources that have a
possibility to be added before they are executed. In this
paper, we design a Grid-enabled Information Integration
System based on mediator/wrapper, called Dynamic Me-
diation Service Management System (DMSMS). DMSMS
functions not only to integrate data sources, but also to
find them requested by users, create mediation schemas on
demand, and notify data changes to the subscribers. We
also point out several technical issues for developing
DMSMS to be applied to National Technical Information
System (NTIS). Now, we are on the way of its implementa-
tion.

Keywords: Grid computing, Information Integration Sys-
tem, Mediator, and Wrapper

1 Introduction
 Traditional distributed computing environments have
been constructed using several existing communication
techniques such as socket programming, RPC [1], Java
RMI [2], DCOM [3], CORBA [4], and so on. If different
communication techniques are used in these environments,
the communication is difficult to be done and needs adapt-
ers for interpreting messages sent and received between
constituent systems. It is too labor-intensive to develop
adapters.

 The need for an open standard that encourages inter-
operability between distributed and heterogeneous systems
was a motivation for the Open Grid Services Architecture
(OGSA) [5] proposed by Global Grid Forum (GGF). It
combines Grid computing [6] and Web service technolo-
gies, and is developed as a new standard of distributed
computing environments.

 Grid computing has influenced database systems. The
GGF Database Access and Integration Service (DAIS)
Working Group [7] developed a specification [8] for Grid
database services. The first reference implementation of
this specification, OGSA-DAI [9], is a middleware product
which can support the exposure of data resources onto
Grids, such as relational databases, XML databases, and
file systems. It provides various interfaces for popular
database systems and a simple toolkit for developing client
applications. The software also includes a collection of
components for querying, transforming and delivering data
in different ways. It was designed to be extendable so that
users can add their own functionalities to the collection.
Grid-enabled systems can easily access database systems
wrapped by OGSA-DAI.

 Information Integration Systems [10, 11] are needed
by users who want data sources to be shown as a unified
view. Recently, many Grid-enabled Information Integration
Systems based on mediator/wrapper have been developed
by exploiting OGSA-DAI, such as GDMS [12, 13] and
OGSA-DQP [14, 15, 16]. However, they do not fit in the
dynamic environment because their mapping schemas and
rules must be predefined by system administrators before
they are executed. For example, configuration files for
describing the location of data sources and access methods
must be created in the initialization step in OGSA-DQP.

 In this paper, we design Dynamic Mediation Service
Management System (DMSMS) that is another Grid-

enabled Information Integration System based on media-
tor/wrapper, which is a component of National Technical
Information System (NTIS) [17] supported by Ministry of
Science and Technology (MOST) [18]. Its main function is
to integrate data sources in the Grid computing environ-
ment. Unlike the previous systems, however, DMSMS
provides facilities to find data sources described in Data
Source Description Language and create mediation sche-
mas on demand using Mediation Schema Designer.

 The rest of the paper is organized as follows. We
discuss related work about the Grid-enabled Data Integra-
tion Systems in Section 2. In Section 3 and 4, we describe
the design of our information integration system that is
appropriate for the dynamic environment and suggest sev-
eral technical issues that occur when our system is imple-
mented. We conclude in Section 5.

2 Related Work
 There are many research groups studying Grid-
enabled Data Integration Systems. As results of the re-
search, many products such as OGSA-DAI, GDMS, and
OGSA-DQP have been proposed. We explain details of
these systems as follows.

 OGSA-DAI is a reference implementation of the
specification proposed by DAIS-WG. It is a middleware
product that allows various data resources including rela-
tional databases, XML databases, and file systems to be
accessed via Web Services. The list of supported databases
and file systems are shown in Table 1. OGSA-DAI allow
data to be queried, updated, transformed, and delivered.
They are deployed in a Grid environment and used to make
users' data resources Grid-enabled. As a wrapper, however,
OGSA-DAI just provides unified interfaces to applications
(especially mediators) for integrating various data sources
rather than a virtual data source integrated from heteroge-
neous data sources.

Table 1. Data Resources supported by OGSA-DAI

Data Resource Version
MySQL 3.2.3 or above
IBM DB2 -
Microsoft SQL Server -
Oracle 8/9i

RDBMS

PostgreSQL -
XML DBMS Apache Xindice 1.0

Unix FS - File Systems Windows FS -

Table 2. Comparison of the characteristics of Grid-enabled
Information Integration Systems

 OGSA-DAI GDMS OGSA-DQP
Integrating

data sources X O O

Resolving
heterogeneity X O X

Searching
data sources

on the fly
X X X

 Grid Data Mediation Service (GDMS) is a component
of Grid Miner [19] that is a research project from Vienna
University. GDMS modifies OGSA-DAI to allow virtual
data sources integrated from various data sources to be the
data sources of OGSA-DAI. GDMS adds transformation
functions to resolve the heterogeneity of distributed data
sources. It also provides integrated virtual data sources
using predefined mapping schemas and rules, and has a
distributed query processor to execute user queries over the
virtual mediation schema. However, GDMS does not sup-
port the facilities to search and integrate data sources at
run-time. System administrators should select data sources
and define mapping schema and rules to integrate hetero-
geneous data sources before GDMS is executed.

 OGSA-DQP (Distributed Query Processing) is a part
of a project called myGrid [20] that was carried out by the
Manchester and New Castle University. It is a service-
based distributed query processor using OGSA-DAI.
OGSA-DQP decomposes a user query into local queries by
traditional distributed query processing techniques, exe-
cutes the local queries on the distributed nodes powered by
Grid computing, composes the results sent from each local
site, and returns a final result to the user. A distinguishing
feature of OGSA-DQP is to use idle resources using Grid
computing. This implies that OGSA-DQP divides user
query into sub-queries that can be executed independently
and concurrently, and the sub-queries are executed on idle
resources to improve performance. However, OGSA-DQP
does not provide a complete solution to the heterogeneity
of distributed data sources. It just treats distributed data
sources as relations in a system rather than creates virtual
data sources.

 We have discussed features of three representative
Grid-enabled Information Integration Systems: OGSA-DAI,
GDMS, and OGSA-DQP. Table 2 briefly summarize and
compare their characteristics categorized into integrating
data sources, resolving heterogeneity, and searching data
sources on the fly.

DMSMSs

Applications

Human

Users

Mediation
Schema
Designer

Mediation
Service
Engine

Notification
Service
Engine

RDBMS

XML DBMS

File System

O
G

SA
-D

A
I

O
G

SA
-D

A
I

O
G

SA
-D

A
I

Data Sources

Interface

System Management
Tool (GUI)

Metadata
Repository

Mediation
Schema

Repository

Service
Registry

Interface

Data Source
Registry

MSMS

Metadata
Manager

External
Schema
Manager

Internal
Med. Schema

Manager

Mediation Schema Manager
other

Figure 1. Architecture of DBMS

3 Dynamic Mediation Service
Management System

 We propose Dynamic Mediation Service Management
System that provides the facilities for searching data
sources and creating mediation schemas on demand, as
well as mediation and notification services based on the
mediation schema. In this section, we discuss a lack of the
systems mentioned in Section 2, describe the advantages of
our system, and present the architecture of DMSMS and
the scenarios of Mediation and Notification Services.

3.1 Motivation and Goal of DMSMS
 The previous Grid-enabled Information Integration
Systems based on mediator/wrapper described in Section 2
have limitations in environments where many data sources
are added and removed frequently, such as the dynamic
virtual organization environment. These systems require
mediation schemas at the initialization step. It is inappro-
priate because administrators must create mediation sche-
mas integrating all data sources that have a possibility to be
added before systems are executed.

 In the dynamic environment, a Grid-enabled Data
Integration System based on mediator/wrapper should
provide the facilities for searching data sources from the
registry that manages descriptions of data sources. It also
should provide the GUI tools to support easy and conven-
ient design of mediation schemas.

 The advantages of our DMSMS are as follows: (i)
Users of DMSMS can easily find data sources they need
using Data Source Description Language (DSDL). DSDL

describes data sources in detail such as “what data sources
are provided,” “what the schemas of data sources mean,”
“where data sources are,” and so on. (ii) DMSMS pro-
vides GUI-based Mediation Schema Designer tool for
users to easily create mediation schemas. (iii) It provides
Notification Services to deal with the changes of data
sources in an active manner.

3.2 Architecture of DMSMS
 DMSMS directly searches data sources needed by
users from the external registry that stores the descriptions
of data sources, provides a Mediation Schema Designer
tool for easy creation of mediation schemas, and performs
Mediation and Notification Services. In order to provide
these functionalities, DMSMS consists of four compo-
nents: Main System, Users, Data Source Registry, and
Data Sources (see Figure 1). Below, we briefly describe
these main components.

 Main System: This is a core part of DMSMS. It con-
sists of Service Registry, Mediation Schema Manager
and Repository, Mediation Schema Designer, Media-
tion and Notification Service Engine, Metadata Man-
ager and Repository, and System Management Tool.
Service Registry provides an interface for users to
search the services of DMSMS using Web services or
HTML. Mediation Schema Manager (MSM) provides
the facility for searching data source schemas and me-
diation schemas, and Mediation Schema Repository
stores mediation schemas generated by MSM. Media-
tion Schema Designer (MSD) provides a GUI tool for
creating mediation schemas at run-time. Figure 2
shows the example of a mediation schema generated

by MSD. When a user queries on a mediation schema,
Mediation Service Engine decomposes the query into
local queries, sends each local query to each data
source, gathers and combines results, and returns the
combined result to the user. Notification Service En-
gine notifies the changes of data sources to relevant
subscribers. Metadata Manager and Metadata Reposi-
tory stores and manages configurations used in the sys-
tem.

 Users: They are the subjects of using Main System.
They can be applications, human, or other DMSMSs.
While applications and other DMSMSs access Main
System through the interfaces of Web services, human
can access it using Web browsers.

 Data Source Registry: Data sources register their de-
scriptions with this component. Users can find data
sources here through the services of the Main System.

 Data Sources: RDBMSs, XML DBMSs, and file sys-
tems wrapped by OGSA-DAI can be data sources (re-
fer to Table 1).

3.3 Mediation and Notification Service
Scenarios

 In this section, we describe Mediation and Notifica-
tion Services. Mediation Service allows users to access
more than one data sources over a mediation schema and
retrieve integrated data they want. By Notification Service,
the changes of virtual data sources are delivered to proper
subscribers. Figure 3 shows the conceptual sequence dia-
grams of Mediation and Notification Services.

 Figure 3 (a) presents the execution sequence of Me-
diation Service. It consists of the following phases:

1. A user finds data sources or virtual sources (media-
tion schemas) from Data Source Registry or Media-
tion Schema Repository using Mediation Schema
Manager (MSM). MSM returns the descriptions of
data or virtual sources needed by the user.

2. The user creates a mediation schema using Media-
tion Schema Designer (MSD) if they failed to find
any appropriate mediation schema in phase 1. At this
time, MSD obtains information for generating me-
diation schema from data sources. Mediation Schema
Manager stores the mediation schema into Mediation
Schema Repository and returns Mediation Schema
Reference (MSR) to the user.

3. The user sends a query with MSR to Mediation Ser-
vice Engine (MSE). MSE retrieves a mediation
schema from MSM. It parses, decomposes, optimizes
the user query, and generates local queries. Then, it
sends the local queries to data sources and retrieves
results from data sources. Finally, MSE transforms
the results into a user's favorite form and delivers the
final result to the user.

 Figure 3 (b) presents the execution sequence of Noti-
fication Service. Their phases are as follows:

1. This phase is equal to the phase 1 of Mediation Ser-
vice.

2. This phase is equal to the phase 2 of Mediation Ser-
vice. (Phase 1 and 2 are omitted in Figure 3 (b))

r_fname

r_lname

r_addr

r_tel

name

address

phone

researcher_name

researcher_address

researcher_phone_number

transform

Data source A�s schema

Data source B�s schema

Mediation schema

<mediationSchema>
�
<table name=�researcher_information�>

<attribute name=�researcher_name>
<type>string</type>
<length>10</length>

</attribute>
�

</table>
<mappingRule>

<dataSource URI=�http://dataSourceA/rt�>
<concatenate equalTo=�researcher_name�>

<attribute name=�r_fname�/>
<attribute name=�r_lname�/>

</concatenate>
�

</dataSource>
�

</mappingRule>
�

</mediationSchema>

Figure 2. The example of a Mediation Schema

Service
Registry

Mediation
Schema

Designer
Mediation
Service
Engine Data Source

request data or virtual sources user want

data and virtual source list

Data Source
Mediation
Schema
Manager

query with MS ref.

local queries

local results

MS reference

Data Source

�

create mediation schema
request metadata

register MS
create MS

request MS

parsing, decomposing, optimizing, �

User
Service
Registry

Mediation
Schema
Designer

Notification
Service
Engine Data SourceData Source

Mediation
Schema
Manager

register topic including MS ref. with NSE

register local topics

Data Source

�

request MS

parsing, decomposing, �

User

NS ref.
notify changes

Is there any change?

unregister topic
unregister local topics

(a) Mediation Service (b) Notification Service

Figure 3. Conceptual sequence diagrams of Mediation and Notification services of DMSMS

3. The user registers a topic with Notification Service
Engine (NSE). (The topic consists of MSR and some
conditions that are used to check if data sources
change.) NSE fetches mediation schema from Me-
diation Schema Repository. NSE parses user's topic
and decomposes it into local topics. NSE registers
these local topics with data sources and returns Noti-
fication Service Reference to the user.

4. When a change occurs in a data source, it is notified
to NSE. NSE transforms the changed status into
user's favorite form.

5. The user asks NSE whether a data source he has in-
terest in have changed using Notification Service
Reference. If NSE has been notified some changes, it
returns them to the user.

6. The user unregister topic from NSE when he does
not need topics any more. NSE also unregister local
topics from data sources.

4 Technical Issues
 In the previous section, we have analyzed users' re-
quirements and conceptually designed DMSMS. In this
section, we point out several technical issues that should be
considered when developing an integration system based
on the proposed architecture to increase system perform-
ance and/or offer users' convenience.

4.1 A Data Source Description Language
and Its Query Language

 DMSMS must help users to easily find data sources
they need on the fly. In order to achieve this purpose, we
should consider (i) Data Source Description Language
(DSDL) that is used to describe data sources in a formal
way, (ii) Data Source Registry (DSR) that stores and man-
ages descriptions of data sources, and (iii) a query lan-

guage and query processor for finding descriptions of
needed data sources.

 DSDL, defined by an XML format, allows owners of
data sources to describe their data sources in a standard
way. In order to find all data sources required by users, it
should have expressive power enough to describe whole
information of data sources such as databases, tables, at-
tributes, and access methods. In addition, it must be able to
represent information about replicas if data sources are
replicated to improve performance and/or availability.

 DSR stores and manages descriptions of data sources.
Users check whether data sources exist by communicating
with it. The physical storage of DSR can be based on
RDBMS, XML DBMS, or other storage systems. The most
important thing is that the storage system should be care-
fully designed to be efficient because it will store a large
number of descriptions and process lots of queries sent by
users.

 DSR must support a query language for finding de-
scriptions on data sources. If users write a query with the
query language and send it to DSR, DSR processes it and
returns the results. Because SQL is widely used, SQL-like
query language will be desirable although query processing
logic will be very different. Queries and results will be
transmitted via Web Services.

 In addition, virtual data sources presented by media-
tion schemas are also described by DSDL and the results
are stored in Internal Mediation Schema Manager.

4.2 A Mediation Schema Definition
Language

 Mediation Schema Definition Language (MSDL) is
an XML instance for defining mediation schemas. Users
usually want selected data sources to be shown as one
unified view. Using MSDL, users can create mediation

schemas that specify which attributes of which data sources
should be included and what they should be named in the
integrated view.

 Even with a well-designed MSDL, it is difficult to
make good mediation schemas because users have to spec-
ify much information into the schemas. In order to solve
this problem, DMSMS should provide a GUI-based tool
for users to easily define mediation schemas. This tool
would automatically generate XML-based mediation
schemas after the user visually designs an integrated data
source with just a few drag-and-drops and mouse clicks.

 Mediation Schema Repository (MSR) stores media-
tion schemas defined by MSDL and users find them in
MSR using Internal Mediation Schema Manager (IMSM).
IMSM should be designed in consideration of efficient
storage systems, query languages, and query processors
because the descriptions of virtual data sources are stored
in IMSM.

4.3 Use of Caches
 By caching the query results, the system performance
could be improved if there is a containment relationship
between two queries. We define a query q contains another
query q′ if and only if the result set of q is the super-set of
that of q′. In this case, if we cache the results of q, those of
q′ can be retrieved from the cache without re-accessing to
the data source. Moreover, we can utilize the cached results.

 In order to improve the system performance by using
cache, we should design mechanisms to determine if we
can use the cached results instead of re-accessing to the
data source. First, the mechanism checks the relationship
between two mediation schemas referenced by two queries.
Then, it checks if a containment relationship exists between
two queries and if cached results can be used instead. The
mechanism also has to solve traditional cache problems
such as cache replacement and invalidation.

4.4 Replica Selection
 A replica selection influences performance and avail-
ability of systems. As described in Section 4.1, if a data
source has several replicas, DMSMS can recognize the fact
that all of them represent the same data. Therefore, when
DMSMS receives a query about the data source that has
many replicas, it should be able to determine which replica
is the best one to process the query. DMSMS will send the
query to the selected replica in consideration of the net-
work status, a load of each replica, and the cache status.

Data source Data source Data source Data source Data source

Mediation schema

�

Data source Data source Data source Data source Data source

Mediation schema

�

Mediation schema

Mediation schema

(a) Flat Mediation Schema

(b) Hierarchical Mediation Schema

Figure 4. Flat vs. hierarchical mediation schema

4.5 Automatic Mediation Schema
Modification

 Automatic mediation schema modification is needed
to improve system performance and reduce maintenance
costs. First, to improve system performance, we should
choose flat mediation schema or hierarchical one presented
in Figure 4 in consideration of all conditions such as query
result caches, the number of data sources, and so on. If the
hierarchical method is exploited, there are some advantages
that users can easily define mediation schemas by using
pre-defined schemas and the system can use caches that
may be constructed on schemas in the lower level. There-
fore, the system will process the query by automatically
changing hierarchically defined schema to flat schema or
vise versa according to the query execution plans. Second,
in order to reduce maintenance costs, mediation schemas
should be automatically modified when the schemas of
data sources are modified. Maintaining mediation schemas
is really labor-intensive because the schemas of data
sources are often modified without notification. Therefore,
DMSMS must periodically find changed schemas and
automatically modify mediation schemas that consist of
them.

4.6 Intelligent Data Integration Using
Ontology

 It is possible to construct Intelligent Information
Integration Systems (IIIS) if data sources and mediation
schemas are described by ontology languages such as Re-
source Description Framework (RDF) [21], RDF Schema
(RDFS) [22], and Web Ontology Language [23]. In order
to resolve heterogeneity, traditional systems transform
some terms to other terms using mapping rules predefined
by system administrators. These systems would deliver
wrong results or could not operate at all unless mapping
rules are defined. Therefore, these IIIS can integrate infor-

mation automatically without predefined mapping rules by
exploiting ontologies.

5 Conclusions
 We presented the design of a Grid-enabled Informa-
tion Integration System based on mediator/wrapper, called
Dynamic Mediation Service Management System
(DMSMS). DMSMS searches data sources needed by users
at run-time through Data Source Registry, and provides a
GUI-based Mediation Schema Designer tool to help users
to create mediation schemas easily and conveniently. Our
system also provides a mediation service over virtual data
sources (mediation schemas) and a notification service to
actively deal with the changes of data sources.

 We mentioned important technical issues that would
occur when implementing a real product. They include (i)
definition of Data Source Description Language (DSDL)
and its query language, (ii) definition of Mediation Schema
Definition Language (MSDL), (iii) use of caches for im-
proving performance, (iv) replica selection for improving
availability as well as performance, (v) automatic media-
tion schema modification, and (vi) intelligent integration of
information using ontologies. We could develop more
reliable and efficient system considering these issues.

Acknowledgements
 This work was partially supported by Korea Institute
of Science and Technology Information (KISTI) and the
Ministry of Information and Communication, Korea, under
the College Information Technology Research Center
(ITRC) Support Program.

References
[1] A. Birrell and B.J. Nelson, “Implementing Remote

Procedure Calls,” IEEE Computer, Vol 25, No. 3, pp.
38-49, Mar. 1992.

[2] Java RMI, http://java.sun.com/products/jdk/rmi/

[3] DCOM,
http://www.microsoft.com/com/tech/DCOM.asp

[4] CORBA, http://www.corba.org/

[5] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke,
“The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,”
The Globus Alliance, Jun. 2002.

[6] I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann,
1998.

[7] GGF Database Access and Integration Service Work-
ing Group, http://www.cs.man.ac.uk/grid-db/

[8] M. Atkinson, R. Baxter, and N.C, Hong, “Grid data
access and integration in OGSA,” Data Access and
Integration Working Group, Apr. 2002.

[9] OGSA-DAI, http://www.ogsadai.org.uk/

[10] G. Wiederhold, “Mediators in the architecture of
future information systems,” ACM Transactions on
Computer Systems, Vol 2, No. 1, pp. 39-59, Feb.
1984.

[11] S. Busse, R.D. Kutsche, U. Leser, and H. Weber,
“Federated information systems: concepts, terminol-
ogy and architectures,” Technical University of Berlin,
1999.

[12] A. Wöhrer and P. Brezany, “Mediators in the Archi-
tecture of Gird Information Systems,” Institute for
Software Science, Feb. 2004.

[13] A. Wöehrer, P. Brezany, and I. Janciak, “Virtualiza-
tion of Heterogeneous Data Sources for Grid Infor-
mation Systems,” Proc. MIPRO, 2004.

[14] OGSA Distributed Query Processing,
http://www.ogsadai.org.uk/dqp/

[15] M.N. Alpdemir, A. Mukherjee, N.W. Paton, P. Wat-
son, A.A.A. Fernandes, A. Gounaris, and J. Smith,
“Service-based distributed querying on the grid,”
Proc. ICSOC, 2003.

[16] J. Smith, A. Gounaris, P. Watson, N.W. Paton, A.A.A.
Fernandes, and R. Sakellariou, “Distributed Query
Processing on the Grid,” High Performance Comput-
ing Applications, Vol 17, No. 4, pp. 353-367, 2003.

[17] National Technical Information System,
http://www.kisti.re.kr/english/03_department
/info_depart_01.jsp?mid=03_01

[18] Ministry of Science and Technology,
http://www.most.go.kr/en/sce02/sce0201/

[19] University of Vienna Institute for Software Science,
The Knowledge Grid Project,
http://www.gridminer.org/

[20] myGrid project, http://www.mygrid.org.uk/

[21] Resource Description Framework (RDF),
http://www.w3.org/RDF/

[22] RDF Schema, http://www.w3.org/TR/rdf-schema/

[23] OWL Web Ontology Language,
http://www.w3.org/TR/owl-features/

	1 Introduction
	2 Related Work
	1
	3 Dynamic Mediation Service Management System
	3.1 Motivation and Goal of DMSMS
	3.2 Architecture of DMSMS
	3.3 Mediation and Notification Service Scenarios

	4 Technical Issues
	4.1 A Data Source Description Language and Its Query Language
	4.2 A Mediation Schema Definition Language
	4.3 Use of Caches
	4.4 Replica Selection
	4.5 Automatic Mediation Schema Modification
	4.6 Intelligent Data Integration Using Ontology

	5 Conclusions
	Acknowledgements
	References

