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Summary

We consider the satellite cluster scheduling problem which is one of the most interesting problems in
satellite communication scheduling area. This problem is known to be NP-complete and a couple of heuristic
algorithms had been developed. In this paper, we suggest another algorithm for this problem which has the
same computational complexity as the best existing one and provides much better solution quality. Extensive

computational simulation results are reported.
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I. INTRODUCTION

As the demands of satellite communication rapidly grow, the natural resources they use, the RF spec-
trum and the geosynchronous orbit, are becoming highly crowded. The utilization of the above natural
resources is optimized by employing multibeam antennae and satellite-switched time-division multiple-access
(SS/TDMA ) techniques!=3. In an SS/TDMA system, a satellite has a number of spot beam antennas, each
providing coverage for a limited geographical zone. The solid-state RF switch on-board the satellite provides
connections between the various uplink and downlink beams according to the TDMA frame. The frame is
divided into time slots. Each time slot represents a particular switching matrix configuration, which allows
to transmit a certain number of packets between the connected uplink and downlink beams without conflict.
Single satellite SS/TDMA systems were extensively studied under various optimization criterions! =3,

In many practical situations, ground stations exchanging traffic are not always visible by the same
satellite. Current practices involve either the use of ground communication lines or rerouting the traffic via
an intermediate ground station which is in the line of sight of two satellites, one visible by the transmitter
and the other visible by the receiver. In both cases, extra earth resources are used, thus reducing the
total efficiency of the system. A more efficient solution for the above problem is the interconnection of
satellites by intersatellite links (ISL), creating a satellite communication network®~!!. The ISL system
characteristics that can be utilized for supporting the existing systems are : coverage extension, improved
orbit/spectrum utilization, reduced number of earth station antennas, improved transmission quality, and
continued service cost reduction!!. Therefore SS/TDMA satellites with no on-board buffering, interconnected
through intersatellite links, are very promising.

However, in this case we need to solve the satellite cluster scheduling problem which has to account for
additional constraints in addition to the single satellite SS/TDMA scheduling constraints. Specifically, the
continuous assignment from the source earth zone to the destination earth zone through the ISL should ac-
count for 1) transmission conflicts on the ISL’s and 2) the traffic arriving from the ISL should be immediately
switched to the appropriate downlink.

It has been proven that the time slot assignment problem for satellite clusters with an arbitrary num-
ber of satellites is NP-complete, even for quite restricted intersatellite link patterns and simplified models®.
Heuristic algorithms were presented in Reference 9 for two satellites, each covering similar number of dis-
Joint ground stations, and one ISL. In Reference 11, presented was a heuristic algorithm for an arbitrary
number of satellites, each covering an arbitrary number of disjoint zones and an arbitrary configuration of
interconnection through an arbitrary number of intersatellite links. The algorithm is based on the algorithm



for openshop scheduling problem, and has O(rM?) computational complexity, where r is the number of
non-zero elements in the traffic matrix, M is the number of geographical zones. However, the quality of its
solutions is not quite satisfactory. The simulation result in Reference 11 shows that the solution could be
deviated from its optimal solution by 9.03%.

In this paper, we suggest a new simple algorithm for the SS/TDMA slot assignment problem for a
satellite cluster. This algorithm is based on the observation that the traffic demand from one satellite to
another with the smallest number of intersatellite communication channels may cause a bottleneck in the
scheduling and, hence, should be scheduled first. The algorithm has O(rM?) computational complexity
like the one in Reference 11. However, computational test shows that our algorithm generates much better
solutions than the one in Reference 11 in most cases. Furthermore, we generalize the SS/TDMA slot
assignment problem in one more respect. In practice, each satellite may have multiple on-board transponders.
Actually, many researchers have investigated the system with an arbitrary number of transponders in the
case of single satellite system!~%. In this paper, we consider a more generalized model which has not only
an arbitrary number of satellites, each covering an arbiirary number of disjoint zones, and an arbitrary
configuration of interconnection through an aerbitrary number of intersatellite links, but also an arbitrary
number of on-board transponders.

This paper is organized in the following way. The problem fomulation and a theoretical lower bound on
the switching duration are given in Section II. Section III presents our heuristic algorithm. In Section IV,
two examples are presented for the demonstration of our algorithm and extensive computational test results
of our algorithm are reported and compared with the one in Reference 11. Section V concludes the paper.

II. PROBLEM FORMULATION

We consider a cluster consisting of S satellites, C = {1,2,...,S}, and a set of M disjoint geographical
zones, Z = {1,...,M}. Satellite p in the cluster covers a subset, Z,, of Z. We assume that no zone is
covered by more than one satellite. Hence, Z, N Z, = @ for two different satellites p,q. All uplinks and
downlinks are assumed to have equal bandwidth. For two different satellites p, g, there are [, intersatellite
links from satellite p to satellite ¢. In addition, there are I,, transponders in satellite p.

The traffic demand is chracterized by an M x M matrix D with entry d;; representing the amount of
traffic from uplink beam (source zone) i to downlink beam (destination zone) j, measured in time slot units.
If zone i is visible by satellite p, zone j by satellite ¢ (¢ # p), and the two satellites are not interconnected by
ISL’s, then d;; and dj; are equal to 0. We denote by D(p, q) the |Z,| x |Z,| submatrix of D representing the
traffic between zones visible by satellite p and zones visible by satelite g. Of course D(p, p) is the |Z,| x |Z,|
submatrix of D representing the traffic between zones visible by satellite p alone. We refer to D(p,q) as
the intersatellite submatriz. Note that the transmission of the traffic in the intersatellite submatrix D(p, q)
requires both a transponder and an ISL simultaneously. D(p, ) is |Z,| X |Z| submatrix of D representing the
traffic originating from zones in Z,. Also D(-,q) is |Z| x | Z,| submatrix of D representing the traffic arriving
to zones in Z,. We shall use line to refer either to a row or to a column of a matrix.

The scheduling algorithm has to decompose the given traffic matrix D into distinct switching matrices,
D = D)+ Dy+...4 D, where n denotes the number of switching configurations. Such a matrix characterizes
a particular switching configuration and its corresponding traffic load being switched without conflict. To
obtain a conflict free assignment, a switching matrix D; must be an M x M matrix with at most one positive
entry in each line, at most I, positive entries in each submatrix corresponding to D(p, ¢) where p # ¢, and
at most Ipy(lg,) positive entries in each submatrix corresponding to D(p, -)(D(-,q)), respectively. The largest
entry in a switching matrix D; dictates the switching duration of D; denoted by L;. The total duration
needed to schedule the complete traffic matrix D is given by L = Ly + Ly + ...+ L. A schedule for D is
optimal if its total duration is minimal.

Bertossi, et al. considered a special case when there are two satellites, each has [Z,| transponders and
one ISL?. Ganz, et al. considered the case where there are an arbitrary number of satellites and each satellite
p in the cluster has |Z,| transponders and an arbitrary number of ISL’s'!. In our paper, we consider the case
when there are an arbitrary number of satellites and each satellite p has lp, (1 < l,p < |Z,|) transponders
and an arbitrary number of ISL’s.

We first genenalize the theoretical lower bound on the minimal duration given in Reference 11 to our
system with an arbitrary number of transponders. We denote by r; the sum of entries in the ith row of



the traffic matrix D and by c¢; the sum of entries in the jth column of D. Let T(p,q) denote the amount
of traffic in the submatrix D(p,q), that is, the sum of all entries in D(p, q). Let T(p,-) (T(-,q)) denote the
amount of traffic in the submatrix D(p,-) (D(,q)), respectively.

Theorem 1 : Any schedule for D has length not smaller than
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where [z] is the smallest integer greater than or equal to z.
Proof : All entries in the same line must be transmitted sequentially to avoid conflicts. And entries

in the intersatellite submatrix can be transmitted at most {,; units in a time unit. Also, entries in the
submatrix D(p,-) (D(:,q)) can be transmitted at most l,, (I;¢) units in a time unit, respectively. Hence a
lower bound is given as above. ]

III. ALGORITHM

The optimal time slot assignment problem has been proved to be NP-complete®. In this paper we
present a fast heuristic algorithm called SCS (Satellite Cluster Scheduling). Let the degree of row i (column
J) denoted by df (df) be the number of non-zero elements in row i (column j), respectively.

There are l,, communication channels from satellite p to satellite g. The traffic demand from one
satellite to another with the smallest number of communication channels I, may cause a bottleneck in the
scheduling. Hence this demand should be scheduled first to avoid unnecessary delay. Futhermore, the degree
of a line in D implies the number of alternatives in selecting a cell in the line. The traffic demand between
uplink and downlink zones in D(p,¢) with the smallest row and column degrees in D may also cause a
bottleneck in the scheduling. Hence this demand should be scheduled first.

Based on the above arguments, we first choose a submatrix D(p,q) which has the smallest value of
lpg, P,q € C. If we do not have available transponders in satellite p and satellite ¢, then all the remaining
lines in the submatrix are removed and the degree of each line is updated. Then we choose the next pair of
satellites with the next smallest l,,. Otherwise, we find a row ¢ with minimum degree and find a column j
with minimum degree and non-zero d;j, where d;; is the (i, j) element in D. If we find more than one column
with the minimum degree, choose the column j with maximum remaining traffic d;j since it is desirable to
transport the maximum traffic first through the switching matrix. The entry in the selected cell is stored
in the switching matrix. Since a switching matrix can have only one nonzero entry in each line, remove the
row i and column j from the traffic matrix and update the degree of lines. And then choose the next cell
in D(p,q) similarly and repeat this procedure until either the number of selected cells is equal to I,,, or
no available transponders exist, or all lines in the submatrix are removed. In the first and second case, all
remaining lines in the submatrix are also removed and the degree of each line is updated.

Now, we have obtained a temporary switching matrix from zones in Z, to zones in Z4. Then we choose
the next pair of satellites with the next smallest l,, and construct a temporary switching matrix between
this pair of satellites in a similar way. This process continues until no lines are left in the traffic matrix.
Then we come to obtain a complete temporary switching matrix. Since the duration time of this switching
matrix is equal to the value of its largest non-zero entry, it is economical to truncate all its value to the
value of its smallest non-zero entry. Now we have constructed the first complete switching matrix D;. The
resultant switching matrix is subtracted from the original traffic matrix D. The whole process explained
above is repeated until no traffic is left in D.

This algorithm is described below in detail. Let us denote the number of non-zero elements in row i
(column j) of D(p, q) by d¥(q) (d$(p)) respectively.

Algorithm SCS (Satellite Cluster Scheduling) :
STEP 0 : (Initialization)
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Let D be a given traffic matrix. Set k£ «— 1.
Each ordered pair (p, q) is indexed from 1 to S? according to
the ascending order of [,,.
STEP 1 : (Obtaining a temporary switching mairiz)
(1.0) Dy —0;ID — 1.
D — D;T7(p) « lpp, T%(p) « lpp for all pe C.
Find df(¢) for alli € Z,q € C.
Set df « >°0_,di(q) foralli€ Z.
Find di(p) for all j € Z,p € C.
Set df Z;=1 di(p) for all j € Z.
(1.1)  Select the ordered pair (p,§) with index ID.
(1.2)  (Obtaining a temporary switching matriz for (p,q))
(1.2.0) If (T7(p)) > 0) and (T°(g)) > 0) then
goto Step (1.2.1). Otherwise, goto Step (1.3).
(1.2.1)  (Select a cell)
i*— {i | min {d] | i € Zp, d5(q) # 0}).
If ©* is not found, goto Step (1.4). Otherwise,
j* —{j | min {d | j € Z7,di-; # 0}}. If we find
two or more j*, then choose j* with the largest Jg—j.
Store (i*,j*) entry in the switching matrix Dy.
T"(5) — T7(5) — L,TS(3) — T(3) - 1.
(1.2.2) (Update the degree of lines)
For each non-zero d;+;(j € Z), di —dj — 1;di+; — 0;
if j € Zp,p € C then d§(p) — di(p) — 1.
For each non-zero J;J--(i €2),d] —df — I;J;j- —0;
ifi € Zp,p € C then dl(p) — dl(p) — 1.
di.(p) « 0,d;.(p) < 0 for all p € C;d. — 0;dj. — 0.
(1.2.3) If (the number of selected cells is less than [5;) then
goto Step (1.2.0). Otherwise, goto Step (1.3).
(1.3) For each non-zero d}(g), d5(p),
& — 7 — d7(3); 5w d — d5(5); d7(4) — 0;d5(5) — 0.
Goto Step (1.4).
(1.4) If non-zero df, d§(¢, j € Z) exist, ID «— ID + 1; goto Step (1.1).
Otherwise, goto Step 2.
STEP 2 : (Obtaining a swilching matriz)
Find the smallest non-zero entry, let d*, in Dy.
Form a switching matrix D; by truncating all its non-zero entries
to the value of d*.
STEP 3 : (Adjusting D)
Set D — D — Dg. If D contains no non-zero entry, then STOP.
Otherwise, set k — k + 1; goto STEP 1. m

Theorem 2 : The overall time complexity of the algorithm SCS is O(rM?), where r is the number of
non-zero elements in D, M is the number of zones.

Proof : O(M?) time is needed to calculate the degree of lines in step (1.0). Selecting a cell in step
(1.2.1) requires O(M) time, because |Zj| is less than M and d7.(q) is less than M. Step (1.2.2) requires
O(M) time, since the number of non-zero elements in a line is at most M. At most O(M) iterations of step
(1.2.1) and (1.2.2) are needed to find a switching matrix. It is because a switching matrix has at most M
non-zero elements and the total number of transponders is less than or equal to M. And step (1.3) requires
O(SM) time to find a switching matrix, where S is the number of satellites, since the number of non-zero
di(g),t € Z,q € C is at most SM. In the worst case, the number of switching matrices generated is O(r),
since at least one non-zero entry is entirely scheduled in each switching matrix. Thus the worst case overall
time complexity of this algorithm is O(rM? + rM? + rSM) = O(rM?) since S < M. [ ]



IV. EXAMPLES AND SIMULATION RESULTS

IV-1. Examples
In this section we demonstrate our algorithm for two example systems in Reference 11. For each example
we present the scheduling provided by SCS and the scheduling provided in Reference 11 for the purpose of

comparison. The examples are as follows :
Example 1 : There are a cluster of two satellites, each satellite covering four zones. There are two intersatellite

links from satellite 1 to satellite 2, and one intersatellite link from satellite 2 to satellite 1. The zones covered
by satellite 1 and 2 are Z; = {1,2,3,4}, Z, = {5,6, 7,8}, respectively. An 8 x 8 traffic matrix is shown in
Fig. 1. The lower bound from Theorem 1 is 6. The total duration of this system obtained by SCS is 9,
which is the same as that provided by Reference 11. In this case, two methods generate the same quality
solutions.

6 00 00 0O 0\
0 3000O0CO0 3
006 00000
D= 0 00 3 0300
“10 00 3 00 0 3
0000 0O0OTGCGO
0 3000300
0 0006 00 0)
Fig. 1. 8 x 8 traffic matrix D.

Example 2 : There are a cluster of two satellites, each satellite covering three zones. There is one intersatellite
link from each satellite to another. The zones covered by satellites 1 and 2 are Z, = {1,2,3}, Z, = {4,5,6},
respectively. A 6 x 6 traffic matrix is shown in Fig. 2. The lower bound from Theorem 1 is 3.

(9 (@ (&

1 10001
011010
1 01100
P=1lo10101
1 00110
0 01011
Fig. 2. A cluster of two satellites, and the ISL traffic matrix D.

A. The scheduling provided by SCS

We obtain a decomposition of D into switching matrices with duration time 3. This duration is the
same as the lower bound LB in Theorem 1. Hence our solution is an optimal solution. We will represent the
switching matrix as a set of (row,column) having non-zero element in the switching matrix.

Dy ={(1,6),(2,3),(3,1),(4,2),(5,4),(6,5) };

Dy = {(11 2),(2,5),(3,3),(4,4),(5,1), (6, 6)}1

D3 = {(11 1), (2’2)! (314); (4, 6)) (51 5)1 (6x 3)}
B. The scheduling provided by Reference 11

In Reference 11 a decomposition of D into switching matrices with duration time 5 is obtained as follows
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};
};

D, ={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)
Dy = {(1,2),(2,3),(3,1),(4,6), (5,4),(6,5)
D3 = {(1,6),(4,2)};
D4y = {(2,5),(5,1)}.
Ds ={(3,4),(6,3)}.

In this case, our method generated a better quality solution than Reference 11.

IV-2. Simulation Results

SCS is implemented in Pascal and simulation test has been performed. Test examples have S =
2,3,4,M = 6,8,12. For each case we have applied the SCS to 100 matrices containing integers randomly
generated from a uniform distribution between 0 and k, k = 5,10,20,50. This random generation format is
exactly the same as that in Reference 11. The lower bound LB, the average duration L, the average surplus
percentage from the lower bound are reported.

Table 1 shows the simulation results when each satellite has M /S transponders and each ordered pair
of satellites has an ISL. This case can also be solved by the algorithm presented in Reference 11. Hence
the results of both methods are reported in this Table 1. The table shows that our algorithm generates
much better solutions in all cases than Reference 11. Furthermore, for problems 6 and 8-11, our algorithm
generates exact optimal solutions.

In Table 1, we also report the average number of switching configurations 7 since this colud be another
important factor in the SS/TDMA scheduling. Since both algorithms were not developed to minimize the
number of switching configurations, both algorithms provide similar results for this numbers. It could be
an interesting future research to adjust our algorithm so that it can also reduce the number of switching
configurations.

Table 2-4 show the results, obtained by SCS, for more general systems with an arbitrary number of
intesatellite links and on-board transponders. Even though the algorithm in Reference 11 was not developed
to handle this case, we can easily modify this algorithm to solve this case also. The modified algorithm is
denoted by [11]* and compared with ours. Table 2 is the results when there are two satellites, and {l,,} is

given as
3 1
{Ipq} = (1 2).

Our algorithm generates schedules which have surplus from LB about 7 %.
Table 3 is the case where there are 3 satellites and {l,,} is given as

3 11
{e}=1{1 2 1
1 2 4/

In this case, the surplus from LB is around 4 %.
Table 4 is the case where there are 4 satellites and

2 1 2 1

1 3 11
{IPQ} - 2 1 3 1

1 11 3/,

The surplus from LB is around 6 %. Table 2-4 also show our algorithm generates much better solutions than
[11]*.



Table 1. Computational Results
Prob. S M k LB L Surplus fl
from LB(%)
SCS [11] SCS [11] SCS (11]
1 2 6 5 26.20 26.47 27.23 0.69 3.23 19.17 18.82
2 2 6 10 51.01 51.33 53.77 0.38 4.83 25.70 29.94
3 2 6 20 97.59 98.22 101.66 0.58 4.22 29.94 29.57
4 2 6 50 255.17  256.92  264.78 0.64 4.31 33.19 33.21
5 2 8 5 43.35 43.37 43.74 0.05 0.68 30.75 30.36
6 2 8 10 88.24 88.24 89.17 0.00 1.26 43.01 42.60
7 2 8 20 171.27 17128 171.82 0.01 0.75 50.72 51.13
8 2 8 50 433.96 433.96 439.25 0.00 1.06 58.67 58.26
9 2 12 5 95.90 95.90 96.15 0.00 0.28 63.67 63.35
10 2 12 10 187.94 187.94 188.54 0.00 0.44 87.17 86.28
11 2 12 20 376.17 376.17 377.89 0.00 0.44 107.25 108.70
12 3 12 5 48.65 50.94 52.55 4.23 7.39 45.83 45.83
13 3 12 10 95.23 99.2C 103.34 4.39 8.91 72.53 72.96
14 3 12 20 189.58 198.39 204.46  4.08 7.88 98.52 98.89
15 4 12 5 40.69 41.32 48.05 1.60 19.86 39.11 42.47
16 4 12 10 81.26 82.65 94.72 1.98 15.91 65.34 68.30
17 4 12 20 161.13  162.92  190.16 1.09 16.32 93.01 96.18
Table 2. Computational Results
Prob. S M k LB L Surplus n
from LB(%)
SCS [11]* SCS [11)* SCS [11]*
1 2 6 5 26.01 27.78 28.51 6.29 9.19 19.63 19.42
2 2 6 10 51.95 56.28 57.37 7.60 8.87 26.19 25.93
3 2 6 20 104.00 11256 114.38 7.28 9.12 30.37 30.11
Table 3. Computational Results
Prob. S M k LB L Surplus n
from LB(%)
SCS [11]* SCS [11]* SCS [11)*
1 3 12 5 63.31 66.10 68.85 4.59 8.97 55.31 56.01
2 3 12 10 12499 13064 135.82 3.99 8.40 82.96 83.80
3 3 12 20 247.85  259.50 269.84 4.92 9.83 107.46  107.33
Table 4. Computational Results
Prob. S M k LB L Surplus fi
from LB(%)
SCS [1my* 5CS 11)* SCS [11)*
1 4 12 5 47.95 51.11 58.11 6.02 20.76 44.93 47.10
2 4 12 10 96.48  102.30 116.63 6.28 20.31 71.92 74.11
3 4 12 20 188.87  200.84 230.62 6.65 21.32 97.57  100.11

— 19 —



V. CONCLUSIONS

In this paper, we considered the-satellite cluster scheduling problem which is one of the most interest-
ing problems in satellite communication scheduling area. Our presented algorithm has low computational
complexity and provides a solution very close to the optimal schedule.

- This type of scheduling will be more important and interesting problems in the future when the low earth
orbit satellite communication systems become more commonly used. In this case, the scheduling problem
becomes dynamic. Extending our algorithm to cover this case would be an interesting future research work.
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