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ABSTRACT

In this paper we consider the frequency assignment problem (FAP) in a cellular mobile communication system
which has a maximal distance of channel interference. This special structure is observed in most cellular
systems. To handle the considered FAP, we use the pattern approach which fits naturally to the problem.
Based on this approach, we are able to formulate the considered FAP into a manageable optimization
problem and propose a two phase heuristic algorithm for the problem. Computational experiments show
that our algorithm performs much better in both solution quality and computational time than the recently
developed algorithms for FAP. Since the considered FAP well reflects most cellular systems, our algorithm
can be applied to many practical situations.

I. INTRODUCTION

Recently, there has been tremendous increase in traffic demand for communication services in cellular
mobile communication systems [9], [10]. However the frequency spectrum allocated to the systems is limited;
hence, it becomes more important how to use frequency channels in the most economic way whether the
systems are based on the frequency division multiple access (FDMA) or the time division multiple access
(TDMA) [9], [10], [13]. The frequency assignment problem (FAP) deals with this problem.

Inspired by the graph coloring techniques, many algorithms have been provided for FAP (see [1], [4],
{6), [7], [14], [16] and the literatures quoted therein). Since FAP is an NP-complete optimization problem
[6], most of these algorithms have a heuristic nature and their results are still far from being satisfactory
{2]. Furthermore, some researchers pointed out that any of the known heuristic algorithms could provide
a solution whose quality deviates from the optimal value by more than 100% in certain cases [5]. This is
mainly because these algorithms target FAP in general form and, therefore, cannot be effective in all the
special cases of the problem.

In this paper, unlike the existing works, we consider the FAP in a cellular system with a special structure,
which has a mazimal distance of channel interference [2]-[4], [9], [10]. In this system, two cells whose mutual
distance is greater than a certain number do not have any channel interference. Hence it is possible to assign
the same frequency channels to those distant cells. For this specially structured FAP, some theoretical
results were provided when the required number of frequency channels is homogeneously distributed over
the cells [3], [10]. For the non-homogeneous case, there is none. We formulate the considered FAP into
a manageable optimization problem by using the pattern approach [9], [10], [15] which fits naturally to
the problem. The resulting formulation has a specific structure and this enables us to develop an excellent
heuristic algorithm for the considered FAP. With randomly generated problems in a regular hexagonal cellular
system, computational experiments of our algorithm show a significant improvement in both solution quality
and computational time over the recent general purpose algorithms for FAP. Since the considered FAP well
reflects most cellular systems, our algorithm would be applicable to many practical situations.

In the next section, FAP is described formally. Section III explains the FAP in a cellular system with
a maximal distance of channel interference. The formulation of this FAP based on the pattern approach is
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also provided in this section. In section IV, we present a two phase heuristic algorithm and some theoretical
results about the algorithm. Section V shows the computational experiments of our algorithm. Finally, our
discussion is contained in section VI.

II. FREQUENCY ASSIGNMENT PROBLEM (FAP)

In a cellular mobile communication system, in order to treat the traffic demand at the required grade
of service, some number of frequency channels should be assigned to each cell of the system under the
electromagnetic constraints such as co-channel constraint, adjacent channel constraint and co-site constraint
(2], [4]. The number of frequency channels allocated to a cellular system is finite because of the limited
frequency spectrum. However, in recent years, demand for frequency channels has been increased drastically.
Hence it becomes an important problem how to assign the required number of frequency channels to each
cell under the above constraints. This problem is called FAP. It has been widely used as a decision criterion
of FAP to minimize the maximum span of the frequency channels used in a cellular system [1]-[4], [6], [14],
(16] and is also adopted in this paper. This allows the system to use the available frequency spectrum most
efficiently (see [6] and [8] for a discussion).

The FAP to minimize the maximum span can be formalized as follows [2], [4]: Let X = {1,2,...,n}
denote the set of cells in a cellular system. A requirement vector on X is an n-vector M = (m;) with
nonnegative integer components, where the component m; represents the number of frequency channels
required by i-th cell. A compatibility matrizon X is a symmetric n x n-matrix C' = (c;;) with nonnegative
integer entries. Frequency channels are assumed to be evenly spaced, so they can be identified with positive
integers. Assume that F' = {1,2,--, f} corresponds to the set of frequency channels which could be assigned
to the system. Let fi; be a binary variable which is equal to 1 if k-th frequency channel is assigned to i-th
cell and equal to 0, otherwise. Then z = maxier, iex {k| fri = 1} is the maximum span of the frequency
channels used in the system and, for given X, M, C and F, we need to find {fri} to minimize z.

(P)

i = k =1
min 2 kerfr'l,ai)éx{ | fri }

st. Y fui 2 my, foralli€ X, (1)
kEF
|k - I| > ¢ij, forallk,l€e Fandi,je X such that fx; = f[j =1, (2)
fri=0or 1, forallke Fandie€ X. (3)

In the problem (P), the compatibility matrix C = (¢i;) of the constraint (2) represents all three types of
the channel constraints. For example, if cells i and j are co-channel cells then c;; = 0. If there is a co-channel
constraint between cells i and j then ¢;; = 1. If there is an adjacent channel constraint between cells ¢ and
j then ¢;; > 2. The co-site constraint is expressed by the diagonal element c;;.

A special case of (P) whose compatibility matrix C = (c;;) has only 0 and 1 entries is reduced to a graph
coloring problem [11], a well known NP-complete problem. From this reason, (P) is often called generalized
graph coloring problem [6].

III. FAP WITH MAXIMAL DISTANCE OF CHANNEL INTERFERENCE

Consider a cellular system, where two cells whose mutual distance is greater than a certain number, say
d, do not have any channel interference. The number d is called the maximal distance of channel interference.
The FAP in such a cellular system is a specific case of (P) with a compatibility matrix C' = (cij) given by

=0 if the distance between i-th cell and j-th cell is greater than d,

7 1>0 otherwise (4)
In (4), following the assumptions made in [1], [2], [4], [14], we assume that ci; > cij for all 7,j € X and
cii = a > 0 for all i € X throughout this paper.

For solving the FAP with the given structure of the compatibility matrix, we suggest using the pattern
approach which fits naturally to this problem. To explain our approach more conveniently, we will consider
a regular hexagonal cellular system. The generalization of our approach to irregular non-hexagonal cellular
systems is discussed in the last section of this paper.

c
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Fig. 1 shows a system of 49 regular hexagonal cells and the 19 cells of the system which may have
channel interference with the cell A when the number d is V4 = 2 (i.e., d = \/Q(%,5) = \/i> + ij + j2, i and
j are shift parameters [3], [4], [9], [10]). In this figure, the frequency channels assigned to the cell A can be
reused in the cells other than those 19 cells.

Fig. 1. Cells having interference with A Fig. 2. Pattern

For the considered FAP in a regular hexagonal cellular system, we use the compact pattern approach
(15]. In assigning frequency channels to a cellular system, the set of co-channel cells forms a pattern. Fig. 2
shows a pattern where co-channel cells are labeled ‘A’. A compact pattern is a pattern such that the average
distance between co-channel cells is minimal. For example, Fig. 3 shows 14 compact patterns when the
minimum distance between co-channel cells, say d, is set to v/7. These 14 compact patterns are composed of
seven clockwise compact patterns and seven anti-clockwise compact patterns. Each cell belongs to exactly
two compact patterns, clockwise and anti-clockwise. Fig. 4 depicts a compact pattern approach which is a
frequency reuse scheme when there are 14 compact patterns.

Fig. 4. Compact pattern approachf
t The number(s) in each cell denotes the compact pattern(s) the cell belongs to.

By comparing Fig. 1 with Fig. 4, it is easily seen that the compact pattern approach is naturally
applicable to the considered FAP in a regular hexagonal cellular system. This can be done by adjusting
the number d of the compact patterns. In this case, for a valid compact pattern approach, d should be
greater than the number d. Now suppose that d (> d) is given. Then we can construct clockwise and
anti-clockwise compact patterns by finding two solution pairs of positive integers i and J which satisfy

— 293 —



the equation d? = Q(4,j) = % + ij + j2. For example, in Fig. 3, the solution pair (i,j) = (1,2) is for
the clockwise compact patterns, and (i,§) = (2, 1), for the anti-clockwise (when one solution pair for the
clockwise compact patterns is obtained, another for the anti-clockwise is straightforward). However, in the
cases such as d = /3, V4, /9, V12, etc., only one solution pair for the above equation exists and, therefore,
it makes no difference between clockwise and anti-clockwise compact patterns. Hence, it is desirable to adjust
d to the smallest value such that d > d and d® = Q(3, j) has two different solution pairs at least. When there
are more than two different solution pairs, e.g., d = v/49, any of them can be used.

Now, based on the compact pattern approach, we formulate the considered FAP in a regular hexagonal
cellular system. Our formulation focuses on how to assign frequency channels optimally to each compact
pattern, not to each cell. After frequency channels are assigned to each compact pattern, reassignment of
these channels to each cell is done according to the scheme like that of Fig. 4. Let the set G; = {1,...,r}
represent clockwise compact patterns and G, = {r+1,...,2r}, anti-clockwise. Then each of G; and G, is a
set of disjoint compact patterns and covers all cells in the system. Let G = G, UG» = {1,...,2r} be the set
of all the compact patterns (the number r is equal to the number d? of the compact patterns [10]). For each
p € G, let X,, a subset of X, be the set of cells which belong to p-th compact pattern. For convenience, we
assume that X, N X, is non-empty for all p € G, and ¢ € G3. Let fip be a binary variable which is equal
to 1 if k-th frequency channel is assigned to p-th compact pattern and equal to 0, otherwise.

Consider the cells which belong to both p-th and g-th compact patterns, where p € G, and ¢ € G,.
Then, to cover the requirement of these cells, it should be satisfied that 3 ;. -(fip + frg) > my for all
i € X, N X,. Now, define m,; = max{m;| i € X, N X} for all p € G, and ¢ € G3. Then the number
of frequency channels assigned to p-th and ¢-th compact patterns should satisfy the following requirement
constraint:

> " (fip + fig) > ipq, for all p€ Gy and g € Go. (5)
keF

The separation between frequency channels assigned to p-th and ¢-th compact patterns should be greater
than or equal to ¢;; for all i € X, and j € X,. For all p,q € G, let ¢,y = max{c;;| i € X, and j € X, }.
Then we have the following channel separation constraint of our problem:

|k = 1| > ¢y, for all k,1 € F and p,q € G such that fi, = fi, = 1. (6)
With the constraints (5) and (6), our formulation is given by
(Pe)
min z =kerg§§w{kl fip =1}
s.t. (5) and (6)
fip=0orl, forallke Fand peG. (7)

Since (P.) is rather a simplified formulation of the considered FAP in a regular hexagonal cellular
system, the optimal span of (P.) may be greater than that of (P) with the compatibility matrix given by (4).
However the formulation of (P.) has some merits. In (P), problem size depends on the number of cells in
the system. On the other hand, in (P.), the problem size is determined by the number of compact patterns.
Since the number of compact patterns is much smaller than the number of cells in most cases, (P.) is much
smaller sized than (P). Moreover, (P.) has some special structure and it is well utilized in our algorithm
for (P.). Our interest is how efficiently the formulation (P.) approximates the considered FAP in a regular
hexagonal cellular system and it is empirically verified by the computational experiments in section V.

Example 1. Consider a regular hexagonal cellular system of 49 cells which has the same cell structure as
the system in Fig. 1. A requirement vector M = (m;) of size 49 is given. A 49 x 49 compatibility matrix
C = (c;;) is also given according to (4). with d = v/4 = 2. To formulate (P,) for the system, we can construct

14 compact patterns of Fig. 3 (i.e., d = /7). With relation to the constraints (5) and (6) in (P.), we can
obtain mp, = m;, where i € X, N X,, and the 14 x 14 symmetric matrix C = (&,,) given by
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where « is the number given in (4) and * denotes a number greater than 0 and less than a. In (P.), the
matrix C' = (Cpq) generally has the same structure as (8) except the matrix size.

IV. TWO PHASE HEURISTIC ALGORITHM

We suggest an efficient algorithm for (Pc) in this section. Since (P.) is still a large sized problem, our
algorithm is basically a heuristic algorithm. However it becomes an exact algorithm for (P.) when certain
conditions are satisfied.

A. Phase I: Obtaining a Good Satisfying Vector

First, we make the following definition in relation to the constraint (5) of (P.).

Definition 1. For the problem (P.), a |G|-sized vector M = (7p) with nonnegative integer components is
called satisfying vector of (P.) if m, + Ty > My, for all p € Gy and q € G, where |G| is the number of
elements in the set G (i.e., |G| = 2r).

For a given satisfying vector M of (Pc), we construct the following problem:
(Pe(M))

min z = lceg‘ﬁ?{ea{kl frp =1}

st. Y fip =1hy, forallpe G, (5
keF
(6) and (7).

The constraint (5') says that the number of frequency channels assigned to p-th compact pattern should be
equal tq 7i,. Hence, in (Pc(M)), p-th component of the satisfying vector M means the number of frequency
channels that should be assigned to p-th compact pattern.

Now, from Definition 1 and the formulation of (Pc(M)), we have the following lemmas.

Lemma 1. v(P.) = min{v(P.(M))| satisfying vector M of (Pc)}, where v(-) denotes the optimal value of
the problem (-).

Proof. For any satisfying vector Jl;{ of (P.), every feasible solution of (Pc(M)) is also feasible for (Pc) by
Definition 1. Hence v(P.) < v(Pc(M)) for any satisfying vector M of (P.). Let an optimal solution of (Pe)
be {f¢,}. Then we can construct a satisfying vector of (Pe), M* = (Ter Fo1s 2 ker f;z,...,zkepf,:l(;.),
It is obvious that an optimal solution of (Pc(M™)) is also {fip}. Therefore, v(P.) = v(PC(M*)) and thus
proof is complete. =
Lemma 2. v(P.(M)) > LB(P.(M)) =1+ B(Xpec ™Mp — 2) + @, where a is the number given in (4) and
f# = min{Z,¢| p,q € G} in the constraint (6) of (Po(M)).

Proof. Consider a relaxed problem of (P.(M)), where the matrix ¢ = (%pq) in the constraint (6) of (Pe(M))
is replaced by
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Without loss of generality, we assume that C is a 14 x 14 matrix (compare this matrix with (8) in Example
1). In this relaxed problem, we can aggregate the clockwise compact patterns as one pattern, say y;, and
the anti-clockwise compact patterns, yz. Since a is greater than g from the assumption in (4), an optimal
frequency assignment of the relaxed problem is {1 14+8,..., 1+ B8(X,eq, ™p — 1)} for the pattern y; and
{148 e, Mp— 1 +a, 148 YopeG, Mpta, .. , 14+ 6( ZPEG my —2) +a} for the pattern y2. Therefore,
proof is complete. [ |

If we can have a good satisfying vector M of (P.), then, from Lemma 1, it is likely that an accurate
solution of (P.) can be obtained by solving the problem (P «(M)) which is smal]er sized than (P.). In this
paper we suggest the following problem to obtain a good satisfying vector of (Pc).

(Pl): Phase I.

min (Z m, + qu)

PEG) 9€Ga
st. mp+my > my,, forall p € Gy and g € G» (10)
m, and m, are nonnegative integers for all p € G; and ¢ € Go. (11)

Consider an optimal solution of (P}) denoted by a vector M= (1np) of size |G|. Then M is a satisfying
vector of (P.) such that the summation value of its components is minimized. Therefore, in view of (P(M)),
the vector M has the property that the total number of frequency channels assigned to the compact patterns
and, therefore, to the cellular system is minimized.

The Phase I problem (P) has a integerness condition. However the constraint matrix of (10) satisfies
the totally unimodular property and m,, are integers; hence, we can delete the integerness condition [11]
[12). Then (P!) is a simple linear programming problem. Furthermore, the dual of the LP problem (P}) is
a well-known assignment problem which has a very efficient algorithm called Hungarian method [12]. From
a dual solution of (P!), we can easily obtain an optimal solution of the problem (P}). The computational
complexity of this approach is O(|G1[?) or O(|G2?) [12].

Once we have obtained an optimal solution M= (my) of the Phase I problem (Pl), then we solve the
problem (P.(M)) in Phase II. If we could obtain an optimal solution of the problem (P<(M)), then this
solution is also optimal for (P.) under a certain condition.

Theorem 1. If v(P(M)) = LB(P(M)) = 1 + B(Xpec p — 2) + a then an optimal solution of (P(AT)),
{fkp}, is also an optimal solution of (P.).

Proof. Since M is a satisfying vector, {fkp} is a feasible solution of (P.) by Definition 1. Therefore

v(Pe(M)) > v(P.). From Lemma 1, consider a satisfying vector M* such that v(P.(AM*)) = v(P.). From

the property of M and Lemma 2, v( «(M)) = LB( M) < LB(M*) < v(P. (M*)) = v(P.). Therefore, proof

is complete. |

B. Phase II: Exact Algorithm for a Special Case of (P.)

In this section, we consider a slightly more special case of the problem (P.), where the matrix C' = (épg)
in the constraint (6) is given as follows:
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In (12), v is a positive integer less than o and we assume C is 14 x 14 without loss of generality. In this case,
we can provide an efficient Phase II algorithm which can generate an exact optimal solution of (Pc) under
certain conditions. Let the vector M = (™) be an optimal solution of the Phase I problem (PL). Now, for
the problem (P.(M)), define ry = max{ry| p € G1} and ro = max{m,| ¢ € G2}. Let p* be the number
of components of M such that My, = r; for p € Gy and ¢* be the number of components of M such that
g = ry for ¢ € Ga. Then the following algorithm for (P.(M)) generates an optimal solution of (P.(M))
and this solution is also an optimal solution of (P.) provided that p* > [%J and ¢* > | £], where [-:—J is the
integer part of the number £.

Algorithm A: Phase II algorithm for (P.(M)) when C is given by (12).

Step 1. (Initialize) Set § = 1.
Step 1.1 Assign index 1,..., |G| to clockwise compact patterns
in decreasing order of m,, where p € G;.
Step 1.2 Assign index |G|+ 1,...,|G| to anti-clockwise compact patterns
in decreasing order of ,, where ¢ € G,.
Step 2. (Clockwise compact patterns) If 7, = 0 for all p € G, then go to Step 3.
Step 2.1 Set p = 1.
Step 2.2 If m, = 0 then go to Step 2.4.
Step 2.3 Assign frequency 1+ v(6 — 1) to p-th clockwise compact pattern.
Set m, =y —1and § = § + 1.
Step 2.4 Set p=p+ 1. If p > |G| then go to Step 2.
Otherwise, go to Step 2.2.
Step 3. (Anti-clockwise compact patterns) If m, = 0 for all ¢ € G
then stop and take the solution.
Step 3.1 Set ¢ = |G4] + 1.
Step 3.2 If my = 0 then go to Step 3.4.
Step 3.3 Assign frequency 1+ (8 — 2) + a to g-th anti-clockwise compact
pattern. Set my =, —1and § = 6§+ 1.
Step 3.4 Set ¢ = ¢+ 1. If ¢ > |G| then go to Step 3.
Otherwise, go to Step 3.2.

Theorem 2. If p* > | 2] and ¢* > L2] then Algorithm A generates an optimal solution of (P.) with the
frequency span 1+ (3, ¢ p — 2) + @, when the matrix C = (¢pq) in the constraint (6) of (P.) is given by
(12).

Proof. First we show that the solution generated by Algorithm A is feasible for (Pc(M)). From Step 2 and
Step 3, it is evident that the solution generated by Algorithm A satisfies the constraint (5). From Step 2.3
and Step 3.3, the solution also satisfies the constraint (6) when p # ¢. Let f(u,v) denote the frequency
channel which Algorithm A assigns to u-th compact pattern in v-th turn (e, v=1,...,my,). IfueG,
then f(u,v) - f(u,v—1) > p*y > [%jy 2 aforall 2 < v < 1y. Ifu € Gy then f(u,v) — f(u,v — 1) >
'y > L%J*y > a for all 2 < v < 7y, Therefore, f(u,v)— f(u,v— 1) > a for all u € G and v, and this means
that the solution generated by Algorithm A satisfies the constraint (6) when p = q. From Step 3.3, we can
easily see that the frequency span of the solution is 1 + 7(ZpeG My — 2) + a. Therefore, from Theorem 1,
Algorithm A generates an optimal solution of (P.). n
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C. Phase II: General Heuristic Algorithm

Theorem 2 says that we can obtain an optimal solution of a special case of (Pc) However, for a general
case of problem (P.), it is desirable to produce a good feasible solution of (P (M)), where the vector M is
an optimal solution of the Phase I problem. Although the problem (P. (M)) is smaller sized than (P.), it
still has many binary integer variables. Hence we suggest a heuristic algorithm for (P, (M)) This algorithm
is a slight generalization of the Largest First Method of the graph coloring which appears in [1], [4], [14], [16].

The algorithm goes as follows:

Algorithm B: General Phase II algorithm for (P(M)).

Step 1. Set f* = 1.

Step 2. Compute d, =M ) . Cp, for all ¢ € G.

Step 3. Assign 1ndex 1,. r G| to all compact patterns in decreasing order of d;.

Step 4. Take the frequency channel f* and assign it to the first assignable
compact pattern, say q;.

Step 5. Set my, = m,, — 1.

Step 6. If m, = 0 for all ¢ € G, then stop and take the solution.
Otherwise, set f* = f* + 1 and go to Step 2.

In Algorithm B, remember that the same frequency channel cannot be assigned to more than one
compact pattern. In Step 2 of Algorithm B, the value d, is called degree of difficulty, which can be used
as a heuristic measure of the difficulty of assigning a frequency channel to g-th compact pattern. In Step

, if we say k-th frequency channel is assignable to p-th compact pattern then this means that, considering

only the assignment of the frequency channels 1 to k — 1, we can assign k-th frequency channel to p-th
compact pattern without violating any constraints of the problem (P.(M)). In Step 6, when the algorithm
terminates, we take the value f* as the frequency span for (P.(M)) and, therefore, for (P.).

V. COMPUTATIONAL EXPERIMENTS

Table 1. Computational results

Prob. No. 1 2 3 4 5 6 7 8 9
cij 1 2,2 34 1 23 34 1 23 34
Cis 3 5 7 3 5 7 3 5 7

2Phase® SPAN® 98 279° 368 | 127 366° 488 | 173 546° 672°
TIME? 208 0046 13.75| 3.24 0.047 2367 6.15 0.052 0.054
CRF SPAN 127 437 583 168 470 624 | 234 769 837
TIME 6.04 33.83 5283 | 7.14 46.35 7442 11.04 83.32 104.68
CRR  SPAN 127 319 457 168 381 520 234 610 705
TIME 8.62 23.67 33831439 3581 47.73 | 2581 8041 86.39
CCF  SPAN 110 326 445 143 393 545 194 580 724
TIME 8.18 4251 69.26 | 10.76 57.17 92.93 | 15.59 92.05 104.27
CCR  SPAN 156 332 473 176 432 556 | 255 594 702
TIME 10.98 24.33 34.60 | 15.10 39.76 50.03 | 27.73 74.48  85.07
DRF  SPAN 134 400 531 161 495 635 236 764 846
, TIME 5.71 3235 4992 | 6.97 46.52 65.08 | 10.10 74.69 109.35
DRR SPAN 134 303 448 161 384 540 236 586 692
TIME 9.28 23.12 34.27 | 14.00 36.74 50.64 | 2740 78.37  85.51
DCF SPAN 110 318 445 133 391 548 180 560 727
TIME 1049 42.89 66.89 | 13.18 55.91 86.83 | 18.34 88.21 130.28
DCR SPAN 134 313 440 193 391 558 | 237 582 704
TIME 9.22 2229 32511653 36.19 50.14 [ 26.74 77.06 86.34

a. Two phase algorithm. b. Frequency span.
¢. Optimal solutions of (P.) have been obtained.
d. Computational time, in seconds of an IBM-PC 486 machine.
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In this section, we compare our two phase algorithm with the eight general purpose algorithms for FAP
which are based on the graph coloring techniques and called CRF, CRR, CCF, CCR, DRF, DRR, DCF,
DCR, respectively [14]. These algorithms are extensions of the sequential heuristic algorithms summarized
in [1], 4], [16]. Our algorithm and the other eight algorithms have been coded in PASCAL and run on an
IBM-PC 486 machine (33 MHz).

Computational results are summarized in Table 1. Test problems are from the regular hexagonal cellular
system of Example 1 in section III. In the experiments, we set the channel separation between each pair
of non co-channel cells by 1 (i.e., absence of the adjacent channel constraint), 2 or 3, and 3 or 4. For the
problems 1, 2 and 3, we non-homogeneously generate the required number of frequency channels in each cell
from the uniform distribution U(10, 15). For the problems 4, 5 and 6, from U(10,20), and for the problems
7, 8 and 9, from U(10,30). The problems 2, 5, 8 and 9 satisfy the conditions of Theorem 2. Therefore, in
Phase II, Algorithm A is used for these problems and optimal solutions of (Pc) are obtained. For the other
problems, Algorithm B is used in Phase II.

In the experiments, our two phase algorithm produces much better solutions. Furthermore our algorithm
requires a smaller computational burden (especially, the cases that Algorithm A is used in Phase II require
very small computational time). This says that our algorithm is appropriate for the cellular systems where
the traffic demand of each cell varies at short intervals. In conclusion, the computational results empirically
verify that the formulation (P.) efficiently approximates the FAP in a regular hexagonal cellular system with
a maximal distance of channel interference and our algorithm for (P.) performs quite well.

VI. DISCUSSION

In this paper we considered the FAP in a cellular mobile communication system with a maximal distance
of channel interference which appears in many practical situations. In the case of a regular hexagonal cellular
system, we adopted the compact pattern approach and presented a two phase heuristic algorithm for the
problem. Computational results reported are quite encouraging.

We can easily generalize our approach to an irregular non-hexagonal cellular system with a maximal
distance of channel interference. In this case, the compact patterns are not applicable. Instead, we need
to generate two sets, G; and G, of patterns such that each set has disjoint patterns and covers all cells in
the system. We can easily generate such sets of patterns. However, if we generate patterns more compactly
(i.e., in such a way that the average distance between co-channel cells is minimal), then our algorithm would
be more efficient. Generating such patterns in an irregular non-hexagonal cellular system is an interesting
future research work.
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