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Threshold Boolean Filters 
Ki Dong Lee and Yong Hoon Lee 

Abstract-A class of nonlinear digital filters, called the thresh- 
old Boolean filter (TBF), is introduced. The TBF is defined 
by a Boolean function on the binary domain and is a natural 
extension of stack filters. Multilevel representations of a TBF 
corresponding to a Boolean function are derived; a TBF can be 
represented either as a sum of “local minimum-local maximum” 
terms or as an adaptive linear combination of ordered input 
data. It is shown that TBF’s may be neither translation invariant 
nor scale invariant and that any TBF can be expressed as a 
linear combination of stack filters. A subclass of TBF’s, called 
linearly separable (LS) TBF’s, defined by the threshold logic is 
introduced as a direct extension of weighted-order statistic (WOS) 
filters. Implementation and design of a TBF and an LS TBF is 
investigated. The procedure for designing TBF’s (LS TBF’s) is 
shown to be considerably simpler than designing stack (WOS) 
filters, and the former can outperform the latter at marginal 
increase in computational cost. Finally, experimental results are 
presented to illustrate the performance characteristics of TBF’s 
and LS TBF’s. 

I. INTRODUCTION 
NUMBER of digital filters possess the threshold decom- A position property [ 11. The output of a filter with threshold 

decomposition can be obtained by decomposing an input signal 
into a set of binary signals, carrying out the filtering operation 
separately on each binary signal and then by summing up 
the results. To be specific, consider a nonrecursive filter 
whose output Y ( n )  is denoted by Y(n)  = F ( X ( n ) ) ,  where 
X(n) (Xl(n),X2(n), . . . , XN(~)) is the input vector 
within a window at time n, Xj (n) is the jth input sample from 
the left of the window, and N is the window size. Assume that 
the input is (M + 1) valued, i.e., Xi(.) E {0,1,. . .,Ad}. If 
this filter obeys the threshold decomposition, then the output 
Y(n)  can be expressed as 

M 

Y ( n )  = W ( n ) )  = F(le(X(n>)) (1) 

where le(x(n)) E (le(xi(n)),le(Xa(n)), . . . ,le(xiv(n))) 
is the thresholding operator defined as le(z) = 1 if z 2 C and 
0 otherwise. Linear FIR and IIR filters and nonlinear filters 
such as stack filters [2]-which include median [3], rank order 
[4], and weighted order statistic (WOS) [5] filters as special 
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cases-linear combination of order statistics (LOS) filters 
[6], [7] and linear combination of weighted order statistics 
(LWOS) filters [8] obey the threshold decomposition property. 
In addition, multilevel morphological filters are defined on the 
basis of the threshold decomposition [9], [lo]. 

The filters satisfying the threshold decomposition can be 
fully specified on the binary domain by a truth table or by an 
extended truth table [8] that lists all possible binary input vec- 
tors and the corresponding output values. The (extended) truth 
table representation is useful for analyzing and implementing 
the nonlinear filters. In the case of stack filtering, the truth 
table representation reduces to a positive Boolean function 
performing only logical OR and logical AND operations. 

The concept of threshold decomposition leads to the class 
of filters that are defined on the binary domain by fe(.) and 
whose multilevel representation is given by 

M 

Y(.) = f e ( b - L ( X ( n ) ) ,  f .  * I le(X(.)), . . . , l e+L(X(n) ) )  

(2) 
where L is a nonnegative integer. In this filter, the binary 
vectors from 2L + 1 threshold levels nearest to the level C are 
input to the binary domain operator fe(.), which may vary de- 
pending on C. Generalized stack filters [ l l ]  and microstatistic 
filters [12] are defined following this approach. When L = 0 
and f t ( . )  = f(.) for all 1 is a positive Boolean function, the 
class of filters defined by (2) reduces to stack filters. 

When a filter is specified on the binary domain and its 
multilevel representation is given by (2), a natural question 
arises: Can we directly express such a filter on the multilevel 
without using the threshold decomposition? The answer to this 
question is affirmative for the cases associated with linear FIR, 
stack, and LWOS filters, where L = 0 and ft(.) = f(.) for all 
C. For example, any filter that is specified by an extended truth 
table on the binary domain and by (2) on the multilevel with 
L = 0 and fe(.) = f ( - )  for all C can be expressed directly as 
an LWOS filter if the filter produces zero output value for the 
zero input vector [8]. On the other hand, the direct multilevel 
expressions of the generalized stack and microstatistic filters 
are generally unknown. 

In this paper, we focus our attention on the filters that are 
specified by a Boolean function f(.) on the binary domain 
and defined by (2) with L = 0 and fe(.) = f(.) for all 
C on the multilevel. These filters will be referred to as the 
threshold Boolean filters (TBF’s). The class of TBF’s includes 
stack filters as a special case. We shall develop multilevel TBF 
representations and investigate the properties, implementation, 
and design of TBF’s. It will be shown that a TBF, which 
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outperforms the optimal stack filter in [25], can be obtained 
following the procedure for designing the stack filter. 

As a very interesting and useful subclass of TBF’s, we will 
introduce what we call the linearly separable (LS) TBF. The 
LS TBF is defined by an LS Boolean function called the 

The TBF in (3) becomes the LS TBF when f(x) is an LS 
Boolean function, which is defined as 

(4) { 1, if c Z N , ~  wizi 2 T 
f ( X 1 , .  . . , ZN) = 0, otherwise 

threshold logic [17], [lS]. Since a WOS filter is defined by 
an LS Boolean function with nonnegative coefficients [5], the 
LS TBF is a direct extension of the WOS filter. It will be seen 
that the method for designing WOS filters can be applied to 
design LS TBF’s. 

The organization of this paper is as follows. In Section 
11, the TBF is defined by a Boolean function on the binary 
domain, and its multilevel representation based on true vectors 
of the Boolean function is derived. In Section 111, we develop 
three altemative TBF representations: two of them are based 
on the sum-of-product (SOP) expression of a Boolean function, 
and the third one is represented in terms of ordered input data. 
It is shown that the LS TBF can be expressed succinctly on 
the multilevel by using the ordered input data. Some properties 
of the TBF are investigated in Section IV, where the relation 
among TBF’s, rank order, and LOS filters is discussed. In 
Section V, we consider implementations of the TBF. In Section 
VI, procedures for designing a TBF and an LS TBF are 
described, and the performance of the TBF and LS TBF is 
examined through computer simulation. Finally, Section VI1 
presents conclusions. 

11. THRESHOLD BOOLEAN FILTERS 

A TBF, which is denoted by TBFf(X), is defined as 

where f ( - )  is a Boolean function, and X = (XI, .  . . , XN) 
is an input vector. Here, as well as in the rest of this 
paper, the time index n is dropped from X(n)  and Xj(n) 
to simplify the notation. When f ( . )  is a positive Boolean 
function, the corresponding multilevel expression is obtained 
by exchanging logical OR and logical AND operations of f ( . )  
with maximum and minimum operations, respectively; the 
filter is a stack filter. For example, for f(x) = ~ 1 x 2  + %223, 
N = 3, where the multiplication and addition represent logical 
AND and OR operations, respectively, we get TBFf(X) = 
max(min(X1, X2}, min(X2, X,}}. This is possible since 
every positive Boolean function commutes with thresholding 
[ 131, and the maximum and minimum operations become the 
logical OR and the logical AND, respectively, for binary inputs. 
On the other hand, for f ( - ) ,  which is a Boolean function with 
logical negations (complements), the corresponding TBFf (.) 
cannot be obtained directly because such a Boolean function 
does not commute with thresholding, and the multilevel op- 
erator that reduces to the logical negation for binary inputs 
does not exist. The multilevel representations of a TBF, which 
are obtained in the following subsection, will show that the 
logical negation is closely related to the multilevel minus (-) 
operation. 

where the weights wi and the threshold T are real numbers. 
If the weights and the threshold are limited to be nonnegative 
and CElwi 2 T ,  then an LS Boolean function becomes 
positive, and the corresponding LS TBF reduces to a WOS 
filter. We shall see that an LS TBF is simpler to implement 
than general TBFs. 

It should be pointed out that there are some well-known 
multilevel operators that can be thought of as TBF’s. In fact, 
if a multilevel operator F( . )  can be expressed as in (l) ,  and it 
produces a binary output for any binary input vector, then the 
filter is a TBF. The example below illustrates this. 

Example 1: Consider the range estimator 1141 F ( X )  = 
Xp) - X(N), where X(l) and X(N) are the maximum and the 
minimum, respectively, among {XI, . . . , XN}. It is straight- 
forward to see that this estimator obeys the threshold decom- 
position, and obviously, the estimator yields binary outputs 
for binary input values. The Boolean function Corresponding 

0 
In a similar manner, we can see that the quasi-ranges [15] and 
the absolute difference between ordered data are TBF’s. 

In the following, the multilevel TBF representations are 
derived after introducing some notations and definitions. 

to this with N = 3 is f(x) = z l Z 2  + ~ z Z 3  + 2 3 3 1 .  

A .  Notations and Definitions 

It is assumed that the input samples {XI, . . . , XN} are 
( M  + 1) valued: X, E D for all i and X E D N ,  where D = 
{0,1,. . . , M } ,  which is a set of nonnegative integers. The 
jth largest sample among the input samples {XI , .  . . , X N }  
is denoted by X(J) , j  = 1,. . . , N .  If two input values are 
identical, say, X, = X, , then either of them will be considered 
to be a larger one. We define X(o) = M and X ( N + ~ )  = 0 so 
that X ( N + ~ )  5 X(N) . . . 5 X(l) 5 X(0) holds. The difference 
X(J) - is denoted by C,, 0 5 j 5 N .  Note that 
CO = M - X(l) and CN = X(N). For some positive integer 
a and b, the set of integers S[a ,  b] { a ,  a + 1,. . . , b } ,  which 
is a subset of D, is defined. Here, S[a,b]  0 if a > b. 
IS[a,b]l denotes the number of elements in S[a,b] ,  that is, 
IS[a, b]I = b - a + 1 if b 2 a,  and 0 otherwise. 

Now, consider a Boolean function f(x) = 7rl(x) +7r2(x) + 
. . . + 7rp(x) expressed as a SOP, where x = (XI,. . . , XN) 
denotes a vector of N binary entries, and T,(x) represents 
the jth product of f(x). A binary vector, say, XO, is called 
a true (false) vector of f ( . )  if f(x0) = I (O) .  The set of 
all true vectors of f(x) is denoted as V(f). Similarly, the 
set of all true vectors of 7rJ(x) is expressed as V(7rJ). Note 
that V(f)  = U:=1V(~3). The products 7r,(x) and T,(x) 
are said to be mutually exclusive if V(7ro) and V(7r,) are 
disjoint, i.e., V(7rZ) n V(7rJ) = 0. As an example, con- 
sider TI(X) = ~ 1 2 2 ,  7r2(x) = X1Z3, and N = 3. Then, 

and T~(x) and 7r2(x) are not mutually exclusive. The binary 
vectors (1,1, . . . , 1) and (0, 0, . . . , 0) are denoted by 1 and 0,  

V(Tl) = {(1,0,0), ( L O ,  I)}, V(7r2) = {(1,0,1), (1,1, I)), 
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Proposition 2 (Representation Based on True Vectors): 
Suppose that a given Boolean function f(.) has K true vectors, 
v ( f )  = {VI, V Z , .  . . , VK}. Let TBFft (X) be the TBF output 
obtained by (6) when the Boolean function f;(-) has a single 
true vector vi. Then, the multilevel representation of f(x) is 

(1.0) 
X=(4.2)  

THRESHOLDING 

A’) 

Fig. 1. Filtering operation of the TBF withf(x) = 213.2. 

respectively. Finally, the number of 1’s in a binary vector x, 
which is the Hamming weight, is denoted by WH(X). 

B .  A Multilevel Representation of the TBF 
in Terms of True Vectors 

Following from (3), the TBF can be expressed as shown in 
(5) at the bottom of the page, where ! E S[l, MI. Once the 
set of true vectors V(f)  is known, a multilevel representation 
can be obtained in a straightforward manner, as illustrated in 
the following simple example. 

Example 2:  Suppose that f(x) = x ~ Z Z ,  N = 2. The set of 
true vectors V ( f )  = ((1,O)). Consider (3). At a level C, the 
binary input vector becomes a true vector if and only if (iff) 
X Z  < C 5 XI. Assume X Z  < X I .  Then, f(Ie(X)) = 1 for all 
X Z  < ! 5 XI and following from (3, TBFf (X) is equal to the 
number of e’s for which Ie(X) = (1,O). Thus, TBFf (X) = 
X1 - X Z .  When X Z  2 X I ,  the binary input vector at each 
level is not a true vector, and thus, TBFf(X) = 0. Combining 
these, TBFf(X) = max(0,Xl - X Z } .  Fig. 1 illustrates this 
result for X = (4,2). For this input, TBFf(X) = 2. Note that 
in Fig. 1, the same output is obtained through the threshold 

A multilevel representation corresponding to an arbitrary 
Boolean function is presented next. 

Proposition 1 (Representation for  a Single True Vector): 
Suppose that a Boolean function f (  .) has only one true vector, 
say, v = (q,. ..,UN). Then 

decomposition. 0 

TBFf(X) = max{O,min(X, I j E Bl(v)} 

- m 4 x j  I j E Bo(v))l, (6) 

where minO M ,  max0 = 0, and Bo(v)(B~(Y)) is the set 
of all indices of w;, i = 1,2, . . . , N ,  which are zero (one). 

Proof: Let v = l(Bo(v) = 0). Then, Ie(X) = 1 iff 1 5 
C 5 min(X1,. . . , X N >  and TBFf(X) = min(X1,. . . , X N } .  
Now, let v = O(Bl(v) = 0). Then, &(X) = 0 iff 
max(X1, ..., X N }  < C 5 M and TBFf(X) = M - 
max(X1,. . . , X N } .  Finally, let v # 1 , O .  For this case, 
Ie(X) = v iff max{X, I j E Bo(v)} < C5 min(X, I j E 
Bl(v)}. Since TBFf(X) is equal to the number of e’s for 
which Ie(X) = v, (6) is obtained. 0 

For f(x) in Example 2, we get v = (1,0), Bo(v) = ( 2 1 ,  
and Bl(v) = (1); TBFf(X) is obtained through (6). 

K 

TBFf(X) = C T B F f , ( X ) .  (7) 
i= l  

Proof: From (3, TBFf(X) can be written as 
TBFf(X) = x:,[numberof e’s forwhich Ie(X) = vZ], 
but [number of e’s for which Ie(X) = v;] = TBFft (X). This 

Example 3: Suppose f(x) = xlZ2 + 21x3 when N = 3. 
Then, we have V ( f )  = {(1,0,0),(1,0,1),(1,1,1)}. Let 
VI = (1,0,0), v2 = (1,0,1) and v3 = (l,l ,l).  Then, 
from (6), we get TBFf, (X) = max(0, X1 - max{Xz, X,}}, 
TBFfi(X) = max{O,min(X1,X3) - X Z } ,  and TBFf,(X) = 

Since a TBF is expressed as a function of local minimum 
and local maximum operations, it can be specified by using 
an ordering-output table [ 131 that lists all possible input 
orderings and the corresponding outputs. The ordering-output 
table specifying the TBF in Example 3 is shown in Table I. 
Note that the table indeed specifies the TBF: the output of the 
TBF can always be obtained from the table without reference 
to the multilevel representation of the TBF. When two or more 
orderings can be thought of as the ordering of a given input 
vector (this happens when some input values are equal), any 
one of the orderings can be chosen, and the output associated 
with the selected ordering becomes the output of the filter. 
For example, in Table I, if X3 = X Z  < X I ,  then either 
XZ 5 X3 5 X1 or X3 5 X Z  5 X1 can be the input 
ordering. The outputs associated with the former and the 
latter, respectively, are XI and X1 - X Z  + X3, which are 
equivalent in this case because X Z  = X3. The ordering-output 
table provides some insights into the behavior of the TBF. In 
Table I, the TBF selects one of the inputs as its output for all 
input orderings except for the ordering “X3 5 X Z  5 XI .” The 
output for the ordering “X3 5 X Z  5 X1” is XI - X Z  + X3. 
Note that only X Z ,  which is the only complemented literal 
in f(x), has a minus (-) sign. In Section 111, we shall see 
that only complemented literals can have a minus (-) sign in 
output representations of the ordering-output table. 

The multilevel representation in (7) is somewhat incon- 
venient to use because the number of true vectors K is 
usually large. Next, we shall show that simpler multilevel 
representations of a TBF can be obtained from Boolean 
expressions without explicitly considering the true vectors of 
a Boolean function. 

completes the proof. U 

min{X1,XZ,X3}; TBF~(X) = TBF~JX). 0 

TBFf(X) = [number of level e’s for which f ( I e ( X ) )  = 11 
= [number of level C’s for which Ie(X) is a true vector of f(x)] 
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TABLE I 
ORDERINGOUTPUT TABLE FOR f(x) = z l f ~  + 2 1 2 3  

111. ALTERNATIVE MULTILEVEL 
REPRESENTATIONS OF THE TBF 

In this section, multilevel TBF representations are derived 
from SOP Boolean expressions. In addition, another multilevel 
TBF expressed in terms of ordered input data is obtained. 

A .  Multilevel TBF from Sum of Products Representation 

Consider a Boolean function f ( . ) ,  which is given by the 
sum of P products f(x) = 7r1(x) + 7rz(x) + ... + T P ( X ) .  

Suppose each product 7rJ (x) consists of q, uncomplemented 
and rJ complemented literals. Then, it can be expressed as 

TJ(X) = x P ( 3 J ) x P ( 3 , 2 )  . . . x P ( 3 , n 3 ) 3 C n ( , , 1 ) 3 , ( J , 2 )  . . . % J > ? ) ,  

3 = 1,2, ..., P 

where p ( . ,  .) and n(., .) denote indices of uncomplemented and 
complemented literals, respectively, and 1 5 q, + T~ 5 N .  

The Boolean function f(x) produces 1 whenever at least 
one of the P products produces 1 for the binary input vector 
x, and the product 7rJ(x) produces 1 iff x satisfies 

Z P ( J J )  = 5 P ( J , 2 )  = ... = Z P ( J A 3 )  = ( 8 4  
(8.b) GZ(J,l) = % ( J , 2 )  = . . . = %(, ,T3)  = 0. 

In other words, each true vector of 7r,(x) should satisfy both 
(8.a) and (8.b). Let m,(X) denote the minimum among the 
input samples corresponding to uncomplemented literals of 
7rJ(X), and let MJ(X) denote the maximum among input 
samples corresponding to complemented literals of 7rJ (X), 
that is, m,(X) = min{Xp(,,l), . . . ,Xp(J,g3)} and MJ(X) = 
max{X,(,,l),. ..,Xn(J,TI)}. We set m,(X) = M if qJ = O 
and M3(X) = 0 if rJ = 0. Now, we derive multilevel 
representations from SOP Boolean expressions. 

Proposition 3 (Representation for a Single Product Term): 
Suppose that a Boolean function has only one product term 
f(x) = 7r1(x). Then 

(9) 

Proof: In the threshold decomposition, the binary vector 
Ie(X) = ( 2 1 ,  . . . , ZN) is generated by thresholding the input 
vector x = (XI,  . . . , X N )  at level e,  where xk will be 1 iff 
C E S[O, X,] and 0 iff C E S[Xk + 1, MI. Therefore, Ie(X) 
satisfies (8.a) iff C E fly:, SIO,Xp(l,l)] and satisfies (8.b) iff 
C E n;Ll S[X+,l) + 1,M],  and thus, 7rJ(Ie(X)) = 1 iff 

TBFf(X) = max{O,ml(X) - Ml(X)}. 

c E (n;:, m, X,(~ ,~) I )  n (n;Ll S[X,(~,~) + 1, M I ) .  ~ o t e  
that n;L1 SP, = s[o, m l ( x ) l  and n;:, S[X,(~,~) + 
1,M] = S[Ml(X) + 1,Ml. Now, .lrl(Ie(X)) = 1 iff C E 

s[o,ml(X)]  n SIMl(X),M] = SIMl(x)  + l ,ml (X) l  and 
(9) follows from (5). 0 

Note that (9) becomes (6) when 7r1(x) in Proposition 3 
has only one true vector (this happens whenever the number 
of literals of T~(x), q1 + T I ,  is N ) .  In general, 7rl(x) has 
2N--(91+T1) true vectors, and the TBF associated with f(x) = 
7rl(x) can also be expressed by using (7): 

TBFrl(X) = max{O,ml(X) - Ml(X)} (10.a) 

= TBFf% (XI, (lO.b) 
K 

i=l 

where TBF,,(X) is a multilevel representation of T~(x), 
K = 2N-(91+r1), and TBFf%(X) was defined in Proposition 
2. In general, (lO.a) is simpler than (lO.b) because K 2 1 and 
each term in (lO.b) is given by (6). 

Proposition 4 (Representation Based on SOP): Suppose 
that a given Boolean function f ( . )  has P products f(x) = 
rl(x) + ... + 7rp(x). Then 

P 

TBFj(X) = I U S[Mi(X) + l ,mi(X)]I, (11) 
i=l 

where IAl is the number of elements in a set A. 
Proof: Since f ( . )  is the logical sum of P products, 

f(Ie(X)) produces 1 iff C E ULl (S[O, mi(X)] n S[Mi(X) + 
1, MI)  = urZ1 s[M~(x) + I, mi(x) l .  Equation (11) follows 
from (5). 0 

For the case of stack filters, since f ( . )  is a positive 
Boolean function, ri = 0 and Mi(X) = 0 for all i, and 
thus, S[Mi(X) + l ,mi(X)]  is simplified to S[M;(x) + 
l ,mi (X>]  = S[l,m;(X)], and UL1 S[Mi(X) + 1,mi(X)] = 
ULl S[l ,m;(X)]  = S[l ,P] ,  where ,fl = max{mj(X),j = 
1 , 2 , . .  ., P }  = max{min{X,(j,l),l = 1 , 2 , . .  . , q j } , j  = 
1 , 2 , .  . . , P} .  Therefore, we have TBFf(x) = @, which is 
consistent with the well-known fact that the output of a stack 
filter can be represented as the maximum of local minima. 

It should be pointed out that I uLl S[M;(X) + 
l , m i ( x ) ] l  z xrZ1 IS[M;(X) + l ,mi (x) l l  unless 
S[M;(X) + l ,mi (X)] , i  = l , . .  ., P are disjoint 
from each other. Since IS[Mi(X) + l ,mi (x) ] l  = 
max{O,mi(X) - M;(X)} = TBF,%(X), then 

P 

TBFf(X) # TBF=* (XI (12) 
i=l 

unless S[Mi (X) + 1, mi (X)] are disjoint. The example below 
illustrates (11) and (12). 

ExampZe4: Consider f(x) = x132 + 21x3 again. In 
this case, P = 2. If we let 7r1(x) = x132 and m(x) = 
21x3, then q1 = n1 = l,q2 = 2, n2 = 0, p (1 , l )  = 
1 , n ( l , l )  = 2,p(2,1) = 1, andp(2 ,2)  = 3. Now, we 
get ml(X)  = Xl,mz(X)  = min(Xl,X3},Mi(X) = X2, 

1,X1] and S[Mz(X) + l , m ~ ( X ) ]  = S[l,min{Xi,X3}]; 
TBF,,(X) = IS[Xz + 1,Xlll = max(0,Xl - X,} and 
TBF,,(X) = IS[l,min{Xl,X3}]1 = min{Xl,X3}. From 
( 1 l), TBFf (X) = I S[X2 + 1, XI] U S [  1, min{ XI ,  X3}] 1. Since 

and M2(X) = 0. Thus, S[Ml(X) + l , m l ( X ) ]  = S[X2 + 
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7rl(x) . ~ ( x )  = 5 1 3 2 2 3  and .rrl(Ie(X)) x .rrz(Ie(X)) = 1 
iff C E S[X2 + l,min{Xl,X3}], we get S[Xz + 1,X1] n 
S[1, min(Xl,X3)] = S[X2 + 1, min(X1, &}I. Therefore, 

l,min{XI,X3}]1 = max(0,Xl - Xz} + min{Xl,X3} - 
max(0, min(X1, X3} - Xz}. Obviously, TBFf(X) # 
TBF,,(X) + TBF,,(X). The TBF representation in this 
example yields the ordering-output table in Table I, and it 

0 
The TBF expression in (1 1) is inconvenient to use because 

evaluating the intersections among S[M;(X) + 1, mi(X)], i = 
1, . . . , P is tedious. In general, the number of possible inter- 
sections is ELz (:) = 2p - (P + l ) ,  and the TBF expression 
in (11) may have 2 p  - ( P  + 1) + P = 2p - 1 terms. This 
indicates that the expression in (11) may be lengthier than 
that in (7). Next, we obtain a simpler expression by finding a 
condition under which S[Mi (X) + 1, m; (X)] 's are disjoint. 

Lemma I: If 7ri(x), i = 1, . . . , P are mutually exclusive, 
then S[M;(X) + 1, mi(X)], i = 1, . . . , P are disjoint from 
each other. 

Proofi Consider the sets of true vectors V(.rri) and 
V(7rj). Assume 7ri(x) and 7rj(x) are mutually exclusive so 
that V(.rr;) n V(7rj) = 0. From the proof of Proposition 3, 
we know that Ie(X) E V(.rri) iff C E S[M;(X) + l ,mi (X)]  
and h ( X )  E V(7rj) iff C E S[Mj(X) + l ,mj(X)] .  Suppose 
S[Mi(X)+l ,  mi(X)]nSIMj(X)+l, mj(X)] # 0. Then, there 
exists a level C for which Ie(X) E V(.rri) and Ie(X) E V(.rrj). 
Thus, V(.rri) n V(7rj) # 0, which is a contradiction. This 
completes the proof. 0 

Proposition 5 (Representation Based on SOMEP): Consider 
f(x) = .rr~(x) +.  . . + .rrp(x). If 7r;(x) are mutually exclusive, 
then 

TBFf(X) = IS[XZ+L Xlll+ IS[l, min(X1, X,}]l- IS[&+ 

is equivalent to that of Example 3. 

P 

TBFf(X) = TBF,* (X) 
i=l 
P 

= c m a x { O , m i ( X )  - Mi(X)}. (13) 
i=l 

This proposition is a direct consequence of Lemma 1. A 
SOP Boolean expression consisting of mutually exclusive 
product terms is called the sum of mutually exclusive products 
(SOMEP). An arbitrary Boolean function can be easily con- 
verted into a SOMEP form; an algorithm for the conversion is 
presented in Appendix. The expression in (13) clearly shows 
that only complemented literals can have (-) sign in the output 
representation of a TBF. The number of mutually exclusive 
products of any Boolean function, which is P in (13), is 
always less than or equal to the number of its true vectors K.  
Therefore, (13) is preferable to (7). In addition, it is usually 
simpler than (1 1). 

Example5: Consider again f(x) = z11z + 21x3. By 
applying the algorithm in Appendix, we obtain a SOMEP 
expression f(x) = XITZ + 21%223. From (13), TBFf(X) = 
max(0, XI - X2} + min(X1, XZ, X3}. Comparing this result 
with those of Examples 3 and 4 indicates that (13) can provide 

0 a simpler expression than can (7) and (1 1). 

An altemative to (13) can be obtained from the product- 
of-sums (POS) Boolean expressions. The TBF representation 
based on POS expression is similar to that in (13) and will 
not be considered further. 

B. Representing TBF's in Terms of Ordered Input Data 

Consider S[1, MI, which is the range of summation 
in (3), or equivalently the range of level e's in (5).  
We decompose S[l,M] into a union of subintervals: 
S[1, M] = S[X(i+l) + 1, X(q] for any input X. Note 
that {S[X(;+1) + l ,X(i)] , i  = 0,1 , .  . . , N }  are disjoint 
since X(q 2 X(i+l) and SIX(;+l) + l,X(;)] = 0 when 
X(q = X(i+l). Thus, (3) can be written as 

TBFf(X) = f(Ie(X)) 
e€s[l ,MI 

N 

i=o ~ES[X(,+,)+l,X(,)] 

where in the case of X(;) = X(i+l), 

0. In the following, we introduce two lemmas that lead us 
to another TBF representation. 

Lemma 2: If X(q > X(i+l), i = 0,1 , .  . . , N for an input 
X,  then 

Ce€s[x,*+,)+1,x(,)] f(Mx>) = 0 since S[X(i+l) + 1, X(i)] = 

Ie(X) = IX(.) (XI (15) 

for all C E SIX(i+l) + l ,X(i)] .  

Xj 2 X(q and 0 if Xj 5 X(;+l); thus, (15) follows. 
Proof: For all C E SIX(;+l) + l ,X( , ) ] ,  Ie(Xj) = 1 if 

U 
Lemma 3: For any input X 

where C; = X(i) - X(i+l), i = 0,1, .  . . , N .  
Proofi Assume that X(i) > X(;+l). Then, 

from I x " a  2 7  CeEs[x(,+l)+l,x(,)] f ( Ie(X>) = 

ce€s[X(,+,)+l,x(,)] f(IX(,) (XI) = f ( I X ( . )  (X))(X(i) - 
X(i+l)) = f(IX(JX))Ci. If X(2) = X(i+l), then 
Ci = X(i) - X(i+]) = 0, and both sides of (16) are 
zero. Thus, (16) holds. 0 

Now, we express the TBF in terms of Ci's. 
Proposition 6 (Representation Based on Ordered Input): 

The output of a TBF with a Boolean function f (x)  can be 
expressed as 

This result is obtained by using (16) in (14). Note that Ix(*,  (X) 
in (17) is dependent on the input ordering. Thus, (17) shows 
that a TBF can be expressed as an adaptive linear combination 
of ordered input data. 
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Example6: For f ( X )  = 2 1 3 2  + 21x3, TBFf(X) = 
f(Ix(.) (X))C, from (17). This expression cannot be 

simplified further unless input orderings are given. Consider 
an input ordering 0 < X2 < XI = X3 < M. Then, 

f(1,0,1) = 1, and f(Ix(,,(X)) = f(1,1,1) = 1. Thus, 

X3 where we set X(l) = X3 and X(2) = XZ. 
Note that the same result is obtained when we set X(!) = 

X1 and X(2) = X3. It can be seen that the expression denved 
in this example also produces the ordering-output table in 
Table I. 0 

For the case of positive Boolean functions (stack filters), 
(17) can be simplified further as shown below. 

Proposition 7 (Stack Filters): The output of a TBF with a 
positive Boolean function f(x) can be expressed as 

f(IlM(X)) = f (0 ,  0,O) = 09 f(IX(,, (X)) = f(IX(,, (XI) = 

TBFf(X) = Cl +C2+C3 = (X3 -X1)+(X1 -X2)+X2 = 

TBFf(X) = X(m) (18) 

where m = min{i I f(Ix(*,(X)) = 1, i = 0,1, .  . . , N } .  
Proof: If f ( I ~ ( ~ , ( x ) )  = 1 for some i , O  5 z 5 N ,  

then f ( I~ (~ , (x ) )  = 1 for all k = i , i  + 1,. . . , N due to the 
stacking property of a positive Boolean function [2]. Thus, 

CN = (x(m) - x(m+l)) + 
0 

Note that f(Ixc,,(X)) = 1 and f(Ix,,,+l(X)) = 0 in 
(18). Due to the stacking property, f(Ie(X)) = 0 for all 
l 2 X(m) + 1. Therefore, TBFf(X) = X(ml = max{l I 
f(Ie(X)) = l}, which is a result derived in [2]. 

Example 7: Suppose f(x) = 2123 + 2 2  and the input 
ordering is 0 < X3 < XI < X2 < M. Since f ( l ~ ( X ) )  = 

0 
In (17) and (18), evaluating the Boolean expression 

f ( Ix(%)(X))  is often burdensome because f(x) is usually 
very long and cumbersome. For the case of LS TBF’s, the 
evaluation of f(.) is not required, as shown below. 

Proposition 8 (Linearly Separable TBF): Consider an LS 
Boolean function f(x), which is defined as (4). The LS TBF 
corresponding to the f(x) can be expressed as 

m F f ( X )  = c m  + c m + l  . 
(x(m+l) - X(m+2)) + ’. ’ + (X(N) - 0) = x(m)- 

f ( O , O ,  01 = 0 and f(IX(,, (X))  = f ( Ix , (X))  = f(0,1,0) = 
1, we get m = 1 and TBFf(X) = X(l) = X2. 

N 

TBFf(X) = IT(Rz)cz, (19) 
2=0 

where RO for z = 1,. . . ,N,  w(,) is 
the weight associated with X(3) and IT(R,) = 1 if R, 2 T 
and 0 otherwise. 

Proof: From (15), we get (y~,.. . , y ~ )  Ie(X) = 
Ix( , , (X) for all l E S[X(,+1) + 1, X(,)] # 0, i = 0,1, .  . . , N ,  
where y(k)  = 1 if k 5 z and 0 otherwise. Thus, f(Ix,,, (X)) = 

IT(c3=i w3%) = I T ( x 3 = l  w ( j ) y ( ~ ) )  = IT(w(1) + w(2) + 
... + “(,I) = IT(&),  and (19) follows from (17). If 
S[X(,+1) + 1,X(,)] = 0, i.e., X(,) = X(,+l), i = o , ~ , .  . . , N ,  
then f(Ixc, , (X))  does not matter in (17) since C, = 0. This 
completes the proof. 0 

Example 8: Suppose f(-) is an LS Boolean function with 
T = 0 and (w1,w2,w3) = (-1,1,-1). Note that (19) is 
not simplified further unless the input ordering is specified. 
Consider an input ordering XI 5 X2 5 X3. Then, we get 

0, R, = E;=, 

N N 

w(1) = w3 = -1, w(2) = w2 = 1, and w(3) = w1 = -1. From 
(19), TBFf(X) = Io(0)Co + Io(-l)Ci+ I o ( - l  + 1)C2 + 
I o ( - l  + 1 - 1)c3 = CO + cz = ( M  - x(1)) + (x(2) - x(3)). 

0 
The implementation of an LS TBF using (19) should be 

simpler than that of a TBF using (17). The computational 
complexity associated with these filtering will be discussed 
in Section V. For WOS filters having nonnegative w; and T, 
we can see that if Ri 2 T for any i = 0,1,. . . , N - 1, then 
Rj 2 T for all j = i + 1, . . . , N .  Therefore, (19) can be 
reduced to 

where k = min{i I R; 2 T,  i = 0,1,. . . , N}. The expression 
in (20) is a definition of the WOS filter [5]. 

In general, ~ ( I x , , ,  (X)) in (17) produces 0 or 1, depending 
on the input X. For some special cases, however, it is 
independent of X,  and the output of a Tl3F may be represented 
as 

where b; are binary constants. A TBF that can be expressed as 
in (21) wilkbe called afuced TBF. Next, we present a sufficient 
condition for f(x) being a Boolean function of a fixed TBF. 

Proposition 9 (Fixed TBF): If a Boolean function f(.) sat- 
isfies f(x) = f(y) whenever binary input vectors x and y 
have the same number of l’s, i.e., w ~ ( x )  = w ~ ( y ) ,  then the 
TBF corresponding to f(.) becomes a fixed TBF in (21), and 
each coefficient b;, i = 1, . . . , N is given by the output of the 
Boolean function f(x) with x having i l’s, i.e., w ~ ( x )  = i. 

Proof: If C; # 0, i.e., X(i) > X(;+l), then 
WH(IX(,,(X)) = i, and (21) follows from (17). When 
Ci = 0, (21) holds regardless of bi. This completes the 

Example 9: Consider f(x) = 213233+312233+313223+  

2 1 2 2 2 3 .  For this case, f(x) = b; with bl  = b3 = 1 and 
bo = b2 = 0. From (21), therefore, we get TBFf(X) = 

0 
The class of fixed TBF’s encompasses the rank-order filters; 

a rank-order filter selecting x ( k ) ,  where k is a fixed integer 
between 1 and N ,  is a fixed TBF with bi equal to 0 if i 5 k - 1 
and 1 otherwise. On the other hand, a fixed TBF with bo = 0 
is a particular case of the LOS filter that is defined as LOS 
(X) = ELl aiX(;), where a; are real numbers. An LOS 
filter becomes a fixed TBF iff it produces either 0 or 1 for any 
binary input vector. Altematively, we can- say that an LOS 
filter becomes a fixed TBF iff it can be expressed as in (21). 
Note that the coefficients {a;} of an LOS filter should be either 
0 or 1 or -1 when the filter is a fixed TBF. 

Both the expressions in (13) and (17) are useful for investi- 
gating the behavior of TBF’s. In the following section, some 
properties of the Tl3F are derived by using these expressions. 

proof. 0 

3 C;=o biCi = C1 + C3 = X(1) - X(2) + X(3). 
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TABLE II 
ORDERING-OUTPUT TABLE FOR f(x) = 2 1 2 2  + 2123  

orderings output=max(O,X1 - XZ} + { M  - max{X1,X3}} 
x1 i XZ i x3 
x1 I x3 I xz 

0 + ( M  - x3) = M - x3 
0 + ( M  - x3) = M - x3 

xz 5 x1 I x3 
xz I x3 I x1 
x3 I x1 I xz 
x3 i xz I x1 

x1- x* + (A4 - X3) = M - x3 + x1- XZ 
x1 - x p  + ( M  - Xl) = M - xz 

0 + ( A 4  - XI) = M - x1 
x1 - xs + ( M  - XI) = M - xz 

Iv .  PROPERTIES OF THE TBF 

The TBF does not obey the superposition principle, and it is 
nonlinear; moreover, some TBF’s are neither scale-invariant 
nor translation-invariant. In what follows, the translation and 
scaling of X will be denoted by X + c = (XI + c, . . . , XN + c) 
and a X  = (aX1,. . . , uXN), respectively, where c and a are 
constants. Note that if a X  + c E D N ,  then TBFf(aX + c) E 
D = { O , l , .  . . , M} since f(Ie(X)) in (3) produces either 0 
or 1. The following lemma is useful for investigating scale- 
and translation-invariant properties of TBF’s. 

Lemma 4: The TBF representation in (17) can be rewritten 
as 

N 

f(IX(.) (X))Ci = f(O)Co 
i=O 

N-1 

+ f(IX,,) ( x ) ) c i  + f ( 1 ) C N .  (22) 
i=l 

Proof: It suffices to show that f ( lx( , ,  (X))Co = f(0)Co 
and f ( I x , , ) ( x ) ) C ~  = f ( l ) C N ,  which are obvious if CO = 0 
and CN = 0, respectively. If CO > 0, i.e., X(o) = M > X(l), 
then I X ( ~ ) ( X )  = 0. We have Ix( , , (X)  = 1 for any cases. 

In the properties stated below, we shall see that some TBF’s 

Property I (Translation-Invariance): Suppose that X + c E 

This completes the proof. 0 

are neither translation invariant nor scale invariant. 

D N .  Then 

TBFf(X + C) = TBFf(X) + c(f(1) - f(0)). (23) 

Proof: Let X’ = X + c and C,! = Xti) - Xti+,). 
Then, C,’, = M - (X(1) + c), Ch = X(N) + c, and C,l = 
(X(i) + c) - (X(;+1) + c) = Ci for i = 1,. . . , N - 1. 
Since IXI (X’) = Ix( , , (X) ,  (22) yields TBFf(X + c) = 

TBFf(X’) = f(o)cA + E:;’ f(Ix;,)(X’))C,! + f(1)Ch = 
(E) 

f ( o ) ( M  - x(l) - + CL;’ f(IX(,)  (x))ci + f ( l ) (x(N) + 
c, = f ( o ) ( M -  x(l)) + E:;’ f(IX(,)  (x>>ci + f ( l )x(N) + 
c ( f (1 )  - f(0)) = TBFf(X) + C ( f ( 1 )  - f(0)). 0 

Property 1 indicates that a TBF is translation invariant iff 
f(1) = 1 and f(0) = 0. If f(1) = f(O), then TBFf(X+c) = 
TBFf(X), and thus, dc components of the input are completely 
removed, and the TBF is not translation invariant. TBF’s with 
the dc-removal property may be useful for applications such 
as edge detection and DPCM. In fact, the edge detectors 
in [15] and 1161 are TBF’s with the dc-removal property. 
The examples below present some other TBFs that are not 
translation invariant. 

Example 10: Consider the range estimator in Example 1. 
Obviously, this estimator removes dc components. This can 
be also seen by considering its Boolean function f(x) = 
z l Z z  + 2 2 3 3  + 2331. Since f(1) = f(O) = 0, the estimator 
has the dc-removal property and is not translation invariant. 0 

Example 11: Consider f(x) = 2 1 3 2  +3133. Since f(1) = 
0 and f(0) = 1, the TBF corresponding to f(x) satisfies 
TBFf(X+c) = TBFf(X)-c. In fact, since 2 1 3 2  and 3133 are 
exclusive, (13) gives TBFf(X) = max(0,Xl - X2) + ( M  - 
max(X1, X3)) and TBFf(X + c) = max(0, (XI + c) - (X2 + 
c)} + ( M  - mu{ XI+ c, X3 +c}) = max(0, XI- Xz} + ( M -  
mu{ XI, X3}) - c. Therefore, TBFf (X + c )  = TBFf (X) - c. 
The reason why this equality holds becomes obvious if we 
consider the ordering output table in Table 11. Each output in 
the table is either M - Xj or M - X3 + XI - X2, and thus, 

If fi) is an LS Boolean function defined by (4), f(1) = 1 
w; 2 T, and f(0) = 0 iff T > 0. Therefore, an LS 

Property 2 (Scale Invariance): Suppose a X  E D N .  Then 

the equality should hold. 0 

iff 
TBF is translation invariant iff xLl wi 2 T > 0. 

TBFf(aX) = aTBFf(X) + M(l - ~)f(0). (24) 

Proof: Let X’ = aX and C,! = Xti) - X;i+l). Then, 

aX(i+l) = aC; for i = 1, ..., N - 1. Since Ixt (X’) = 
IX I (X) ,  (22) yields TBFf(aX) = TBFf(X’) = f(0)C; + 
C,’, = M - aX(1), Ch = uX(N), and C,! = aX(q - 

( a )  

E& f ( I x p ’ N c , l  + f ( W h  = f(O)(M - UX(1)) + 
E:;’ f(IX(.) (X))aCi + f ( l ) a X ( N )  = a f ( o ) ( M  - x(l)) + 
a CL;’ f(IX(,) (x))ci +af(l)X(N) + Mf(O) - a M f ( o )  = 
aTBFf(X) + M(1- a ) f ( O ) .  0 

This property indicates that a TBF is scale invariant only 
when f(0) = 0. Thus, an LS TBF is scale invariant if T > 0. 
Note that if f(0) = 1, the corresponding TBF is neither 
translation invariant nor scale invariant (for example, see the 
TBF in Example 11). Combining Properties 1 and 2, we draw 
the following conclusion. 

Corollary 1 :  Let a X  + c E D N .  Then 

TBFf ( UX + C) = uTBF~ ( X )  + c (25) 

iff f(1) = 1 and f(0) = 0. 
Since any positive Boolean function f(x) satisfies f(1) = 1 

and f(0) = 0, all stack filters are translation and scale 
invariant. Next, we derive some properties that are often useful 
for obtaining the multilevel TBF representations in (7) and 
(13). 
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TABLE III 
ORDERING-~UTPUT TABLE FOR f(x) = 2 1 2 2  + 212223 + 212223 

orderings output=( TBFf (X)) output=(TBFr(M - X)) 
M - xz + (XZ - Xl) + 0 = M - x1 

M - x2 + (X3 - XI) + 0 = M - (Xl + xz - X3) 
M-X1+O+(X1 -Xz)=M-XI 

M - x1 + 0 + (X3 - XZ) = A4 - (Xl + xz - X3) 
M - x2 + 0 + 0 = M - x2 
M - XI + 0 + 0 = M - x1 

x1 I X Z  I x3 
x1 I x3 I xz 
xz I x1 I x3 
xz I x3 I x1 
x3 I x1 I x2 
x3 I xz I x1 

x1+ 0 + o  = x1 
XI + 0 + (Xz - X3) = x1+ xz - x3 

xz + 0 + 0 = xz 
x2 +(XI - X3) + o  = xl+ xz - x3 

xl+o+(xz-x1)=xz 
x2 + (Xl - XZ) + 0 = x1 

When a multilevel representation of a Boolean function 
f (x) is given, the multilevel representation corresponding to 
the dual of f(x) can be obtained easily. 

Property 3 (Duality): Let fd(x) denote the dual function 
of a Boolean function f(x), fd(x) = !(a). Then 

Proof: Suppose C3 > 0, J = 0,1 , .  . . , N  for 
an input X .  Then, we have X(o),X(l), . . . ,X(J) > 

X ' = M - X =  ( M - X l ,  ..., M-X~) .Then,wealsohave  

we obtain IxCl,(X) = IM-x ( ,+~) (M - X )  = IXt (X'), 
and from (171, TBFfj(X) = C E o f ( m ( X ) ) C z  = 

also holds for dZ = 0. Since C N - ~  = X(N-z) - X(N-z+l) = 

X(,+l) , . . . ,x(N),X(N+l) .  Let f'(x) = f(x) and 

XtIJ) , Xi,) , . . . 7 Xt3) < Xt3+1) , . . . 7 XlN), X[,+,). Thus, 

( N - 9 )  

N cz=O f(Ix;N-I (X'>)CZ = E,"=, f(IX;*) (X'))CN-z, which 

( M  - X@)) - ( M  - x ( z + l ) )  = XtZ) - Xtz+l) = C,l 
for all i ,  TBF~!(X) = C , N _ ~ ~ ( I ~ ( , ) ( X ) ) C %  = 

E,"=, ~ ( I ~ ~ ~ ~ ( x / ) ) c ;  = TBF~(X') = T B F ~ ( M  - x). Since 
TBFj(X) + TBFj(X) = M ,  TBFfd(X) = TBFp(X) = 
M - TBFf#(X) = M - TBFf(M - X). 0 

If f(.) is self dual, f(x) = f(X), and then, (26) yields 
TBFf(M - X )  = M - TBFf(X). Thus, we can say that a 
TBF corresponding to a self-dual Boolean function commutes 
with a signal inversion. Since Boolean functions corresponding 
to weighted median (WM) filters are self dual [18], all WM 
filters commute with a signal inversion. 

Example 12: Consider a self-dual Boolean function f(x) = 
Z ~ X Z + Z ~ ~ ~ F , ~ + F , ~ Z Z Z ~ .  Since the three products of f(x) are 
mutually exclusive, (1 3) yields TBFf (X) = min{ XI ,  XZ} + 
max(0,Xl -max{Xz,X3})+max{0,Xz -max{X1,X3}}. 
Thus, TBFf(M - X )  = min{(M - X1),(M - XZ)} + 
max{o,(M - XI) - "{(M - XZ),(M - &)}} + 
max{o,(M - XZ) - max{(M - Xl),(M - &)}} = 
M - max(X1,Xz) + max{o,min{X~,&} - XI} + 
max(0, min(X1, X3} - XZ}. The ordering-output table in 

0 
A filter that is expressed as an absolute difference between 

two stack filters is a TBF because it yields either 0 or 1 
for binary inputs and obeys the threshold decomposition. The 
Boolean function of such a filter is derived in the following 
P'*Pe*Y. 

Property 4 (Absolute Difference Between Two Stack Fil- 
ters): Consider TBFh(X) = ITBFf(X) - TBF,(X)I, where 
f(x) and g(x) are positive Boolean functions (TBFf(X) and 

Table III shows TBFf ( M  - X )  = M - TBFf (X). 

TBF,(X) are stack filters). Then, the Boolean function h(x) 
of TBFh(X) is given by h(x) = f(x)g(x) + f(x)g(x). 

Proofi Let hl(x) = f(x)g(x), F = TBFf(X), and 
G = TBF,(X). Then, F = max{C I f(Ie(X)) = 1) 
and G = max{l I g(Ie(X)) = 1). Since hl(Ie(X)) = 
f(Ie(X))g(Ie(X)) = 1 only when G < C 5 F ,  we get 
TBFh,(X) = max(0,F - G}. Letting hz(x) = f(x)g(x), 
we get similarly TBFh,(X) = max(0, G - F}. Since 
f(x)g(x) and f(x)g(x) are mutually exclusive, TBFh(X) = 
TBFh,(X)+TBFh,(X) = max(0,F-G}+max{O, G-F} = 

0 
Example 13: Consider TBFh(X) = I median 

{X1,Xz,X3} - median {X4,X5,X6)1, which is 
the difference-of-medians operator [ 161. Since the 
positive Boolean functions for median{ XI, XZ,  X3} and 
median{Xd,Xg,Xg} are f(x) = 1~1x2 + 22x3 + 23x1 
and g(x) = 24x5 f 2526  + 2624, respectively, we get 
h(x) = f(x)g(x) + f(x)g(x) from Property 4. The Boolean 
functions corresponding to the range or quasiranges [151 
X(,) - X(N-%+I), 1 5 i 5 1;) can be obtained in a similar 
manner. 0 

In general, a filter expressed as a linear combination of stack 
filters is not a TBF. It can be shown, however, that any TBF 
can be represented as a linear combination of stack filters. 
This result is derived by using the definition and the lemmas 
presented below. 

Definition 1 (Stacking Property of True Vectors): Consider 
V ( f ) ,  which is the set of true vectors of a Boolean function 
f(x). Let V ( f )  = {XI ,..., XK}, and let W t ( f )  be the 
set of binary vectors that are greater than or equal to 
the true vector x,,i = 1 , .  . . ,K .  Here, a binary vector 
y = (91 ,... , y ~ )  2 x = (21,. . .,zN) if yJ 2 x3 for all 
j. The set V ( f )  is said to have the stacking property iff 

For example, for V ( f )  = {(O,O,l),(l,O,l)}, we have 

{ ( l , O , l ) , ( l , l ,  1)) when XI = (0,0,1) and xz = ( l , O , l ) .  
Thus, V ( f )  # Wl(f)UWz(f), and V f does not possess the 
stacking property. The union of sets W z ( f )  will be called 
the stacking set of f(x). Of course, U,"=, W t ( f )  2 V ( f ) .  
The difference between the stacking set U,"=, Wz(f) and V ( f )  
will be called the complementary set of f(x) and denoted by 

For V ( f )  = {(O,O, l ) ,  (1,0,1)) in the above example, the 
complementary set C ( f )  = {(0,1, l), (1,1, l)}. Obviously, 
C ( f )  = 0 when V ( f )  has the stacking property. Since 
a Boolean function f(x) is positive iff f(x) = 1 means 

( F  - GI = ITBFf(X) - TBF,(X)J. 

VU)  = U,"=, W%(f>. 0 

Wl(f) = { ( O , O ,  11, (0,1,1), (170, I), (1,1,1)}, and Wz(f) = 

k '  

C(f): lJE1 W % ( f )  = V ( f )  U C ( f )  and V ( f )  n C ( f )  = 0. 
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f(y) = 1 for all y 2 x, we can say that V ( f )  has the 
stacking property iff the corresponding Boolean function f(.) 
is positive. 

Lemma5: If C ( f )  # 0, then min{wa(x) I x E C(f)} > 
min{wa(x) I x E V(f)}, where w ~ ( x )  is the number of 
1's in x. 

Proofi Consider W;(f), which is the set of all binary 
vectors y 2 xi E V ( f ) ,  where w ~ ( y )  > w ~ ( x ; )  if y # x;. 

the desired result. 0 
Now, we are ready to show that an arbitray TBF can be 

decomposed into a linear combination of stack filters. 
Property 5 (TBF as a Sum of Stack Filters): Any 

TBFp(X) can be expressed as a linear combination of 
stack filters: 

since ~ ( f )  = {Y I Y E uE1 ~ i ( f )  and Y e VU)}, we get 

TBFf(X) = ~( - l )" lTBF, (X) ,  (27) 
a=1 

where 1 5 Q 5 N + 1, and each f;(.) is a positive Boolean 
function with true vectors V(f;) = V(fl-l) U C(fl-l),i = 
1 , .  . . , Q, where fA(x) = f (x)  and fi(x) is a Boolean function 
with V(f,') = C(fl-l). 

Proofi Suppose that f (x)  is not positive. We determine 
the Boolean functions fl(x) and f i (x)  so that V(fl) = 
V ( f )  U C ( f )  and V(fi) = C ( f ) ,  respectively. The Boolean 
function f1 (x) becomes positive because V(f) U C ( f )  has the 
stacking property. Since V ( f )  n C(f) = 0, we get, from (13), 
TBFf, (X) = TBFf (X) + TBFf; (X), and thus 

TBFf (X) = TBFf, (X) - TBFf; (X). (28) 

If f i (x)  is positive, then we stop here, and Q = 2. If not, 
by repeating the procedure for obtaining (28), we decompose 
TBFf;(X) into TBFfz(X) and TBFf;(X), where TBFf2(X) 
is a stack filter. Continuing in this manner, we eventually 
get a positive Boolean function fA(x), n 5 N .  This is true 
because min{wa(x) I x E C(fi)} > min{wa(x) I x E 
V(fi)} (Lemma 6), and the maximum number of 1's in x 
is N .  The worst case, n = N(Q = N + l ) ,  occurs when 
0 E V ( f )  and min{wa(x) I x E C(~N)} = N, i.e., 
&(x) = 21x2.. . XN. By setting fn+1(x) = fA(x), we get 
TBFf (X) = TBFf, (X) -TBFfz (X) +. . . (- l)TBFfn+, (X). 

0 
Exumple14: For f ( x )  = ~ 1 3 2  + 32x3 + 2123, 

V(f )  = {(070,1~~(1 ,0 ,0) ,  (1,071),(1,1,1)}9 ancl 
C(f) = ((0717 11, (1,1,0)}. Flmn V(f1) = V(f) U C ( f )  
and V(fi) = C(f), we obtain f l (x)  = 2 1  + 23 and 
fi(x) = 2 1 5 2 3 3  + 312223, respectively. Since f i (x)  
is not positive, we consider C ( f : )  = {( l , l , l )} .  From 
V ( f d  = U C(fi) and Vfi)  = C(fi), we get 
fz(x) = 21x2 + 22x3 and f i (x)  = 212223, respectively, 
where f i (x)  is positive. Therefore, we set f3(x) = f i (x)  
and TBFf(X) = TBFf,(X) - TBFfz(X) + TBFf,(X), with 
f i (x)  = 2 1  +53, f2(x) = ~ 1 ~ 2  + 2 2 2 3 r  and f3(x) = 212223. 

0 
Property 5 suggests that a TBF be realized as a parallel 

connection of stack filters. When Q is reasonably small and an 
efficient algorithm for stack filtering is available, the parallel 

structure may be preferable to direct implementations of a 
TBF. 

V. IMPLEMENTATION OF THE TBF 

The TBF representations developed in Sections I1 and 
I11 lead to various implementations of a TBF. Among the 
representations, the one in (17) generally results in more 
efficient implementation than the others because the number of 
additions in (17) is always N + 1, whereas K and P in (7) and 
(13) vary depending on Boolean functions and can be as large 
as O ( P ) .  Therefore, in this section, we focus our attention 
to the implementation of a TBF based on (17), develop an 
algorithm for realizing a TBF, and compare the computational 
complexities of TBF"s, LS TBF's, and stack and WOS filters. 

The output of a TBF is obtained from (17) through the 
following steps: 

Step 1. Sort the data within the window and evaluate 

Step 2. Obtain Ix(",(X) for each i. 
Step 3. Evaluate ELo f(lx,,, (X))C;. 

c;,i = 0,1, ... , N .  

In Step 1, the input data inside a window can be sorted 
by applying well-known algorithms such as BUBBLESORT, 
MERGESORT, QUICKSORT [19], [20] and the running sort- 
ing algorithms in [21]. Among the sorting algorithms, the 
running sorting requires less computation and is preferable 
to the others when a TBF is realized on a general-purpose 
computer. On the other hand, BUBBLESORT has been used 
in the practical design of sorting circuits [22]-[24] due to 
its modular structure. In Step 2, the direct computation of 
IX(%, (X)'s requires N 2  multilevel comparisons. The com- 
putational load can be reduced significantly if we use the 
idormation on time indices of the sorted input data. For 
each input X j , j  = 1,. . . , N, we define its location vector 
rj = (T:, . . . , f ) ,  where rjk = 1 if k = j and 0 otherwise. 
In addition, the location vector of X(;), which is denoted 
by r(;), is defined as r(;) = rj when X ( ; )  = Xj. For 
example, when N = 3, rl = (l,O,O), 1 2  = (O,l,O), and 
1-3 = (O ,O,  1). If X2 < XI < X3, then r(l) = r3 = (O ,O,  l ) ,  
r(2) = rl = (l,O,O), and r(3) = r 2  = (O,l,O). Now, 
consider a set of binary vectors {z;, i = 0,1, . . . , N} defined 
as zi = r(l) + rp) + ... + r(;), i = 1, .  . . , N, and ~i, = 0 ,  
where + performs componentwise addition. Note that z; has i 
1 's and N - i 0's and ZN = 1. In the example described above, 
zl = (O,O, 1). z2 = (l,O, l ) ,  and z3 = (1,1,1). The vector z; 
can be evaluated recursively by using z; = z;-1 + r(;) with 
z1 = r(l). The relation between z; and Ix(;,(X) is observed 
below. 

Observation 1 :  If X(;) > X(;+l), then Ix(., (X) = z;. 
Proofi The lcth element of IX(%)(X) is equal to 1 iff 

Xk 2 X(;). The number of 1's in lx (*) (X)  is greater than or 
equal to i, and it becomes i when X(i) > X(i+l). The kth 
element of z; is equal to 1 iff Xk E { X ( 1 ) ,  X(2), . . . , X ( ; ) } ,  
and the number of 1's in z; is always i. Thus, Ix(~, (X) = z; 

When X(;) = X(i+l), I x ( ~ ) ( X )  is different from z; but 
f(Ix(,,(X))C; = f(z;)C; because C; = X(;) - X(;+l)  = 0. 
Consequently, we obtain the following equality that is very 

when X ( ; )  > X(;+l). 0 
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2. Implementation of TBF’s. 

useful for realizing Steps 2 and 3. 
N N 

f(IX(,) (X))C; = f(Zi)Ci. (29) 
i=O i=O 

Evaluation of z;, i = 1, . . . , N requires N 2  binary additions 
(or logical OR operations), which are much simpler than N 2  
multilevel comparisons. The price for this simplicity is the 
storage space for the N N-bit location vectors. In (29), 
the output is calculated by summing Ci’s associated with 
f(z;) = 1. The Boolean function is implemented either by a 
combinatorial logic or by a look-up table. The complexity of a 
combinatorial logic depends heavily on the Boolean function, 
whereas a look-up table always requires the storage space of 
2N bits. 

The algorithm flow based on (29) is shown in Fig. 2. Each 
input sample X j  is paired with an N-bit binary location vector 
rj and then sorted. The sorted pairs X(i)’s and r(;)’s are used 
to calculate Ci’s and z;’s, respectively. The output is obtained 
by evaluating (29). The structures for hardware realization of 
each of the basic modules in Fig. 2 are depicted in Fig. 3. 
The sorting block, which is based on BUBBLESORT, and the 
block calculating Cj’s are shown in Fig. 3(a), where the CS 
element denotes compare-and-swap operation, which swaps 
input sample values and their location vectors if the input 
value at the bottom is greater than that at the top. In Fig. 3(b), 
the block for calculating z; is depicted, where each OR gate 
denotes parallel OR operations for N bits. zo and ZN can be 
preset to 0 and 1, respectively, and z1 = r(l). Fig. 3(c) shows 
the block evaluating ELo f(z;)C;. Here, f(z;)’s are obtained 
sequentially for pipelining. The realization of f(z;) can be 
simplified if we use a look-up table that lists all possible input 
vectors and the corresponding outputs. This is because each 
z; has i l’s, and the number of possible inputs for f(z;) is 
( y )  . The total size of the look-up tables realizing N Boolean 
functions f(z;), i = 1,. . . , N is the same as that realizing 
one Boolean function f(x) having 2* possible binary input 
vectors. In essence, by implementing one look-up table with 
2N binary inputs and the corresponding outputs, the effect 
of implementing N Boolean functions can be achieved. It is 
noted that the structure in Fig. 2 and 3 is highly suitable for 
pipelining, and it can produce a TBF output at every clock the 
rate is limited by the maximum delay among CS processor, 
adder, and the Boolean function. 

When implementing stack filters, the algorithm in Fig. 2 
can be simplified. Since the output of a stack filter is obtained 
by finding the minimum among i ’ s  for which f(z;) = 1 

...... - 

Z(, = 0 

ZN = 1 

. . . . . .  

...... 
1 

(C) 

Fig. 3. (a) Sorting block and calculation of C;’s. CS and D denote the 
compare-and-swap operation and delay line, respectively; (b) generation of 
et’s from the location vectors r(,) ’s. The OR gate denotes N-bit parallel OR 
operation, and eo and ZN are set to 0 and 1, respectively; (c) calculation of 
multilevel TBF output. 

(see (18)), the 2N + 2 additions for calculating C;’s and (29) 
are unnecessary, and stack filters are somewhat simpler to 
implement than TBF’s. As a useful alternative to the algorithm 
based on (18), one may consider the bit-serial algorithm [32] 
for realizing stack filters. This algorithm, however, cannot be 
used for TBF’s because it exploits the positivity of the Boolean 
function. 

In practice, it is difficult to implement TBF’s and stack 
filters with large values of N because the complexity of f(.) 
increases exponentially as a function of the window size N .  As 
noted before, the evaluation of f(.) is not required in LS TBF’s 
and WOS filters, and for a large N ,  their implementation 
becomes considerably simpler than that of TBF’s and stack 
filters. 

The structure for realizing the LS TBF in (19) is shown 
in Fig. 4. The input data paired with the weights ( X j ,  wj) 
are sorted to produce ( X ( ; ) ,  w ( ~ ) ) ,  i = 1,. . . , N .  Then, R; = xi,, w(j) is evaluated and compared with the threshold T.  
The output of the LS TBF is obtained by summing the (7;’s 
corresponding to Ri’s that are greater than or equal to T.  In 
WOS filtering, the output is obtained by finding the minimum 
among i ’ s  for which R; 2 T (see (20)). Thus, the 2N + 2 
additions for calculating Ci’s and (19) are unnecessary. 
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Fig. 4. Implementation of LS TBF's 

VI. DESIGN AND APPLICATION OF THE TBF 

One of the advantages gained by extending stack (WOS) 
filters to the class of TBF's (LS TBF's) is the simplicity in 
designing the TBF (LS TBF). In this section, we discuss how 
the design procedures for stack filters in [25] and WOS filters 
in [27] are simplified to design TBF's and LS TBF's and 
examine the performance of these filters through computer 
simulation. 

A .  Designing a TBF under the MAE Criterion 

Coyle and Lin [25] introduced a novel technique for ob- 
taining an optimal stack filter under the mean absolute error 
(MAE) criterion. They showed that an optimal stack filter 
or, equivalently, an optimal positive Boolean function can be 
designed by using linear programming. In [ 8 ] ,  it is pointed 
out that a Boolean function yielding a smaller MAE than an 
optimal positive Boolean function minimizing the MAE can be 
found easily without using linear programming. The procedure 
for finding such a Boolean function, which is, in fact, a design 
procedure for TBF's, is summarized below. 

Suppose that the input process X ( n )  is a noise corrupted 
version of some desired signal S(n) .  To estimate the signal, a 
filtering operation is carried out over a window process X(n), 
which is formed by X(n) = (X , (n ) ,  . . . , X N ( ~ ) )  E ( X ( n  - 
NI), . . . , X ( n ) ,  . . . , X ( n  + N z ) ) ,  where N = N I  + NZ + 1 is 
the window size. We want to find the TBF that best estimates 
the signal. The MAE for a TBF estimate is given by, dropping 
the time indices for notational simplicity 

where the last term is called the sum of micro MAE (SMMAE) 
[ 8 ] .  If the Boolean function f ( . )  is positive, the SMMAE is 
equal to the MAE [25] .  Let f * ( . )  be the positive Boolean 
function for which the corresponding stack filter is opti- 
mal under the MAE criterion. Then, there always exists a 
Boolean function, say f " ( - )  such that MAEp 5 SMMAEfo 5 
SMMAEf. = MAEf., and the f " ( . )  can be found following 
a simplified version of the design process for f * ( . ) .  

0 0 

0 
I 256 

(e) 

Fig. 5. 
output of the TBF (e) output of the LS TBF. 

(a) Original signal; (b) noisy signal; (c) output of the stack filter; (d) 

The optimal stack filter f * ( . )  is designed as follows [25] :  

Z N  

minimize ~ ( f )  = cjf(xj) (31.a) 

(31.b) 
(31.c) 

where cj  is constants depending on input statistics, f ( . )  is'a 
Boolean function, and xj is the jth input vector among 2N 
possible binary input vectors and xi 5 xj if every element of 
xi is smaller than or equal to the corresponding element of xj. 
In designing f " ( . ) ,  the constraint in (31.b), which guarantees 
the positivity of Boolean functions, is unnecessary. The TBF 
f " ( . )  is obtained by minimizing J ( f )  in (31.a) under the 
constraint in (31.c). Now, the minimization for to(-)  is trivial; 
f " ( . )  is given by 

j=1 f 

subject to f(x;) 5 f(xj) if x; 5 xj 
f(xj) = 0 or 1 for all j 

for every j ,  1 5 j 5 2 N .  

B.  Designing an LS TBF 

The design method for stack filters in [25] cannot be 
applied to designing WOS filters. So far, for WOS filtering, 
only suboptimal design procedures have been proposed [27] ,  
[31]. An LS TBF can be designed following the procedures 
for WOS filter design. In this subsection, we shall obtain a 
suboptimal LS TBF using the method in [27].  
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Consider an LS Boolean function f ( . )  defined by (4). 

respectively, defined by k = (zf, . . . , zk, -l)t and w = 

TABLE IV 
MAE VALUES ESTIMATED FROM THE 1-D SIGNALS IN FIG. 5 Let ke and w be the augmented input and weight vectors, 

( ~ 1 , .  . . , W N , T ) ~ ,  where zf = Ie(Xi) ,  and wj’s and T are 
the real-valued weights and the threshold value, respectively, 
associated with f ( . ) .  Then, the LS TBF can be expressed as 

MAE 
G(0, loo),  P, = 0.1 

Stack Filter 7.67 
TBF 6.52 

LS TBF (WOS Filter) 8.67 

M 

TBFf(X) = U(wtZe) (33) TABLE V 
e = i  MAE VALUES ESTIMATED FROM THE IMAGES IN FIG. 6 

where U(. )  is the unit step function defined as U ( X )  = 1 if 
X 2 0 and 0 otherwise. Using (33), SMMAEf is written as 

M 

SMMAEf = E{  1s‘ - U(wtZe)(} 
‘=1 
M 

% E{  1st - ,%e(’} (34) 
e=i 

where se = I‘(S) (see (30)), and the last expression is 
obtained by approximating the unit step function to a linear 
function and utilizing the fact that the absolute and square 
errors are equivalent in the binary domain. Now, the LS TBF 
minimizing the approximation of the SMMAE in (34) can be 
obtained as follows: 

(35) 
1 

W 2 
minimize J(w) = -wt@w - wtQ 

where !P = xEIE{%e(%e)t} and 
Obviously, the solution to this problem is given by 

= CEIE{seZe}. 

WO = @-%D. (36) 

In the case of WOS filtering, the problem in (35) should 
be solved under the constraints that every element of w is 
nonnegative and ELl w; 2 T.  Thus, there is no closed-form 
solution to the problem, and designing WOS filters requires 
more work. , 

C. Experimental Results 
In order to assess the performance of the TBF and the LS 

TBF, these filters are designed using the methods described 
in the previous subsections and applied to suppress additive 
Gaussian and impulsive noise superimposed on 1-D and 2- 
D signals. The Gaussian noise has zero-mean and variance 
100, and impulses occur with probability 0.1. Signal values 
corrupted by impulses are set to either 200 or 20. The statistics 
required for designing the filters are estimated from the signals 
under consideration. 

Fig. 5(a) illustrates a 1-D signal taken from horizontal 
lines of the Lena image having 256 x 256 pixels. The noisy 
signal is shown in Fig. 5(b). The TBF, LS TBF, stack, and 
WOS filters with window size 9 were designed using the 
statistics estimated from the signals in Fig. 5(a) and (b). The 
resulting LS TBF and WOS filter turned out to be identical; 
the parameters of these filters are given by (wl, . . . , w9) = 
(0.09945, 0.073 19, 0.09849, 0.19047, 0.37809, 0.1827 1, 
0.08561, 0.06762, 0.11132) and T = 0.65053. To see the 
potential filtering capabilities, the designed filters were applied 

MAE 
G(0, I O O ) ,  Pe = 0.1 

Stack Filter 7.9422 
TBF 7.9170 

LS TBF (WOS Filter) 1.9014 

to the noisy signal in Fig. 5(b). The outputs of the filters are 
illustrated in Fig. 5(c)-(e), and the corresponding MAE’S that 
have been calculated from the filtered and the original signals 
are listed in Table IV. It is seen that the TBF preserves more 
details and has smaller MAE compared with the others. 

Fig. 6(a) and (b) illustrate the original 512 x 512 “bridge 
over stream” image and the noisy image, respectively. TO 
enhance the noisy image, the TBF, LS TBF, stack, and WOS 
filters with a 3 x 3 square window were designed. The statistics 
required to design the filters are estimated from the upper left 
quarter of images 6(a) and (b). Again, the LS TBF and the 
WOS filter turned out to be identical. The images obtained 
by applying the designed filters to the noisy image are shown 
in Fig. 6(c)-(e), and the corresponding MAE values are listed 
in Table V. Visually, the image filtered by the LS TBF looks 
better than the other images. Furthermore, rather surprisingly, 
the MAE associated with the LS TBF is smaller than the 
others. The superiority of the LS TBF in filtering performance 
is based on the following fact. The number of parameters to 
be estimated for the problem in ( 3 3 ,  ( N  + 1)’ + ( N  + l ) ,  is 
considerably smaller than 2N, which is the number of c3’s in 
(3 1). Therefore, roughly speaking, the parameters estimated for 
(35) are more accurate than those for (31). The LS TBF’s and 
WOS filters may be preferred to TBF’s and stack filters when 
the input statistics are unknown and have to be estimated. 

VII. CONCLUSION 
A new class of nonlinear filters called TBF’s has been 

introduced. A TBF is defined by a Boolean function on the 
binary domain. It has been shown that the logical negation 
on the binary domain produces the minus (-) operation on 
the multilevel. In particular, the TBF can be expressed either 
as a sum of “local minimum - local maximum” terms on the 
multilevel or as an adaptive linear combination of ordered 
input data. 

While all stack filters are translation and scale invariant, 
TBF’s may be neither translation nor scale invariant. The class 
of TBF’s includes some known operators such as the range 
estimator, quasi-ranges, and the difference of median estimates 
that are employed for edge detection in image processing. An 
interesting property indicating that any TBF can be expressed 
as a linear combination of stack filters has been derived. 

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore.  Restrictions apply. 



2034 lEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994 

Fig. 6. (a) Original image; (b) noisy image; (c) output of the stack filter; (d) output of the TBF. 

As a useful special case of TBF’s, the LS TBF has been 
introduced. The LS TBF, which is defined by the threshold 
logic, is a direct extension of WOS filters. LS TBF’s are much 
simpler to implement than TBF’s and may be preferred to 
TBF’s in practical applications. 

Implementation and design of the TBF and LS TBF has been 
investigated. It was observed that the procedure for designing 
TBF’s (LS TBF’s) is considerably simpler than designing stack 
(WOS) filters and that the former can outperform the latter at 
the expense of a slight increase in computational complexity. 

Experimental results indicate that LS TBF’s can be superior 
to TBF’s in filtering peformance when the filters are designed 
based on estimated input statistics. All LS TBF’s designed 
in the experiments for reducing noise tumed out to be WOS 
filters. 

There are some interesting topics for further research. They 
are described as follows: 1) Statistical analysis of the prop- 
erties of TBF’s. 2 )  Optimization of TBF’s and LS TBF’s. 

Recently, a design method for TBF’s under the mean square 
error criterion was presented in [30]. An interesting question to 
be addressed is the following: Under what conditions does an 
optimal TBF reduce to an LS TBF, a stack, or a WOS filter? 
3) Extending TBF’s to filters that are defined by an arbitrary 
function f (.) (not necessarily a Boolean function) on the binary 
domain. The class of filters introduced by this extension is 
the class of all filters possessing the threshold decomposition 
property. 4) Further extension of TBFs to the filters defined 
by (2), which include generalized stack, microstatistic, and 
generalized WOS 1281 filters as special cases. 

APPENDIX 

SOMEP: an algorithm to get SOMEP expressions from a 
given Boolean function 

Suppose f(x) is a given Boolean function. Consider the set 
of its true vectors ~ ( f )  = {vi = (wt, .. .,wN) I f(vi)  = 
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Thus, we have a SOMEP expression: f(x) = 32x4 + 
21x22324. Choosing different pairs to combine, we obtain 
another SOMEP form: 

(e) 

Fig. 6 (continued). (e) Output of the LS TBF. 

1, i = 1,. . . ,2”}. Then, a SOMEP expression of f(x) is 
obtained through the following steps. 

Step 1. Find a pair of true vectors vi, vj E V(f) such that 
TI: # wj” for some k and wf = w$ for all I # k. Then, 
update V(f) by replacing vi and vj with the reduced one, 
which is given by (U:, . . . , vf-l ,  X ,  . ~ y + ~ ,  . . . , wy), where 
x denotes a don’t-care condition. 
Step 2. Repeat Step 1 until no pair of true vectors in V ( f )  
can be reduced. 
Step 3. To each true vector v, = (U;, . . . , w,”) in the re- 
sultant set V(f) ,  assign the product r m ( x )  = xi.; . . . x h ,  
where xi = xi if w k  = 1, xi = 3i if U; = 0, and x: = 1 
if TI; is a don’t-care. 
Step 4. Then, the product rm(x)’s are mutually exclusive, 
and their sum is a SOMEP expression of the given Boolean 
function f(x). 

Proof: In the above algorithm, true vectors of f(x) are 
partitioned into groups, each of which is represented by a 
vector with don’t-cares. Since there is no intersection between 
the groups, the products representing the groups are mutually 
exclusive. 0 

Although the SOMEP algorithm can be easily implemented 
in a computer program, the minimal SOMEP expression (in 
the sense that it cannot be further reduced) resulting from 
the above algorithm may depend on the choice of combining 
pairs in Step 1. An example illustrating the SOMEP algorithm 
is presented below. 

Example A . l :  Suppose N = 4 and f (x) = 21x324 + 3 2 ~ 4 .  

Then 
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