
2022 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

Threshold Boolean Filters
Ki Dong Lee and Yong Hoon Lee

Abstract-A class of nonlinear digital filters, called the thresh-
old Boolean filter (TBF), is introduced. The TBF is defined
by a Boolean function on the binary domain and is a natural
extension of stack filters. Multilevel representations of a TBF
corresponding to a Boolean function are derived; a TBF can be
represented either as a sum of “local minimum-local maximum”
terms or as an adaptive linear combination of ordered input
data. It is shown that TBF’s may be neither translation invariant
nor scale invariant and that any TBF can be expressed as a
linear combination of stack filters. A subclass of TBF’s, called
linearly separable (LS) TBF’s, defined by the threshold logic is
introduced as a direct extension of weighted-order statistic (WOS)
filters. Implementation and design of a TBF and an LS TBF is
investigated. The procedure for designing TBF’s (LS TBF’s) is
shown to be considerably simpler than designing stack (WOS)
filters, and the former can outperform the latter at marginal
increase in computational cost. Finally, experimental results are
presented to illustrate the performance characteristics of TBF’s
and LS TBF’s.

I. INTRODUCTION
NUMBER of digital filters possess the threshold decom- A position property [11. The output of a filter with threshold

decomposition can be obtained by decomposing an input signal
into a set of binary signals, carrying out the filtering operation
separately on each binary signal and then by summing up
the results. To be specific, consider a nonrecursive filter
whose output Y (n) is denoted by Y(n) = F (X (n)) , where
X(n) (Xl(n),X2(n), . . . , XN(~)) is the input vector
within a window at time n, Xj (n) is the jth input sample from
the left of the window, and N is the window size. Assume that
the input is (M + 1) valued, i.e., Xi(.) E {0,1,. . .,Ad}. If
this filter obeys the threshold decomposition, then the output
Y(n) can be expressed as

M

Y (n) = W (n)) = F(le(X(n>)) (1)

where le(x(n)) E (le(xi(n)),le(Xa(n)), . . . ,le(xiv(n)))
is the thresholding operator defined as le(z) = 1 if z 2 C and
0 otherwise. Linear FIR and IIR filters and nonlinear filters
such as stack filters [2]-which include median [3], rank order
[4], and weighted order statistic (WOS) [5] filters as special

e=i

Manuscript received October 30, 1992; revised October 11, 1993. This
work was supported by Korea Ministry of Science and Technology. Portions
of this work were presented at the Canadian Conference on Electrical and
Computer Engineering, Toronto, Canada, September 1992.

K. D. Lee is with the Image and Media Laboratory, GoldStar Co., Ltd.,
Seoul, Korea.

Y. H. Lee is with the Department of Electrical Engineering, Korea Ad-
vanced Institute of Science and Technology, Taejon Korea.

IEEE Log Number 9401904.

cases-linear combination of order statistics (LOS) filters
[6], [7] and linear combination of weighted order statistics
(LWOS) filters [8] obey the threshold decomposition property.
In addition, multilevel morphological filters are defined on the
basis of the threshold decomposition [9], [lo].

The filters satisfying the threshold decomposition can be
fully specified on the binary domain by a truth table or by an
extended truth table [8] that lists all possible binary input vec-
tors and the corresponding output values. The (extended) truth
table representation is useful for analyzing and implementing
the nonlinear filters. In the case of stack filtering, the truth
table representation reduces to a positive Boolean function
performing only logical OR and logical AND operations.

The concept of threshold decomposition leads to the class
of filters that are defined on the binary domain by fe(.) and
whose multilevel representation is given by

M

Y(.) = f e (b - L (X (n)) , f . * I le(X(.)), . . . , l e+L(X(n)))

(2)
where L is a nonnegative integer. In this filter, the binary
vectors from 2L + 1 threshold levels nearest to the level C are
input to the binary domain operator fe(.), which may vary de-
pending on C. Generalized stack filters [l l] and microstatistic
filters [12] are defined following this approach. When L = 0
and f t (.) = f(.) for all 1 is a positive Boolean function, the
class of filters defined by (2) reduces to stack filters.

When a filter is specified on the binary domain and its
multilevel representation is given by (2), a natural question
arises: Can we directly express such a filter on the multilevel
without using the threshold decomposition? The answer to this
question is affirmative for the cases associated with linear FIR,
stack, and LWOS filters, where L = 0 and ft(.) = f(.) for all
C. For example, any filter that is specified by an extended truth
table on the binary domain and by (2) on the multilevel with
L = 0 and fe(.) = f (-) for all C can be expressed directly as
an LWOS filter if the filter produces zero output value for the
zero input vector [8]. On the other hand, the direct multilevel
expressions of the generalized stack and microstatistic filters
are generally unknown.

In this paper, we focus our attention on the filters that are
specified by a Boolean function f(.) on the binary domain
and defined by (2) with L = 0 and fe(.) = f(.) for all
C on the multilevel. These filters will be referred to as the
threshold Boolean filters (TBF’s). The class of TBF’s includes
stack filters as a special case. We shall develop multilevel TBF
representations and investigate the properties, implementation,
and design of TBF’s. It will be shown that a TBF, which

e=1

1053-587X/94$04.00 0 1994 IEEE

-~ ~ ~ __

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE: THRESHOLD BOOLEAN FTLTERS 2023

outperforms the optimal stack filter in [25], can be obtained
following the procedure for designing the stack filter.

As a very interesting and useful subclass of TBF’s, we will
introduce what we call the linearly separable (LS) TBF. The
LS TBF is defined by an LS Boolean function called the

The TBF in (3) becomes the LS TBF when f(x) is an LS
Boolean function, which is defined as

(4) { 1, if c Z N , ~ wizi 2 T
f (X 1 , . . . , ZN) = 0, otherwise

threshold logic [17], [lS]. Since a WOS filter is defined by
an LS Boolean function with nonnegative coefficients [5], the
LS TBF is a direct extension of the WOS filter. It will be seen
that the method for designing WOS filters can be applied to
design LS TBF’s.

The organization of this paper is as follows. In Section
11, the TBF is defined by a Boolean function on the binary
domain, and its multilevel representation based on true vectors
of the Boolean function is derived. In Section 111, we develop
three altemative TBF representations: two of them are based
on the sum-of-product (SOP) expression of a Boolean function,
and the third one is represented in terms of ordered input data.
It is shown that the LS TBF can be expressed succinctly on
the multilevel by using the ordered input data. Some properties
of the TBF are investigated in Section IV, where the relation
among TBF’s, rank order, and LOS filters is discussed. In
Section V, we consider implementations of the TBF. In Section
VI, procedures for designing a TBF and an LS TBF are
described, and the performance of the TBF and LS TBF is
examined through computer simulation. Finally, Section VI1
presents conclusions.

11. THRESHOLD BOOLEAN FILTERS

A TBF, which is denoted by TBFf(X), is defined as

where f (-) is a Boolean function, and X = (XI, . . . , XN)
is an input vector. Here, as well as in the rest of this
paper, the time index n is dropped from X(n) and Xj(n)
to simplify the notation. When f (.) is a positive Boolean
function, the corresponding multilevel expression is obtained
by exchanging logical OR and logical AND operations of f (.)
with maximum and minimum operations, respectively; the
filter is a stack filter. For example, for f(x) = ~ 1 x 2 + %223,
N = 3, where the multiplication and addition represent logical
AND and OR operations, respectively, we get TBFf(X) =
max(min(X1, X2}, min(X2, X,}}. This is possible since
every positive Boolean function commutes with thresholding
[131, and the maximum and minimum operations become the
logical OR and the logical AND, respectively, for binary inputs.
On the other hand, for f (-) , which is a Boolean function with
logical negations (complements), the corresponding TBFf (.)
cannot be obtained directly because such a Boolean function
does not commute with thresholding, and the multilevel op-
erator that reduces to the logical negation for binary inputs
does not exist. The multilevel representations of a TBF, which
are obtained in the following subsection, will show that the
logical negation is closely related to the multilevel minus (-)
operation.

where the weights wi and the threshold T are real numbers.
If the weights and the threshold are limited to be nonnegative
and CElwi 2 T , then an LS Boolean function becomes
positive, and the corresponding LS TBF reduces to a WOS
filter. We shall see that an LS TBF is simpler to implement
than general TBFs.

It should be pointed out that there are some well-known
multilevel operators that can be thought of as TBF’s. In fact,
if a multilevel operator F(.) can be expressed as in (l) , and it
produces a binary output for any binary input vector, then the
filter is a TBF. The example below illustrates this.

Example 1: Consider the range estimator 1141 F (X) =
Xp) - X(N), where X(l) and X(N) are the maximum and the
minimum, respectively, among {XI, . . . , XN}. It is straight-
forward to see that this estimator obeys the threshold decom-
position, and obviously, the estimator yields binary outputs
for binary input values. The Boolean function Corresponding

0
In a similar manner, we can see that the quasi-ranges [15] and
the absolute difference between ordered data are TBF’s.

In the following, the multilevel TBF representations are
derived after introducing some notations and definitions.

to this with N = 3 is f(x) = z l Z 2 + ~ z Z 3 + 2 3 3 1 .

A . Notations and Definitions

It is assumed that the input samples {XI, . . . , XN} are
(M + 1) valued: X, E D for all i and X E D N , where D =
{0,1,. . . , M } , which is a set of nonnegative integers. The
jth largest sample among the input samples {XI , . . . , X N }
is denoted by X(J) , j = 1,. . . , N . If two input values are
identical, say, X, = X, , then either of them will be considered
to be a larger one. We define X(o) = M and X (N + ~) = 0 so
that X (N + ~) 5 X(N) . . . 5 X(l) 5 X(0) holds. The difference
X(J) - is denoted by C,, 0 5 j 5 N . Note that
CO = M - X(l) and CN = X(N). For some positive integer
a and b, the set of integers S[a , b] { a , a + 1,. . . , b } , which
is a subset of D, is defined. Here, S[a,b] 0 if a > b.
IS[a,b]l denotes the number of elements in S[a,b] , that is,
IS[a, b]I = b - a + 1 if b 2 a, and 0 otherwise.

Now, consider a Boolean function f(x) = 7rl(x) +7r2(x) +
. . . + 7rp(x) expressed as a SOP, where x = (XI,. . . , XN)
denotes a vector of N binary entries, and T,(x) represents
the jth product of f(x). A binary vector, say, XO, is called
a true (false) vector of f (.) if f(x0) = I (O) . The set of
all true vectors of f(x) is denoted as V(f). Similarly, the
set of all true vectors of 7rJ(x) is expressed as V(7rJ). Note
that V(f) = U:=1V(~3). The products 7r,(x) and T,(x)
are said to be mutually exclusive if V(7ro) and V(7r,) are
disjoint, i.e., V(7rZ) n V(7rJ) = 0. As an example, con-
sider TI(X) = ~ 1 2 2 , 7r2(x) = X1Z3, and N = 3. Then,

and T~(x) and 7r2(x) are not mutually exclusive. The binary
vectors (1,1, . . . , 1) and (0, 0, . . . , 0) are denoted by 1 and 0,

V(Tl) = {(1,0,0), (L O , I)}, V(7r2) = {(1,0,1), (1,1, I)),

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2024 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

Proposition 2 (Representation Based on True Vectors):
Suppose that a given Boolean function f(.) has K true vectors,
v (f) = {VI, V Z , . . . , VK}. Let TBFft (X) be the TBF output
obtained by (6) when the Boolean function f;(-) has a single
true vector vi. Then, the multilevel representation of f(x) is

(1.0)
X=(4.2)

THRESHOLDING

A’)

Fig. 1. Filtering operation of the TBF withf(x) = 213.2.

respectively. Finally, the number of 1’s in a binary vector x,
which is the Hamming weight, is denoted by WH(X).

B . A Multilevel Representation of the TBF
in Terms of True Vectors

Following from (3), the TBF can be expressed as shown in
(5) at the bottom of the page, where ! E S[l, MI. Once the
set of true vectors V(f) is known, a multilevel representation
can be obtained in a straightforward manner, as illustrated in
the following simple example.

Example 2: Suppose that f(x) = x ~ Z Z , N = 2. The set of
true vectors V (f) = ((1,O)). Consider (3). At a level C, the
binary input vector becomes a true vector if and only if (iff)
X Z < C 5 XI. Assume X Z < X I . Then, f(Ie(X)) = 1 for all
X Z < ! 5 XI and following from (3, TBFf (X) is equal to the
number of e’s for which Ie(X) = (1,O). Thus, TBFf (X) =
X1 - X Z . When X Z 2 X I , the binary input vector at each
level is not a true vector, and thus, TBFf(X) = 0. Combining
these, TBFf(X) = max(0,Xl - X Z } . Fig. 1 illustrates this
result for X = (4,2). For this input, TBFf(X) = 2. Note that
in Fig. 1, the same output is obtained through the threshold

A multilevel representation corresponding to an arbitrary
Boolean function is presented next.

Proposition 1 (Representation for a Single True Vector):
Suppose that a Boolean function f (.) has only one true vector,
say, v = (q,. ..,UN). Then

decomposition. 0

TBFf(X) = max{O,min(X, I j E Bl(v)}

- m 4 x j I j E Bo(v))l, (6)

where minO M , max0 = 0, and Bo(v)(B~(Y)) is the set
of all indices of w;, i = 1,2, . . . , N , which are zero (one).

Proof: Let v = l(Bo(v) = 0). Then, Ie(X) = 1 iff 1 5
C 5 min(X1,. . . , X N > and TBFf(X) = min(X1,. . . , X N } .
Now, let v = O(Bl(v) = 0). Then, &(X) = 0 iff
max(X1, ..., X N } < C 5 M and TBFf(X) = M -
max(X1,. . . , X N } . Finally, let v # 1 , O . For this case,
Ie(X) = v iff max{X, I j E Bo(v)} < C5 min(X, I j E
Bl(v)}. Since TBFf(X) is equal to the number of e’s for
which Ie(X) = v, (6) is obtained. 0

For f(x) in Example 2, we get v = (1,0), Bo(v) = (2 1 ,
and Bl(v) = (1); TBFf(X) is obtained through (6).

K

TBFf(X) = C T B F f , (X) . (7)
i= l

Proof: From (3, TBFf(X) can be written as
TBFf(X) = x:,[numberof e’s forwhich Ie(X) = vZ],
but [number of e’s for which Ie(X) = v;] = TBFft (X). This

Example 3: Suppose f(x) = xlZ2 + 21x3 when N = 3.
Then, we have V (f) = {(1,0,0),(1,0,1),(1,1,1)}. Let
VI = (1,0,0), v2 = (1,0,1) and v3 = (l,l ,l). Then,
from (6), we get TBFf, (X) = max(0, X1 - max{Xz, X,}},
TBFfi(X) = max{O,min(X1,X3) - X Z } , and TBFf,(X) =

Since a TBF is expressed as a function of local minimum
and local maximum operations, it can be specified by using
an ordering-output table [131 that lists all possible input
orderings and the corresponding outputs. The ordering-output
table specifying the TBF in Example 3 is shown in Table I.
Note that the table indeed specifies the TBF: the output of the
TBF can always be obtained from the table without reference
to the multilevel representation of the TBF. When two or more
orderings can be thought of as the ordering of a given input
vector (this happens when some input values are equal), any
one of the orderings can be chosen, and the output associated
with the selected ordering becomes the output of the filter.
For example, in Table I, if X3 = X Z < X I , then either
XZ 5 X3 5 X1 or X3 5 X Z 5 X1 can be the input
ordering. The outputs associated with the former and the
latter, respectively, are XI and X1 - X Z + X3, which are
equivalent in this case because X Z = X3. The ordering-output
table provides some insights into the behavior of the TBF. In
Table I, the TBF selects one of the inputs as its output for all
input orderings except for the ordering “X3 5 X Z 5 XI .” The
output for the ordering “X3 5 X Z 5 X1” is XI - X Z + X3.
Note that only X Z , which is the only complemented literal
in f(x), has a minus (-) sign. In Section 111, we shall see
that only complemented literals can have a minus (-) sign in
output representations of the ordering-output table.

The multilevel representation in (7) is somewhat incon-
venient to use because the number of true vectors K is
usually large. Next, we shall show that simpler multilevel
representations of a TBF can be obtained from Boolean
expressions without explicitly considering the true vectors of
a Boolean function.

completes the proof. U

min{X1,XZ,X3}; TBF~(X) = TBF~JX). 0

TBFf(X) = [number of level e’s for which f (I e (X)) = 11
= [number of level C’s for which Ie(X) is a true vector of f(x)]

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE THRESHOLD BOOLEAN FILTERS 2025

TABLE I
ORDERINGOUTPUT TABLE FOR f(x) = z l f ~ + 2 1 2 3

111. ALTERNATIVE MULTILEVEL
REPRESENTATIONS OF THE TBF

In this section, multilevel TBF representations are derived
from SOP Boolean expressions. In addition, another multilevel
TBF expressed in terms of ordered input data is obtained.

A . Multilevel TBF from Sum of Products Representation

Consider a Boolean function f (.) , which is given by the
sum of P products f(x) = 7r1(x) + 7rz(x) + ... + T P (X) .

Suppose each product 7rJ (x) consists of q, uncomplemented
and rJ complemented literals. Then, it can be expressed as

TJ(X) = x P (3 J) x P (3 , 2) . . . x P (3 , n 3) 3 C n (, , 1) 3 , (J , 2) . . . % J > ?) ,

3 = 1,2, ..., P

where p (. , .) and n(., .) denote indices of uncomplemented and
complemented literals, respectively, and 1 5 q, + T~ 5 N .

The Boolean function f(x) produces 1 whenever at least
one of the P products produces 1 for the binary input vector
x, and the product 7rJ(x) produces 1 iff x satisfies

Z P (J J) = 5 P (J , 2) = ... = Z P (J A 3) = (8 4
(8.b) GZ(J,l) = % (J , 2) = . . . = %(, ,T3) = 0.

In other words, each true vector of 7r,(x) should satisfy both
(8.a) and (8.b). Let m,(X) denote the minimum among the
input samples corresponding to uncomplemented literals of
7rJ(X), and let MJ(X) denote the maximum among input
samples corresponding to complemented literals of 7rJ (X),
that is, m,(X) = min{Xp(,,l), . . . ,Xp(J,g3)} and MJ(X) =
max{X,(,,l),. ..,Xn(J,TI)}. We set m,(X) = M if qJ = O
and M3(X) = 0 if rJ = 0. Now, we derive multilevel
representations from SOP Boolean expressions.

Proposition 3 (Representation for a Single Product Term):
Suppose that a Boolean function has only one product term
f(x) = 7r1(x). Then

(9)

Proof: In the threshold decomposition, the binary vector
Ie(X) = (2 1 , . . . , ZN) is generated by thresholding the input
vector x = (XI, . . . , X N) at level e, where xk will be 1 iff
C E S[O, X,] and 0 iff C E S[Xk + 1, MI. Therefore, Ie(X)
satisfies (8.a) iff C E fly:, SIO,Xp(l,l)] and satisfies (8.b) iff
C E n;Ll S[X+,l) + 1,M], and thus, 7rJ(Ie(X)) = 1 iff

TBFf(X) = max{O,ml(X) - Ml(X)}.

c E (n;:, m, X,(~ ,~) I) n (n;Ll S[X,(~,~) + 1, M I) . ~ o t e
that n;L1 SP, = s[o, m l (x) l and n;:, S[X,(~,~) +
1,M] = S[Ml(X) + 1,Ml. Now, .lrl(Ie(X)) = 1 iff C E

s[o,ml(X)] n SIMl(X),M] = SIMl(x) + l ,ml (X) l and
(9) follows from (5). 0

Note that (9) becomes (6) when 7r1(x) in Proposition 3
has only one true vector (this happens whenever the number
of literals of T~(x), q1 + T I , is N) . In general, 7rl(x) has
2N--(91+T1) true vectors, and the TBF associated with f(x) =
7rl(x) can also be expressed by using (7):

TBFrl(X) = max{O,ml(X) - Ml(X)} (10.a)

= TBFf% (XI, (lO.b)
K

i=l

where TBF,,(X) is a multilevel representation of T~(x),
K = 2N-(91+r1), and TBFf%(X) was defined in Proposition
2. In general, (lO.a) is simpler than (lO.b) because K 2 1 and
each term in (lO.b) is given by (6).

Proposition 4 (Representation Based on SOP): Suppose
that a given Boolean function f (.) has P products f(x) =
rl(x) + ... + 7rp(x). Then

P

TBFj(X) = I U S[Mi(X) + l ,mi(X)]I, (11)
i=l

where IAl is the number of elements in a set A.
Proof: Since f (.) is the logical sum of P products,

f(Ie(X)) produces 1 iff C E ULl (S[O, mi(X)] n S[Mi(X) +
1, MI) = urZ1 s[M~(x) + I, mi(x) l . Equation (11) follows
from (5). 0

For the case of stack filters, since f (.) is a positive
Boolean function, ri = 0 and Mi(X) = 0 for all i, and
thus, S[Mi(X) + l ,mi(X)] is simplified to S[M;(x) +
l ,mi (X>] = S[l,m;(X)], and UL1 S[Mi(X) + 1,mi(X)] =
ULl S[l ,m;(X)] = S[l ,P] , where ,fl = max{mj(X),j =
1 , 2 , . . ., P } = max{min{X,(j,l),l = 1 , 2 , . . . , q j } , j =
1 , 2 , . . . , P} . Therefore, we have TBFf(x) = @, which is
consistent with the well-known fact that the output of a stack
filter can be represented as the maximum of local minima.

It should be pointed out that I uLl S[M;(X) +
l , m i (x)] l z xrZ1 IS[M;(X) + l ,mi (x) l l unless
S[M;(X) + l ,mi (X)] , i = l , . . ., P are disjoint
from each other. Since IS[Mi(X) + l ,mi (x)] l =
max{O,mi(X) - M;(X)} = TBF,%(X), then

P

TBFf(X) # TBF=* (XI (12)
i=l

unless S[Mi (X) + 1, mi (X)] are disjoint. The example below
illustrates (11) and (12).

ExampZe4: Consider f(x) = x132 + 21x3 again. In
this case, P = 2. If we let 7r1(x) = x132 and m(x) =
21x3, then q1 = n1 = l,q2 = 2, n2 = 0, p (1 , l) =
1 , n (l , l) = 2,p(2,1) = 1, andp(2 ,2) = 3. Now, we
get ml(X) = Xl,mz(X) = min(Xl,X3},Mi(X) = X2,

1,X1] and S[Mz(X) + l , m ~ (X)] = S[l,min{Xi,X3}];
TBF,,(X) = IS[Xz + 1,Xlll = max(0,Xl - X,} and
TBF,,(X) = IS[l,min{Xl,X3}]1 = min{Xl,X3}. From
(1 l), TBFf (X) = I S[X2 + 1, XI] U S [1, min{ XI , X3}] 1. Since

and M2(X) = 0. Thus, S[Ml(X) + l , m l (X)] = S[X2 +

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2026 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

7rl(x) . ~ (x) = 5 1 3 2 2 3 and .rrl(Ie(X)) x .rrz(Ie(X)) = 1
iff C E S[X2 + l,min{Xl,X3}], we get S[Xz + 1,X1] n
S[1, min(Xl,X3)] = S[X2 + 1, min(X1, &}I. Therefore,

l,min{XI,X3}]1 = max(0,Xl - Xz} + min{Xl,X3} -
max(0, min(X1, X3} - Xz}. Obviously, TBFf(X) #
TBF,,(X) + TBF,,(X). The TBF representation in this
example yields the ordering-output table in Table I, and it

0
The TBF expression in (1 1) is inconvenient to use because

evaluating the intersections among S[M;(X) + 1, mi(X)], i =
1, . . . , P is tedious. In general, the number of possible inter-
sections is ELz (:) = 2p - (P + l) , and the TBF expression
in (11) may have 2 p - (P + 1) + P = 2p - 1 terms. This
indicates that the expression in (11) may be lengthier than
that in (7). Next, we obtain a simpler expression by finding a
condition under which S[Mi (X) + 1, m; (X)] 's are disjoint.

Lemma I: If 7ri(x), i = 1, . . . , P are mutually exclusive,
then S[M;(X) + 1, mi(X)], i = 1, . . . , P are disjoint from
each other.

Proofi Consider the sets of true vectors V(.rri) and
V(7rj). Assume 7ri(x) and 7rj(x) are mutually exclusive so
that V(.rr;) n V(7rj) = 0. From the proof of Proposition 3,
we know that Ie(X) E V(.rri) iff C E S[M;(X) + l ,mi (X)]
and h (X) E V(7rj) iff C E S[Mj(X) + l ,mj(X)] . Suppose
S[Mi(X)+l , mi(X)]nSIMj(X)+l, mj(X)] # 0. Then, there
exists a level C for which Ie(X) E V(.rri) and Ie(X) E V(.rrj).
Thus, V(.rri) n V(7rj) # 0, which is a contradiction. This
completes the proof. 0

Proposition 5 (Representation Based on SOMEP): Consider
f(x) = .rr~(x) +. . . + .rrp(x). If 7r;(x) are mutually exclusive,
then

TBFf(X) = IS[XZ+L Xlll+ IS[l, min(X1, X,}]l- IS[&+

is equivalent to that of Example 3.

P

TBFf(X) = TBF,* (X)
i=l
P

= c m a x { O , m i (X) - Mi(X)}. (13)
i=l

This proposition is a direct consequence of Lemma 1. A
SOP Boolean expression consisting of mutually exclusive
product terms is called the sum of mutually exclusive products
(SOMEP). An arbitrary Boolean function can be easily con-
verted into a SOMEP form; an algorithm for the conversion is
presented in Appendix. The expression in (13) clearly shows
that only complemented literals can have (-) sign in the output
representation of a TBF. The number of mutually exclusive
products of any Boolean function, which is P in (13), is
always less than or equal to the number of its true vectors K.
Therefore, (13) is preferable to (7). In addition, it is usually
simpler than (1 1).

Example5: Consider again f(x) = z11z + 21x3. By
applying the algorithm in Appendix, we obtain a SOMEP
expression f(x) = XITZ + 21%223. From (13), TBFf(X) =
max(0, XI - X2} + min(X1, XZ, X3}. Comparing this result
with those of Examples 3 and 4 indicates that (13) can provide

0 a simpler expression than can (7) and (1 1).

An altemative to (13) can be obtained from the product-
of-sums (POS) Boolean expressions. The TBF representation
based on POS expression is similar to that in (13) and will
not be considered further.

B. Representing TBF's in Terms of Ordered Input Data

Consider S[1, MI, which is the range of summation
in (3), or equivalently the range of level e's in (5).
We decompose S[l,M] into a union of subintervals:
S[1, M] = S[X(i+l) + 1, X(q] for any input X. Note
that {S[X(;+1) + l ,X(i)] , i = 0,1 , . . . , N } are disjoint
since X(q 2 X(i+l) and SIX(;+l) + l,X(;)] = 0 when
X(q = X(i+l). Thus, (3) can be written as

TBFf(X) = f(Ie(X))
e€s[l ,MI

N

i=o ~ES[X(,+,)+l,X(,)]

where in the case of X(;) = X(i+l),

0. In the following, we introduce two lemmas that lead us
to another TBF representation.

Lemma 2: If X(q > X(i+l), i = 0,1 , . . . , N for an input
X, then

Ce€s[x,*+,)+1,x(,)] f(Mx>) = 0 since S[X(i+l) + 1, X(i)] =

Ie(X) = IX(.) (XI (15)

for all C E SIX(i+l) + l ,X(i)] .

Xj 2 X(q and 0 if Xj 5 X(;+l); thus, (15) follows.
Proof: For all C E SIX(;+l) + l ,X(,)] , Ie(Xj) = 1 if

U
Lemma 3: For any input X

where C; = X(i) - X(i+l), i = 0,1, . . . , N .
Proofi Assume that X(i) > X(;+l). Then,

from I x " a 2 7 CeEs[x(,+l)+l,x(,)] f (Ie(X>) =

ce€s[X(,+,)+l,x(,)] f(IX(,) (XI) = f (I X (.) (X))(X(i) -
X(i+l)) = f(IX(JX))Ci. If X(2) = X(i+l), then
Ci = X(i) - X(i+]) = 0, and both sides of (16) are
zero. Thus, (16) holds. 0

Now, we express the TBF in terms of Ci's.
Proposition 6 (Representation Based on Ordered Input):

The output of a TBF with a Boolean function f (x) can be
expressed as

This result is obtained by using (16) in (14). Note that Ix(*, (X)
in (17) is dependent on the input ordering. Thus, (17) shows
that a TBF can be expressed as an adaptive linear combination
of ordered input data.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE THRESHOLD BOOLEAN FILTERS 2027

Example6: For f (X) = 2 1 3 2 + 21x3, TBFf(X) =
f(Ix(.) (X))C, from (17). This expression cannot be

simplified further unless input orderings are given. Consider
an input ordering 0 < X2 < XI = X3 < M. Then,

f(1,0,1) = 1, and f(Ix(,,(X)) = f(1,1,1) = 1. Thus,

X3 where we set X(l) = X3 and X(2) = XZ.
Note that the same result is obtained when we set X(!) =

X1 and X(2) = X3. It can be seen that the expression denved
in this example also produces the ordering-output table in
Table I. 0

For the case of positive Boolean functions (stack filters),
(17) can be simplified further as shown below.

Proposition 7 (Stack Filters): The output of a TBF with a
positive Boolean function f(x) can be expressed as

f(IlM(X)) = f (0 , 0,O) = 09 f(IX(,, (X)) = f(IX(,, (XI) =

TBFf(X) = Cl +C2+C3 = (X3 -X1)+(X1 -X2)+X2 =

TBFf(X) = X(m) (18)

where m = min{i I f(Ix(*,(X)) = 1, i = 0,1, . . . , N } .
Proof: If f (I ~ (~ , (x)) = 1 for some i , O 5 z 5 N ,

then f (I~ (~ , (x)) = 1 for all k = i , i + 1,. . . , N due to the
stacking property of a positive Boolean function [2]. Thus,

CN = (x(m) - x(m+l)) +
0

Note that f(Ixc,,(X)) = 1 and f(Ix,,,+l(X)) = 0 in
(18). Due to the stacking property, f(Ie(X)) = 0 for all
l 2 X(m) + 1. Therefore, TBFf(X) = X(ml = max{l I
f(Ie(X)) = l}, which is a result derived in [2].

Example 7: Suppose f(x) = 2123 + 2 2 and the input
ordering is 0 < X3 < XI < X2 < M. Since f (l ~ (X)) =

0
In (17) and (18), evaluating the Boolean expression

f (Ix(%)(X)) is often burdensome because f(x) is usually
very long and cumbersome. For the case of LS TBF’s, the
evaluation of f(.) is not required, as shown below.

Proposition 8 (Linearly Separable TBF): Consider an LS
Boolean function f(x), which is defined as (4). The LS TBF
corresponding to the f(x) can be expressed as

m F f (X) = c m + c m + l .
(x(m+l) - X(m+2)) + ’. ’ + (X(N) - 0) = x(m)-

f (O , O , 01 = 0 and f(IX(,, (X)) = f (Ix , (X)) = f(0,1,0) =
1, we get m = 1 and TBFf(X) = X(l) = X2.

N

TBFf(X) = IT(Rz)cz, (19)
2=0

where RO for z = 1,. . . ,N, w(,) is
the weight associated with X(3) and IT(R,) = 1 if R, 2 T
and 0 otherwise.

Proof: From (15), we get (y~,.. . , y ~) Ie(X) =
Ix(, , (X) for all l E S[X(,+1) + 1, X(,)] # 0, i = 0,1, . . . , N ,
where y(k) = 1 if k 5 z and 0 otherwise. Thus, f(Ix,,, (X)) =

IT(c3=i w3%) = I T (x 3 = l w (j) y (~)) = IT(w(1) + w(2) +
... + “(,I) = IT(&), and (19) follows from (17). If
S[X(,+1) + 1,X(,)] = 0, i.e., X(,) = X(,+l), i = o , ~ , . . . , N ,
then f(Ixc, , (X)) does not matter in (17) since C, = 0. This
completes the proof. 0

Example 8: Suppose f(-) is an LS Boolean function with
T = 0 and (w1,w2,w3) = (-1,1,-1). Note that (19) is
not simplified further unless the input ordering is specified.
Consider an input ordering XI 5 X2 5 X3. Then, we get

0, R, = E;=,

N N

w(1) = w3 = -1, w(2) = w2 = 1, and w(3) = w1 = -1. From
(19), TBFf(X) = Io(0)Co + Io(-l)Ci+ I o (- l + 1)C2 +
I o (- l + 1 - 1)c3 = CO + cz = (M - x(1)) + (x(2) - x(3)).

0
The implementation of an LS TBF using (19) should be

simpler than that of a TBF using (17). The computational
complexity associated with these filtering will be discussed
in Section V. For WOS filters having nonnegative w; and T,
we can see that if Ri 2 T for any i = 0,1,. . . , N - 1, then
Rj 2 T for all j = i + 1, . . . , N . Therefore, (19) can be
reduced to

where k = min{i I R; 2 T, i = 0,1,. . . , N}. The expression
in (20) is a definition of the WOS filter [5].

In general, ~ (I x , , , (X)) in (17) produces 0 or 1, depending
on the input X. For some special cases, however, it is
independent of X, and the output of a Tl3F may be represented
as

where b; are binary constants. A TBF that can be expressed as
in (21) wilkbe called afuced TBF. Next, we present a sufficient
condition for f(x) being a Boolean function of a fixed TBF.

Proposition 9 (Fixed TBF): If a Boolean function f(.) sat-
isfies f(x) = f(y) whenever binary input vectors x and y
have the same number of l’s, i.e., w ~ (x) = w ~ (y) , then the
TBF corresponding to f(.) becomes a fixed TBF in (21), and
each coefficient b;, i = 1, . . . , N is given by the output of the
Boolean function f(x) with x having i l’s, i.e., w ~ (x) = i.

Proof: If C; # 0, i.e., X(i) > X(;+l), then
WH(IX(,,(X)) = i, and (21) follows from (17). When
Ci = 0, (21) holds regardless of bi. This completes the

Example 9: Consider f(x) = 213233+312233+313223+

2 1 2 2 2 3 . For this case, f(x) = b; with bl = b3 = 1 and
bo = b2 = 0. From (21), therefore, we get TBFf(X) =

0
The class of fixed TBF’s encompasses the rank-order filters;

a rank-order filter selecting x (k) , where k is a fixed integer
between 1 and N , is a fixed TBF with bi equal to 0 if i 5 k - 1
and 1 otherwise. On the other hand, a fixed TBF with bo = 0
is a particular case of the LOS filter that is defined as LOS
(X) = ELl aiX(;), where a; are real numbers. An LOS
filter becomes a fixed TBF iff it produces either 0 or 1 for any
binary input vector. Altematively, we can- say that an LOS
filter becomes a fixed TBF iff it can be expressed as in (21).
Note that the coefficients {a;} of an LOS filter should be either
0 or 1 or -1 when the filter is a fixed TBF.

Both the expressions in (13) and (17) are useful for investi-
gating the behavior of TBF’s. In the following section, some
properties of the Tl3F are derived by using these expressions.

proof. 0

3 C;=o biCi = C1 + C3 = X(1) - X(2) + X(3).

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2028 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

TABLE II
ORDERING-OUTPUT TABLE FOR f(x) = 2 1 2 2 + 2123

orderings output=max(O,X1 - XZ} + { M - max{X1,X3}}
x1 i XZ i x3
x1 I x3 I xz

0 + (M - x3) = M - x3
0 + (M - x3) = M - x3

xz 5 x1 I x3
xz I x3 I x1
x3 I x1 I xz
x3 i xz I x1

x1- x* + (A4 - X3) = M - x3 + x1- XZ
x1 - x p + (M - Xl) = M - xz

0 + (A 4 - XI) = M - x1
x1 - xs + (M - XI) = M - xz

Iv . PROPERTIES OF THE TBF

The TBF does not obey the superposition principle, and it is
nonlinear; moreover, some TBF’s are neither scale-invariant
nor translation-invariant. In what follows, the translation and
scaling of X will be denoted by X + c = (XI + c, . . . , XN + c)
and a X = (aX1,. . . , uXN), respectively, where c and a are
constants. Note that if a X + c E D N , then TBFf(aX + c) E
D = { O , l , . . . , M} since f(Ie(X)) in (3) produces either 0
or 1. The following lemma is useful for investigating scale-
and translation-invariant properties of TBF’s.

Lemma 4: The TBF representation in (17) can be rewritten
as

N

f(IX(.) (X))Ci = f(O)Co
i=O

N-1

+ f(IX,,) (x)) c i + f (1) C N . (22)
i=l

Proof: It suffices to show that f (lx(, , (X))Co = f(0)Co
and f (I x , ,) (x)) C ~ = f (l) C N , which are obvious if CO = 0
and CN = 0, respectively. If CO > 0, i.e., X(o) = M > X(l),
then I X (~) (X) = 0. We have Ix(, , (X) = 1 for any cases.

In the properties stated below, we shall see that some TBF’s

Property I (Translation-Invariance): Suppose that X + c E

This completes the proof. 0

are neither translation invariant nor scale invariant.

D N . Then

TBFf(X + C) = TBFf(X) + c(f(1) - f(0)). (23)

Proof: Let X’ = X + c and C,! = Xti) - Xti+,).
Then, C,’, = M - (X(1) + c), Ch = X(N) + c, and C,l =
(X(i) + c) - (X(;+1) + c) = Ci for i = 1,. . . , N - 1.
Since IXI (X’) = Ix(, , (X) , (22) yields TBFf(X + c) =

TBFf(X’) = f(o)cA + E:;’ f(Ix;,)(X’))C,! + f(1)Ch =
(E)

f (o) (M - x(l) - + CL;’ f(IX(,) (x))ci + f (l) (x(N) +
c, = f (o) (M - x(l)) + E:;’ f(IX(,) (x>>ci + f (l)x(N) +
c (f (1) - f(0)) = TBFf(X) + C (f (1) - f(0)). 0

Property 1 indicates that a TBF is translation invariant iff
f(1) = 1 and f(0) = 0. If f(1) = f(O), then TBFf(X+c) =
TBFf(X), and thus, dc components of the input are completely
removed, and the TBF is not translation invariant. TBF’s with
the dc-removal property may be useful for applications such
as edge detection and DPCM. In fact, the edge detectors
in [15] and 1161 are TBF’s with the dc-removal property.
The examples below present some other TBFs that are not
translation invariant.

Example 10: Consider the range estimator in Example 1.
Obviously, this estimator removes dc components. This can
be also seen by considering its Boolean function f(x) =
z l Z z + 2 2 3 3 + 2331. Since f(1) = f(O) = 0, the estimator
has the dc-removal property and is not translation invariant. 0

Example 11: Consider f(x) = 2 1 3 2 +3133. Since f(1) =
0 and f(0) = 1, the TBF corresponding to f(x) satisfies
TBFf(X+c) = TBFf(X)-c. In fact, since 2 1 3 2 and 3133 are
exclusive, (13) gives TBFf(X) = max(0,Xl - X2) + (M -
max(X1, X3)) and TBFf(X + c) = max(0, (XI + c) - (X2 +
c)} + (M - mu{ XI+ c, X3 +c}) = max(0, XI- Xz} + (M -
mu{ XI, X3}) - c. Therefore, TBFf (X + c) = TBFf (X) - c.
The reason why this equality holds becomes obvious if we
consider the ordering output table in Table 11. Each output in
the table is either M - Xj or M - X3 + XI - X2, and thus,

If fi) is an LS Boolean function defined by (4), f(1) = 1
w; 2 T, and f(0) = 0 iff T > 0. Therefore, an LS

Property 2 (Scale Invariance): Suppose a X E D N . Then

the equality should hold. 0

iff
TBF is translation invariant iff xLl wi 2 T > 0.

TBFf(aX) = aTBFf(X) + M(l - ~)f(0). (24)

Proof: Let X’ = aX and C,! = Xti) - X;i+l). Then,

aX(i+l) = aC; for i = 1, ..., N - 1. Since Ixt (X’) =
IX I (X) , (22) yields TBFf(aX) = TBFf(X’) = f(0)C; +
C,’, = M - aX(1), Ch = uX(N), and C,! = aX(q -

(a)

E& f (I x p ’ N c , l + f (W h = f(O)(M - UX(1)) +
E:;’ f(IX(.) (X))aCi + f (l) a X (N) = a f (o) (M - x(l)) +
a CL;’ f(IX(,) (x))ci +af(l)X(N) + Mf(O) - a M f (o) =
aTBFf(X) + M(1- a) f (O) . 0

This property indicates that a TBF is scale invariant only
when f(0) = 0. Thus, an LS TBF is scale invariant if T > 0.
Note that if f(0) = 1, the corresponding TBF is neither
translation invariant nor scale invariant (for example, see the
TBF in Example 11). Combining Properties 1 and 2, we draw
the following conclusion.

Corollary 1 : Let a X + c E D N . Then

TBFf (UX + C) = uTBF~ (X) + c (25)

iff f(1) = 1 and f(0) = 0.
Since any positive Boolean function f(x) satisfies f(1) = 1

and f(0) = 0, all stack filters are translation and scale
invariant. Next, we derive some properties that are often useful
for obtaining the multilevel TBF representations in (7) and
(13).

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE. THRESHOLD BOOLEAN FILTERS 2029

TABLE III
ORDERING-~UTPUT TABLE FOR f(x) = 2 1 2 2 + 212223 + 212223

orderings output=(TBFf (X)) output=(TBFr(M - X))
M - xz + (XZ - Xl) + 0 = M - x1

M - x2 + (X3 - XI) + 0 = M - (Xl + xz - X3)
M-X1+O+(X1 -Xz)=M-XI

M - x1 + 0 + (X3 - XZ) = A4 - (Xl + xz - X3)
M - x2 + 0 + 0 = M - x2
M - XI + 0 + 0 = M - x1

x1 I X Z I x3
x1 I x3 I xz
xz I x1 I x3
xz I x3 I x1
x3 I x1 I x2
x3 I xz I x1

x1+ 0 + o = x1
XI + 0 + (Xz - X3) = x1+ xz - x3

xz + 0 + 0 = xz
x2 +(XI - X3) + o = xl+ xz - x3

xl+o+(xz-x1)=xz
x2 + (Xl - XZ) + 0 = x1

When a multilevel representation of a Boolean function
f (x) is given, the multilevel representation corresponding to
the dual of f(x) can be obtained easily.

Property 3 (Duality): Let fd(x) denote the dual function
of a Boolean function f(x), fd(x) = !(a). Then

Proof: Suppose C3 > 0, J = 0,1 , . . . , N for
an input X . Then, we have X(o),X(l), . . . ,X(J) >

X ' = M - X = (M - X l , ..., M-X~) .Then,wealsohave

we obtain IxCl,(X) = IM-x (,+~) (M - X) = IXt (X'),
and from (171, TBFfj(X) = C E o f (m (X)) C z =

also holds for dZ = 0. Since C N - ~ = X(N-z) - X(N-z+l) =

X(,+l) , . . . ,x(N),X(N+l) . Let f'(x) = f(x) and

XtIJ) , Xi,) , . . . 7 Xt3) < Xt3+1) , . . . 7 XlN), X[,+,). Thus,

(N - 9)

N cz=O f(Ix;N-I (X'>)CZ = E,"=, f(IX;*) (X'))CN-z, which

(M - X@)) - (M - x (z + l)) = XtZ) - Xtz+l) = C,l
for all i , TBF~!(X) = C , N _ ~ ~ (I ~ (,) (X)) C % =

E,"=, ~ (I ~ ~ ~ ~ (x /)) c ; = TBF~(X') = T B F ~ (M - x). Since
TBFj(X) + TBFj(X) = M , TBFfd(X) = TBFp(X) =
M - TBFf#(X) = M - TBFf(M - X). 0

If f(.) is self dual, f(x) = f(X), and then, (26) yields
TBFf(M - X) = M - TBFf(X). Thus, we can say that a
TBF corresponding to a self-dual Boolean function commutes
with a signal inversion. Since Boolean functions corresponding
to weighted median (WM) filters are self dual [18], all WM
filters commute with a signal inversion.

Example 12: Consider a self-dual Boolean function f(x) =
Z ~ X Z + Z ~ ~ ~ F , ~ + F , ~ Z Z Z ~ . Since the three products of f(x) are
mutually exclusive, (1 3) yields TBFf (X) = min{ XI , XZ} +
max(0,Xl -max{Xz,X3})+max{0,Xz -max{X1,X3}}.
Thus, TBFf(M - X) = min{(M - X1),(M - XZ)} +
max{o,(M - XI) - "{(M - XZ),(M - &)}} +
max{o,(M - XZ) - max{(M - Xl),(M - &)}} =
M - max(X1,Xz) + max{o,min{X~,&} - XI} +
max(0, min(X1, X3} - XZ}. The ordering-output table in

0
A filter that is expressed as an absolute difference between

two stack filters is a TBF because it yields either 0 or 1
for binary inputs and obeys the threshold decomposition. The
Boolean function of such a filter is derived in the following
P'*Pe*Y.

Property 4 (Absolute Difference Between Two Stack Fil-
ters): Consider TBFh(X) = ITBFf(X) - TBF,(X)I, where
f(x) and g(x) are positive Boolean functions (TBFf(X) and

Table III shows TBFf (M - X) = M - TBFf (X).

TBF,(X) are stack filters). Then, the Boolean function h(x)
of TBFh(X) is given by h(x) = f(x)g(x) + f(x)g(x).

Proofi Let hl(x) = f(x)g(x), F = TBFf(X), and
G = TBF,(X). Then, F = max{C I f(Ie(X)) = 1)
and G = max{l I g(Ie(X)) = 1). Since hl(Ie(X)) =
f(Ie(X))g(Ie(X)) = 1 only when G < C 5 F , we get
TBFh,(X) = max(0,F - G}. Letting hz(x) = f(x)g(x),
we get similarly TBFh,(X) = max(0, G - F}. Since
f(x)g(x) and f(x)g(x) are mutually exclusive, TBFh(X) =
TBFh,(X)+TBFh,(X) = max(0,F-G}+max{O, G-F} =

0
Example 13: Consider TBFh(X) = I median

{X1,Xz,X3} - median {X4,X5,X6)1, which is
the difference-of-medians operator [161. Since the
positive Boolean functions for median{ XI, XZ, X3} and
median{Xd,Xg,Xg} are f(x) = 1~1x2 + 22x3 + 23x1
and g(x) = 24x5 f 2526 + 2624, respectively, we get
h(x) = f(x)g(x) + f(x)g(x) from Property 4. The Boolean
functions corresponding to the range or quasiranges [151
X(,) - X(N-%+I), 1 5 i 5 1;) can be obtained in a similar
manner. 0

In general, a filter expressed as a linear combination of stack
filters is not a TBF. It can be shown, however, that any TBF
can be represented as a linear combination of stack filters.
This result is derived by using the definition and the lemmas
presented below.

Definition 1 (Stacking Property of True Vectors): Consider
V (f) , which is the set of true vectors of a Boolean function
f(x). Let V (f) = {XI ,..., XK}, and let W t (f) be the
set of binary vectors that are greater than or equal to
the true vector x,,i = 1 , . . . ,K . Here, a binary vector
y = (91 ,... , y ~) 2 x = (21,. . .,zN) if yJ 2 x3 for all
j. The set V (f) is said to have the stacking property iff

For example, for V (f) = {(O,O,l),(l,O,l)}, we have

{ (l , O , l) , (l , l , 1)) when XI = (0,0,1) and xz = (l , O , l) .
Thus, V (f) # Wl(f)UWz(f), and V f does not possess the
stacking property. The union of sets W z (f) will be called
the stacking set of f(x). Of course, U,"=, W t (f) 2 V (f) .
The difference between the stacking set U,"=, Wz(f) and V (f)
will be called the complementary set of f(x) and denoted by

For V (f) = {(O,O, l) , (1,0,1)) in the above example, the
complementary set C (f) = {(0,1, l), (1,1, l)}. Obviously,
C (f) = 0 when V (f) has the stacking property. Since
a Boolean function f(x) is positive iff f(x) = 1 means

(F - GI = ITBFf(X) - TBF,(X)J.

VU) = U,"=, W%(f>. 0

Wl(f) = { (O , O , 11, (0,1,1), (170, I), (1,1,1)}, and Wz(f) =

k '

C(f): lJE1 W % (f) = V (f) U C (f) and V (f) n C (f) = 0.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2030 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

f(y) = 1 for all y 2 x, we can say that V (f) has the
stacking property iff the corresponding Boolean function f(.)
is positive.

Lemma5: If C (f) # 0, then min{wa(x) I x E C(f)} >
min{wa(x) I x E V(f)}, where w ~ (x) is the number of
1's in x.

Proofi Consider W;(f), which is the set of all binary
vectors y 2 xi E V (f) , where w ~ (y) > w ~ (x ;) if y # x;.

the desired result. 0
Now, we are ready to show that an arbitray TBF can be

decomposed into a linear combination of stack filters.
Property 5 (TBF as a Sum of Stack Filters): Any

TBFp(X) can be expressed as a linear combination of
stack filters:

since ~ (f) = {Y I Y E uE1 ~ i (f) and Y e VU)}, we get

TBFf(X) = ~(- l)" lTBF, (X) , (27)
a=1

where 1 5 Q 5 N + 1, and each f;(.) is a positive Boolean
function with true vectors V(f;) = V(fl-l) U C(fl-l),i =
1 , . . . , Q, where fA(x) = f (x) and fi(x) is a Boolean function
with V(f,') = C(fl-l).

Proofi Suppose that f (x) is not positive. We determine
the Boolean functions fl(x) and f i (x) so that V(fl) =
V (f) U C (f) and V(fi) = C (f) , respectively. The Boolean
function f1 (x) becomes positive because V(f) U C (f) has the
stacking property. Since V (f) n C(f) = 0, we get, from (13),
TBFf, (X) = TBFf (X) + TBFf; (X), and thus

TBFf (X) = TBFf, (X) - TBFf; (X). (28)

If f i (x) is positive, then we stop here, and Q = 2. If not,
by repeating the procedure for obtaining (28), we decompose
TBFf;(X) into TBFfz(X) and TBFf;(X), where TBFf2(X)
is a stack filter. Continuing in this manner, we eventually
get a positive Boolean function fA(x), n 5 N . This is true
because min{wa(x) I x E C(fi)} > min{wa(x) I x E
V(fi)} (Lemma 6), and the maximum number of 1's in x
is N . The worst case, n = N(Q = N + l) , occurs when
0 E V (f) and min{wa(x) I x E C(~N)} = N, i.e.,
&(x) = 21x2.. . XN. By setting fn+1(x) = fA(x), we get
TBFf (X) = TBFf, (X) -TBFfz (X) +. . . (- l)TBFfn+, (X).

0
Exumple14: For f (x) = ~ 1 3 2 + 32x3 + 2123,

V(f) = {(070,1~~(1 ,0 ,0) , (1,071),(1,1,1)}9 ancl
C(f) = ((0717 11, (1,1,0)}. Flmn V(f1) = V(f) U C (f)
and V(fi) = C(f), we obtain f l (x) = 2 1 + 23 and
fi(x) = 2 1 5 2 3 3 + 312223, respectively. Since f i (x)
is not positive, we consider C (f :) = {(l , l , l)} . From
V (f d = U C(fi) and Vfi) = C(fi), we get
fz(x) = 21x2 + 22x3 and f i (x) = 212223, respectively,
where f i (x) is positive. Therefore, we set f3(x) = f i (x)
and TBFf(X) = TBFf,(X) - TBFfz(X) + TBFf,(X), with
f i (x) = 2 1 +53, f2(x) = ~ 1 ~ 2 + 2 2 2 3 r and f3(x) = 212223.

0
Property 5 suggests that a TBF be realized as a parallel

connection of stack filters. When Q is reasonably small and an
efficient algorithm for stack filtering is available, the parallel

structure may be preferable to direct implementations of a
TBF.

V. IMPLEMENTATION OF THE TBF

The TBF representations developed in Sections I1 and
I11 lead to various implementations of a TBF. Among the
representations, the one in (17) generally results in more
efficient implementation than the others because the number of
additions in (17) is always N + 1, whereas K and P in (7) and
(13) vary depending on Boolean functions and can be as large
as O (P) . Therefore, in this section, we focus our attention
to the implementation of a TBF based on (17), develop an
algorithm for realizing a TBF, and compare the computational
complexities of TBF"s, LS TBF's, and stack and WOS filters.

The output of a TBF is obtained from (17) through the
following steps:

Step 1. Sort the data within the window and evaluate

Step 2. Obtain Ix(",(X) for each i.
Step 3. Evaluate ELo f(lx,,, (X))C;.

c;,i = 0,1, ... , N .

In Step 1, the input data inside a window can be sorted
by applying well-known algorithms such as BUBBLESORT,
MERGESORT, QUICKSORT [19], [20] and the running sort-
ing algorithms in [21]. Among the sorting algorithms, the
running sorting requires less computation and is preferable
to the others when a TBF is realized on a general-purpose
computer. On the other hand, BUBBLESORT has been used
in the practical design of sorting circuits [22]-[24] due to
its modular structure. In Step 2, the direct computation of
IX(%, (X)'s requires N 2 multilevel comparisons. The com-
putational load can be reduced significantly if we use the
idormation on time indices of the sorted input data. For
each input X j , j = 1,. . . , N, we define its location vector
rj = (T:, . . . , f) , where rjk = 1 if k = j and 0 otherwise.
In addition, the location vector of X(;), which is denoted
by r(;), is defined as r(;) = rj when X (;) = Xj. For
example, when N = 3, rl = (l,O,O), 1 2 = (O,l,O), and
1-3 = (O ,O, 1). If X2 < XI < X3, then r(l) = r3 = (O ,O, l) ,
r(2) = rl = (l,O,O), and r(3) = r 2 = (O,l,O). Now,
consider a set of binary vectors {z;, i = 0,1, . . . , N} defined
as zi = r(l) + rp) + ... + r(;), i = 1, . . . , N, and ~i, = 0 ,
where + performs componentwise addition. Note that z; has i
1 's and N - i 0's and ZN = 1. In the example described above,
zl = (O,O, 1). z2 = (l,O, l) , and z3 = (1,1,1). The vector z;
can be evaluated recursively by using z; = z;-1 + r(;) with
z1 = r(l). The relation between z; and Ix(;,(X) is observed
below.

Observation 1 : If X(;) > X(;+l), then Ix(., (X) = z;.
Proofi The lcth element of IX(%)(X) is equal to 1 iff

Xk 2 X(;). The number of 1's in lx (*) (X) is greater than or
equal to i, and it becomes i when X(i) > X(i+l). The kth
element of z; is equal to 1 iff Xk E { X (1) , X(2), . . . , X (;) } ,
and the number of 1's in z; is always i. Thus, Ix(~, (X) = z;

When X(;) = X(i+l), I x (~) (X) is different from z; but
f(Ix(,,(X))C; = f(z;)C; because C; = X(;) - X(;+l) = 0.
Consequently, we obtain the following equality that is very

when X (;) > X(;+l). 0

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE THRESHOLD BOOLEAN RLTERS 2031

X -

Fig.

THRESHOLOING BINARY TBF

2. Implementation of TBF’s.

useful for realizing Steps 2 and 3.
N N

f(IX(,) (X))C; = f(Zi)Ci. (29)
i=O i=O

Evaluation of z;, i = 1, . . . , N requires N 2 binary additions
(or logical OR operations), which are much simpler than N 2
multilevel comparisons. The price for this simplicity is the
storage space for the N N-bit location vectors. In (29),
the output is calculated by summing Ci’s associated with
f(z;) = 1. The Boolean function is implemented either by a
combinatorial logic or by a look-up table. The complexity of a
combinatorial logic depends heavily on the Boolean function,
whereas a look-up table always requires the storage space of
2N bits.

The algorithm flow based on (29) is shown in Fig. 2. Each
input sample X j is paired with an N-bit binary location vector
rj and then sorted. The sorted pairs X(i)’s and r(;)’s are used
to calculate Ci’s and z;’s, respectively. The output is obtained
by evaluating (29). The structures for hardware realization of
each of the basic modules in Fig. 2 are depicted in Fig. 3.
The sorting block, which is based on BUBBLESORT, and the
block calculating Cj’s are shown in Fig. 3(a), where the CS
element denotes compare-and-swap operation, which swaps
input sample values and their location vectors if the input
value at the bottom is greater than that at the top. In Fig. 3(b),
the block for calculating z; is depicted, where each OR gate
denotes parallel OR operations for N bits. zo and ZN can be
preset to 0 and 1, respectively, and z1 = r(l). Fig. 3(c) shows
the block evaluating ELo f(z;)C;. Here, f(z;)’s are obtained
sequentially for pipelining. The realization of f(z;) can be
simplified if we use a look-up table that lists all possible input
vectors and the corresponding outputs. This is because each
z; has i l’s, and the number of possible inputs for f(z;) is
(y) . The total size of the look-up tables realizing N Boolean
functions f(z;), i = 1,. . . , N is the same as that realizing
one Boolean function f(x) having 2* possible binary input
vectors. In essence, by implementing one look-up table with
2N binary inputs and the corresponding outputs, the effect
of implementing N Boolean functions can be achieved. It is
noted that the structure in Fig. 2 and 3 is highly suitable for
pipelining, and it can produce a TBF output at every clock the
rate is limited by the maximum delay among CS processor,
adder, and the Boolean function.

When implementing stack filters, the algorithm in Fig. 2
can be simplified. Since the output of a stack filter is obtained
by finding the minimum among i ’ s for which f(z;) = 1

...... -

Z(, = 0

ZN = 1

.

......
1

(C)

Fig. 3. (a) Sorting block and calculation of C;’s. CS and D denote the
compare-and-swap operation and delay line, respectively; (b) generation of
et’s from the location vectors r(,) ’s. The OR gate denotes N-bit parallel OR
operation, and eo and ZN are set to 0 and 1, respectively; (c) calculation of
multilevel TBF output.

(see (18)), the 2N + 2 additions for calculating C;’s and (29)
are unnecessary, and stack filters are somewhat simpler to
implement than TBF’s. As a useful alternative to the algorithm
based on (18), one may consider the bit-serial algorithm [32]
for realizing stack filters. This algorithm, however, cannot be
used for TBF’s because it exploits the positivity of the Boolean
function.

In practice, it is difficult to implement TBF’s and stack
filters with large values of N because the complexity of f(.)
increases exponentially as a function of the window size N . As
noted before, the evaluation of f(.) is not required in LS TBF’s
and WOS filters, and for a large N , their implementation
becomes considerably simpler than that of TBF’s and stack
filters.

The structure for realizing the LS TBF in (19) is shown
in Fig. 4. The input data paired with the weights (X j , wj)
are sorted to produce (X (;) , w (~)) , i = 1,. . . , N . Then, R; = xi,, w(j) is evaluated and compared with the threshold T.
The output of the LS TBF is obtained by summing the (7;’s
corresponding to Ri’s that are greater than or equal to T. In
WOS filtering, the output is obtained by finding the minimum
among i ’ s for which R; 2 T (see (20)). Thus, the 2N + 2
additions for calculating Ci’s and (19) are unnecessary.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2032 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

X

COMPARATOR

Fig. 4. Implementation of LS TBF's

VI. DESIGN AND APPLICATION OF THE TBF

One of the advantages gained by extending stack (WOS)
filters to the class of TBF's (LS TBF's) is the simplicity in
designing the TBF (LS TBF). In this section, we discuss how
the design procedures for stack filters in [25] and WOS filters
in [27] are simplified to design TBF's and LS TBF's and
examine the performance of these filters through computer
simulation.

A . Designing a TBF under the MAE Criterion

Coyle and Lin [25] introduced a novel technique for ob-
taining an optimal stack filter under the mean absolute error
(MAE) criterion. They showed that an optimal stack filter
or, equivalently, an optimal positive Boolean function can be
designed by using linear programming. In [8] , it is pointed
out that a Boolean function yielding a smaller MAE than an
optimal positive Boolean function minimizing the MAE can be
found easily without using linear programming. The procedure
for finding such a Boolean function, which is, in fact, a design
procedure for TBF's, is summarized below.

Suppose that the input process X (n) is a noise corrupted
version of some desired signal S(n) . To estimate the signal, a
filtering operation is carried out over a window process X(n),
which is formed by X(n) = (X , (n) , . . . , X N (~)) E (X (n -
NI), . . . , X (n) , . . . , X (n + N z)) , where N = N I + NZ + 1 is
the window size. We want to find the TBF that best estimates
the signal. The MAE for a TBF estimate is given by, dropping
the time indices for notational simplicity

where the last term is called the sum of micro MAE (SMMAE)
[8] . If the Boolean function f (.) is positive, the SMMAE is
equal to the MAE [25] . Let f * (.) be the positive Boolean
function for which the corresponding stack filter is opti-
mal under the MAE criterion. Then, there always exists a
Boolean function, say f " (-) such that MAEp 5 SMMAEfo 5
SMMAEf. = MAEf., and the f " (.) can be found following
a simplified version of the design process for f * (.) .

0 0

0
I 256

(e)

Fig. 5.
output of the TBF (e) output of the LS TBF.

(a) Original signal; (b) noisy signal; (c) output of the stack filter; (d)

The optimal stack filter f * (.) is designed as follows [25] :

Z N

minimize ~ (f) = cjf(xj) (31.a)

(31.b)
(31.c)

where cj is constants depending on input statistics, f (.) is'a
Boolean function, and xj is the jth input vector among 2N
possible binary input vectors and xi 5 xj if every element of
xi is smaller than or equal to the corresponding element of xj.
In designing f " (.) , the constraint in (31.b), which guarantees
the positivity of Boolean functions, is unnecessary. The TBF
f " (.) is obtained by minimizing J (f) in (31.a) under the
constraint in (31.c). Now, the minimization for to(-) is trivial;
f " (.) is given by

j=1 f

subject to f(x;) 5 f(xj) if x; 5 xj
f(xj) = 0 or 1 for all j

for every j , 1 5 j 5 2 N .

B. Designing an LS TBF

The design method for stack filters in [25] cannot be
applied to designing WOS filters. So far, for WOS filtering,
only suboptimal design procedures have been proposed [27] ,
[31]. An LS TBF can be designed following the procedures
for WOS filter design. In this subsection, we shall obtain a
suboptimal LS TBF using the method in [27].

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE THRESHOLD BOOLEAN FILTERS 2033

Consider an LS Boolean function f (.) defined by (4).

respectively, defined by k = (zf, . . . , zk, -l)t and w =

TABLE IV
MAE VALUES ESTIMATED FROM THE 1-D SIGNALS IN FIG. 5 Let ke and w be the augmented input and weight vectors,

(~ 1 , . . . , W N , T) ~ , where zf = Ie(Xi) , and wj’s and T are
the real-valued weights and the threshold value, respectively,
associated with f (.) . Then, the LS TBF can be expressed as

MAE
G(0, loo), P, = 0.1

Stack Filter 7.67
TBF 6.52

LS TBF (WOS Filter) 8.67

M

TBFf(X) = U(wtZe) (33) TABLE V
e = i MAE VALUES ESTIMATED FROM THE IMAGES IN FIG. 6

where U(.) is the unit step function defined as U (X) = 1 if
X 2 0 and 0 otherwise. Using (33), SMMAEf is written as

M

SMMAEf = E{ 1s‘ - U(wtZe)(}
‘=1
M

% E{ 1st - ,%e(’} (34)
e=i

where se = I‘(S) (see (30)), and the last expression is
obtained by approximating the unit step function to a linear
function and utilizing the fact that the absolute and square
errors are equivalent in the binary domain. Now, the LS TBF
minimizing the approximation of the SMMAE in (34) can be
obtained as follows:

(35)
1

W 2
minimize J(w) = -wt@w - wtQ

where !P = xEIE{%e(%e)t} and
Obviously, the solution to this problem is given by

= CEIE{seZe}.

WO = @-%D. (36)

In the case of WOS filtering, the problem in (35) should
be solved under the constraints that every element of w is
nonnegative and ELl w; 2 T. Thus, there is no closed-form
solution to the problem, and designing WOS filters requires
more work. ,

C. Experimental Results
In order to assess the performance of the TBF and the LS

TBF, these filters are designed using the methods described
in the previous subsections and applied to suppress additive
Gaussian and impulsive noise superimposed on 1-D and 2-
D signals. The Gaussian noise has zero-mean and variance
100, and impulses occur with probability 0.1. Signal values
corrupted by impulses are set to either 200 or 20. The statistics
required for designing the filters are estimated from the signals
under consideration.

Fig. 5(a) illustrates a 1-D signal taken from horizontal
lines of the Lena image having 256 x 256 pixels. The noisy
signal is shown in Fig. 5(b). The TBF, LS TBF, stack, and
WOS filters with window size 9 were designed using the
statistics estimated from the signals in Fig. 5(a) and (b). The
resulting LS TBF and WOS filter turned out to be identical;
the parameters of these filters are given by (wl, . . . , w9) =
(0.09945, 0.073 19, 0.09849, 0.19047, 0.37809, 0.1827 1,
0.08561, 0.06762, 0.11132) and T = 0.65053. To see the
potential filtering capabilities, the designed filters were applied

MAE
G(0, I O O) , Pe = 0.1

Stack Filter 7.9422
TBF 7.9170

LS TBF (WOS Filter) 1.9014

to the noisy signal in Fig. 5(b). The outputs of the filters are
illustrated in Fig. 5(c)-(e), and the corresponding MAE’S that
have been calculated from the filtered and the original signals
are listed in Table IV. It is seen that the TBF preserves more
details and has smaller MAE compared with the others.

Fig. 6(a) and (b) illustrate the original 512 x 512 “bridge
over stream” image and the noisy image, respectively. TO
enhance the noisy image, the TBF, LS TBF, stack, and WOS
filters with a 3 x 3 square window were designed. The statistics
required to design the filters are estimated from the upper left
quarter of images 6(a) and (b). Again, the LS TBF and the
WOS filter turned out to be identical. The images obtained
by applying the designed filters to the noisy image are shown
in Fig. 6(c)-(e), and the corresponding MAE values are listed
in Table V. Visually, the image filtered by the LS TBF looks
better than the other images. Furthermore, rather surprisingly,
the MAE associated with the LS TBF is smaller than the
others. The superiority of the LS TBF in filtering performance
is based on the following fact. The number of parameters to
be estimated for the problem in (3 3 , (N + 1)’ + (N + l) , is
considerably smaller than 2N, which is the number of c3’s in
(3 1). Therefore, roughly speaking, the parameters estimated for
(35) are more accurate than those for (31). The LS TBF’s and
WOS filters may be preferred to TBF’s and stack filters when
the input statistics are unknown and have to be estimated.

VII. CONCLUSION
A new class of nonlinear filters called TBF’s has been

introduced. A TBF is defined by a Boolean function on the
binary domain. It has been shown that the logical negation
on the binary domain produces the minus (-) operation on
the multilevel. In particular, the TBF can be expressed either
as a sum of “local minimum - local maximum” terms on the
multilevel or as an adaptive linear combination of ordered
input data.

While all stack filters are translation and scale invariant,
TBF’s may be neither translation nor scale invariant. The class
of TBF’s includes some known operators such as the range
estimator, quasi-ranges, and the difference of median estimates
that are employed for edge detection in image processing. An
interesting property indicating that any TBF can be expressed
as a linear combination of stack filters has been derived.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2034 lEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

Fig. 6. (a) Original image; (b) noisy image; (c) output of the stack filter; (d) output of the TBF.

As a useful special case of TBF’s, the LS TBF has been
introduced. The LS TBF, which is defined by the threshold
logic, is a direct extension of WOS filters. LS TBF’s are much
simpler to implement than TBF’s and may be preferred to
TBF’s in practical applications.

Implementation and design of the TBF and LS TBF has been
investigated. It was observed that the procedure for designing
TBF’s (LS TBF’s) is considerably simpler than designing stack
(WOS) filters and that the former can outperform the latter at
the expense of a slight increase in computational complexity.

Experimental results indicate that LS TBF’s can be superior
to TBF’s in filtering peformance when the filters are designed
based on estimated input statistics. All LS TBF’s designed
in the experiments for reducing noise tumed out to be WOS
filters.

There are some interesting topics for further research. They
are described as follows: 1) Statistical analysis of the prop-
erties of TBF’s. 2) Optimization of TBF’s and LS TBF’s.

Recently, a design method for TBF’s under the mean square
error criterion was presented in [30]. An interesting question to
be addressed is the following: Under what conditions does an
optimal TBF reduce to an LS TBF, a stack, or a WOS filter?
3) Extending TBF’s to filters that are defined by an arbitrary
function f (.) (not necessarily a Boolean function) on the binary
domain. The class of filters introduced by this extension is
the class of all filters possessing the threshold decomposition
property. 4) Further extension of TBFs to the filters defined
by (2), which include generalized stack, microstatistic, and
generalized WOS 1281 filters as special cases.

APPENDIX

SOMEP: an algorithm to get SOMEP expressions from a
given Boolean function

Suppose f(x) is a given Boolean function. Consider the set
of its true vectors ~ (f) = {vi = (wt, .. .,wN) I f(vi) =

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

LEE AND LEE: THRESHOLD BOOLEAN FILTERS 2035

Thus, we have a SOMEP expression: f(x) = 32x4 +
21x22324. Choosing different pairs to combine, we obtain
another SOMEP form:

(e)

Fig. 6 (continued). (e) Output of the LS TBF.

1, i = 1,. . . ,2”}. Then, a SOMEP expression of f(x) is
obtained through the following steps.

Step 1. Find a pair of true vectors vi, vj E V(f) such that
TI: # wj” for some k and wf = w$ for all I # k. Then,
update V(f) by replacing vi and vj with the reduced one,
which is given by (U:, . . . , vf-l , X , . ~ y + ~ , . . . , wy), where
x denotes a don’t-care condition.
Step 2. Repeat Step 1 until no pair of true vectors in V (f)
can be reduced.
Step 3. To each true vector v, = (U;, . . . , w,”) in the re-
sultant set V(f) , assign the product r m (x) = xi.; . . . x h ,
where xi = xi if w k = 1, xi = 3i if U; = 0, and x: = 1
if TI; is a don’t-care.
Step 4. Then, the product rm(x)’s are mutually exclusive,
and their sum is a SOMEP expression of the given Boolean
function f(x).

Proof: In the above algorithm, true vectors of f(x) are
partitioned into groups, each of which is represented by a
vector with don’t-cares. Since there is no intersection between
the groups, the products representing the groups are mutually
exclusive. 0

Although the SOMEP algorithm can be easily implemented
in a computer program, the minimal SOMEP expression (in
the sense that it cannot be further reduced) resulting from
the above algorithm may depend on the choice of combining
pairs in Step 1. An example illustrating the SOMEP algorithm
is presented below.

Example A . l : Suppose N = 4 and f (x) = 21x324 + 3 2 ~ 4 .

Then

REFERENCES

J. P. Fitch, E. J. Coyle, and N. C. Gallagher Jr., “Median filtering by
threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process-
ing, vol. ASSP-32, pp. 1183-1188, Dec. 1984.
P. D. Wendt, E. J. Coyle, and N. C. Gallagher Jr., “Stack filters,” IEEE
Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 898-91 1,
Aug. 1986.
T. S. Huang, Ed., Two-Dimensional Digital Signal Precessing I f :
Transform and Median Filters, Topics in Applied Physics. New York:
Springer-Verlag, 1981, vol. 43.
T. A. Nodes and N. C. Gallagher, Jr., “Median filters: Some mod-
ifications and their properties,” IEEE Trans. Acoust. Speech Signal
Processing, vol. ASSP-30, pp. 739-746, Oct. 1982.
0. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the properties of
median and weighted median filters using threshold logic and stack filter
representation,” IEEE Trans. Signal Processing, vol. 39, pp. 395-410,
Feb. 1991.
A. C. Bovik, T. S. Huang, and D. C. Munson, Jr., “A generalization
of median filtering using linear combinations of order statistics,” IEEE
Trans. Acoust. Speech Signal Processing, vol. ASSP-31, pp. 1342-1350,
Dec. 1983.
Y. H. Lee and S. A. Kassam, “Generalized median filtering and related
nonlinear filtering techniques,” IEEE Trans. Acoust. Speech Signal
Processing, vol. ASSP-33, pp. 672483, June 1985.
J. Song and Y. H. Lee, “Linear combination of weighted order statistic
filters: an extension of stack filters,” in Proc. 26th Ann. Con6 Inform.
Sci. Syst. (Princeton, NJ), Mar. 1992.
P. Maragos and R. W. Schafer, “Morphological filters, Part 11: Their
relations to median, order-statistic and stack filters,” IEEE Trans. Acousr.
Speech Signal Processing, vol. ASSP-35, pp. 1170-1 184, Aug. 1987.
H. J. A. M. Haijmans, “Theoretical aspect of gray-level morphology,”
IEEE Trans. Patt. Anal. Machine Intell., vol. 13, pp. 568-582, June 1991.
J.-H. Lin and E. J. Coyle, “Minimum mean absolute error estimation
over the class of generalized stack filters,” IEEE Trans. Acoust. Speech
Signal Processing, vol. 38, pp. 663-678, Apr. 1990.
G. R. Arce, “Micro-statistic in signal decomposition and the optimal
filtering problem,” IEEE Trans. Signal Processing, vol. 40, no. 8, Aug.
1992.
A. T. Fam and Y. H. Lee, “Selection filters and commutativity with
memolyless nonlinearities,” in Proc. IEEE Int. Symp. Circuits Syst.
ISCAS-90, May 1990, pp. 1743-1746.
H. A. David, Order Statistics. New York: Wiley, 1981.
I. Pitas and A. N. Venetsanopoulos, “Edge detectors based on order
statistics,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8, pp.
538-550, July 1986.
A. C. Bovik and D. C. Munson, “Edge detection using median com-
parisons,” Comput. Graphics Image Process., vol. 33, pp. 377-389,
1986.
P. M. Lewis and C. L. Coates, Threshold Logic. New York: Wiley,
1967.
S. Muroga, Threshold Logic and Its Applications. New York: Wiley,
1971.
D. E. Knuth, The Art of Computer Programming. Reading, MA:
Addison-Wesley, 1973, vol. 3.
E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
New York: Computer Science Press, 1978.
I. Pitas, “Fast algorithms for running ordering and max/min calculation,”
IEEE Trans. Circuits Syst., vol. 36, pp. 795-804, June 1989.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

2036 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 8, AUGUST 1994

1221 K. Oflazer, “Design and implementation of a single-chip 1-D median
filter,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-3 1,

1231 N. Demassieux, F. Jutand, M. Saint-Paul, and M. Dana, “VLSI architec-
ture for a one chip video median filter,” in Proc. IEEE ICASSP (Tampa,

[24] L. A. Christopher, W. T. Mayweather III, and S. S. Perlman, “A VLSI
median filter for impulse noise elimination in composite or component
TV signals,” IEEE Trans. Consumer Electron., vol. 34, pp. 262-267,
Feb. 1988.

1251 E. J. Coyle and J.-H. Lin, “Stack filters and the mean absolute error
criterion,” IEEE Trans. Acoust. Speech Signal Processing, vol. 36, pp.
1244-1254, Aug. 1988.

[26] B. Zeng, M. Gabbouj, and Y. Neuvo, “A unified design method for
rank order, stack and generalized stack filters based on classical Bayes
decision,” IEEE Trans. Circuits Syst., vol. 38, pp. 1003-1020, Sep. 1991.

1271 L. Yin, J. T. Astola, and Y. A. Neuvo, “Adaptive stack filtering with
application to image processing,” IEEE Trans. Signal Processing, vol.

[28] -, “A new class of filters-neural filters,” IEEE Trans. Signal
Processing, vol. 41, pp. 1201-1222, Mar. 1993.

[29] J.-H. Lin, T. M. Sellke, and E. J. Coyle, “Adaptive Stack filtering under
the mean absolute error criterion,” IEEE Trans. Acoust. Speech Signal
Processing, vol. 38, pp. 938-954, June 1990.

[30] K. D. Lee and Y. H. Lee, “Optimization of threshold Boolean filters,”
in 1993 IEEE Winter Workshop Nonlinear Digital Signal Processing
(Tampere, Finland), Jan. 1993.

1311 B. Jeong and Y. H. Lee, “Design of weighted order statistic filters using
the perceptron algorithm,” in1993 IEEE Winter Workshop Nonlinear
Digital Signal Processing, (Tampere, Finland), Jan. 1993.

[32] K. Chen, “Bit-serial realization of a class of nonlinear filters based on
positive Boolean functions,” IEEE Trans. Circuits Syst., vol. 36, pp.
785-794, June 1989.

pp. 1164-1168, Oct. 1983.

FL), Mar. 1985, pp. 1001-1004.

41, pp. 162-184, Jan. 1993.

Laboratory, GoldStar Co.
in nonlinear and linear I

communication systems.

Ki Dong Lee was born in Gangwon-do, Korea,
on April 6, 1964. He received the B.S. degree in
electronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1987 and the M.S. and Ph.D.
degrees in electrical engineering from the Korea Ad-
vanced Institute of Science and Technology, Taejon,
Korea, in 1989 and 1994, respectively.

From August 1989 to July 1990, he was a visiting
researcher at the Department of Radiology, Colum-
bia University, New York, NY. Since 1991, he has
been a research engineer at the Image and Media

,, Ltd., Seoul, Korea. His major research interests are
iigital signal processing, image coding, and digital

Yong Hoon Lee was born in Seoul, Korea, on July
12, 1955. He received the B.S. and M.S. degrees in
electrical engineering from Seoul National Univer-
sity, Seoul, Korea, in 1978 and 1980, respectively,
and the Ph.D. degree in systems engineering from
the University of Pennsylvania, Philadelphia, in
1984.

From 1984 to 1988, he was an Assistant Professor
at the Department of Electrical and Computer En-
gineering, State University of New York at Buffalo.
Since 1989, he has been with the Department of

Electrical Engineering at the Korea Advanced Institute of Science and Tech-
nology, where he is currently an Associate Professor. His research activities
are in the areas of one- and two-dimensional digital signal processing, VLSI
signal processing, and digital communication systems.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on October 6, 2009 at 20:40 from IEEE Xplore. Restrictions apply.

