
A Formal Framework for Prefetching Based
on the Type-Level Access Pattern in

Object-Relational DBMSs
Wook-Shin Han, Member, IEEE, Kyu-Young Whang, Senior Member, IEEE, and

Yang-Sae Moon, Member, IEEE

Abstract—Prefetching is an effective method for minimizing the number of fetches between the client and the server in a database

management system. In this paper, we formally define the notion of prefetching. We also formally propose new notions of the type-

level access locality and type-level access pattern. The type-level access locality is a pheonomenon that repetitive patterns exist in the

attributes referenced. The type-level access pattern is a pattern of attributes that are referenced in accessing the objects. We then

develop an efficient capturing and prefetching policy based on this formal framework. Existing prefetching methods are based on

object-level or page-level access patterns, which consist of object-ids or page-ids of the objects accessed. However, the drawback of

these methods is that they work only when exactly the same objects or pages are accessed repeatedly. In contrast, even though the

same objects are not accessed repeatedly, our technique effectively prefetches objects if the same attributes are referenced

repeatedly, i.e., if there is type-level access locality. Many navigational applications in Object-Relational Database Management

Systems (ORDBMSs) have type-level access locality. Therefore, our technique can be employed in ORDBMSs to effectively reduce

the number of fetches, thereby significantly enhancing the performance. We also address issues in implementing the proposed

algorithm. We have conducted extensive experiments in a prototype ORDBMS to show effectiveness of our algorithm. Experimental

results using the OO7 benchmark, a real GIS application, and an XML application show that our technique reduces the number of

fetches by orders of magnitude and improves the elapsed time by several factors over on-demand fetching and context-based

prefetching, which is a state-of-the-art prefetching method. These results indicate that our approach provides a new paradigm in

prefetching that improves performance of navigational applications significantly and is a practical method that can be implemented in

commercial ORDBMSs.

Index Terms—Prefetching, type-level access patterns, type-level access locality, object-relational DBMSs.

�

1 INTRODUCTION

OBJECT-RELATIONAL database management system
(ORDBMS) [20] applications model a set of interrelated

objects as complex objects using the reference and the
collection attributes. Navigational applications of an
ORDBMS navigate complex objects by accessing the
component object one by one using these attributes. The
navigational characteristics of these applications tend to
make the number of fetches increase in client/server
DBMSs and causes serious performance degradation. By
placing a cache at the client-side, ORDBMSs minimize
fetches between the client and the server.

Existing object fetching policies are categorized into two:
on-demand fetching [4] and prefetching [2], [7], [11], [13],
[18], [21]. In on-demand fetching, the objects are fetched

from the server on request. The advantage of this policy is
that it fetches only the objects that are eventually accessed.
The disadvantage is that it causes a lot of fetches since it
causes one fetch to the server per each object fetched. In
prefetching, the objects that are expected to be accessed in
the future are fetched in advance. Prefetching reduces
fetches and increases the system performance if the objects
prefetched are indeed accessed. However, if the objects
prefetched are not accessed eventually, the system perfor-
mance will get worse due to the overhead of fetching
unnecessary objects. Therefore, to prefetch objects effec-
tively, it is important to correctly predict the future access
patterns of the applications.

Object-oriented navigational applications typically pro-
cess objects by starting at some root object and traversing
the other objects, connected from the root object, by using
the references in the objects [3], [16]. For example, in Fig. 1,
let us consider a navigational application that retrieves the
professors’ addresses and cars (and their manufacturers,
drivetrains, and engines), where the professor’s salary is
more than $100; 000. The application first issues a query to
get the references to the root objects: “SELECT * FROM
Professors WHERE salary > 100000.” Then, it navigates
through the related objects to get information about the
professors’ cars and addresses connected from each root
object.

1436 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

. W.-S. Han is with the Department of Computer Engineering, Kyungpook
National University, 1370 Sankyuk-dong, Book-gu, Daegu 702-701,
Korea. E-mail: wshan@knu.ac.kr.

. K.-Y. Whang is with the Department of Computer Science and Advanced
Information Technology Research Center (AITrc), Korea Advanced
Institute of Science and Technology (KAIST), 373-1 Koo-Sung Dong,
Yoo-Sung Ku, Daejeon 305-701, Korea. E-mail: kywhang@cs.kaist.ac.kr.

. Y.-S. Moon is with the Department of Computer Science, Kangwon
National University, 192-1, Hyoja2-Dong, Chunchon, Kangwon-Do 200-
701, Korea. E-mail: ysmoon@kangwon.ac.kr.

Manuscript received 29 Oct. 2003; revised 29 Nov. 2004; accepted 17 Feb.
2005; published online 18 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0218-1003.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

The access patterns of navigational applications can be

represented by the patterns of attribute references in

accessing the objects rather than the patterns of object

references themselves. Fig. 1a shows the sequence of the

objects accessed (object reference string) in the previous

example. Here, the object reference string is

o1; o2; o3; o4; � � �; o18:

We note that no repetitive pattern occurs in the object

reference string. However, we observe that there is a

repetitive pattern of attributes referenced: address, owns,

manufacturer, drivetrain, and engine. We define the type-

level access locality as a phenomenon that repetitive patterns

exist in the attributes referenced. We define the type-level

access pattern as a pattern of the attributes referenced. We

provide more formal definitions in Section 3.2. Many

navigational applications in ORDBMSs have type-level

access locality. Therefore, by capturing type-level access

patterns in these applications, we can predict future

accesses to objects and effectively prefetch the objects based

on these patterns.
The contributions of this paper are as follows: First, we

formally propose new notions of the type-level access

locality and the type-level access pattern. Second, we

formally define the model of capturing and prefetching to

help understand the detailed mechanisms involved. Third,

we propose a new prefetching algorithm that implements

this model. Fourth, to show the effectiveness of the

proposed method, we perform extensive experiments and

compare the results with those of the on-demand fetching

and the context-based prefetching, which is the current

state-of-the-art technology. The results show that our

method significantly improves the performance compared

with these methods.
The rest of the paper is organized as follows: Section 2

explains existing prefetching methods and reviews the

advantages and disadvantages of the methods. Section 3

proposes the notion of the type-level access locality and the

type-level access pattern. Section 4 presents the concept and

implementation of our prefetching algorithm. Finally,

Section 5 presents the experimental results, and Section 6

concludes the paper.

2 RELATED WORK

Existing prefetching methods are classified into the follow-
ing four categories based on the method of selecting the
candidate objects to be prefetched:

1. page-based prefetching,
2. object-level/page-level access pattern-based pre-

fetching,
3. user-hint-based prefetching, and
4. context-based prefetching.

In page-based prefetching, we fetch all the objects
together in the page containing the object requested [11],
[14]. This method works well only when the objects in the
same page are accessed consecutively. Otherwise, it loses
the benefit of prefetching. Since the effectiveness of this
method depends entirely on the clustering of objects in a
page, the method fails to work well when applications do
not access objects in the clustered order.

In object-level/page-level access pattern based prefetch-
ing, we predict future object/page access patterns from
recent object/page access references [7], [18]. Palmer and
Zdonik [18] proposed a prefetching method based on
object-level access patterns. Their method captures an
object access pattern from object references using a learning
algorithm and then prefetches the objects based on the
captured object pattern. Curewitz et al. [7] proposed a
similar algorithm capturing the page-level access patterns
using a compression algorithm. The drawbacks of these
methods, however, is that they work only when the
identical objects or pages are accessed repeatedly.

In user-hint-based prefetching, we prefetch objects based
on hints provided by the user. Chang and Katz [8] proposed
a method of prefetching objects based on the user hints,
such as “my prime access is via configuration relation-
ships.” Commercial ORDBMSs provide methods based on
user-hints similar to this example [16]. However, the
drawback of this method is that it relies on the users to
provide the hints, putting a big burden on the users. This
approach is also against the recent trend of developing
auto-tuning DBMSs. Our algorithm works in a way similar
to the hint-based approach, which would produce the best
performance if the hints were properly provided. That is,
our approach can be regarded as automatically generating
proper hints utilizing the type-level access patterns dyna-
mically captured at runtime.

In context-based prefetching [2], which is the most recent
work on prefetching, we fetch all the objects together in the
structure context of the object requested. A structure context
of an object describes the structure, in which the object was
fetched. Examples of structures are query results and
collections. Fig. 2 shows an example of objects prefetched
in a context-based prefetching method. Here, we assume
that the object o2 is not in the client cache. The structure
context of o2 is the value of the attribute A of o1. Therefore,
when o2 is accessed, all the objects o2 � on in the structure
context of o2 are prefetched. That is, when an object (e.g., o2)
pointed by an element reference of a collection is accessed,
all the objects(e.g., o2 � on) pointed by the other element
references of the collection are prefetched. This method is
effective when a navigational application traverses an object

HAN ET AL.: A FORMAL FRAMEWORK FOR PREFETCHING BASED ON THE TYPE-LEVEL ACCESS PATTERN IN OBJECT-RELATIONAL... 1437

Fig. 1. A navigational application to get professors addresses and cars
(and their manufacturers, drivetrains, and engines), where the profes-
sor’s salary is more than $100; 000. (a) The objects accessed and (b) the
types and the attributes of the objects accessed.

hierarchy in the breadth-first-search (BFS) fashion. This
method has been implemented in a commercial DBMS with
performance increases of up to 70 percent over on-demand
fetching.

The context-based prefetching method has a problem
when an application traverses an object hierarchy in the
depth-first-search (DFS) fashion. In this case, objects
prefetched can be replaced from the cache even before the
objects are actually accessed. For example, suppose that an
application traverses the object hierarchy in Fig. 2 in the
DFS fashion. If a large number of objects (e.g., onþ1; onþ2; � � �)
are connected from the object o2, so as to completely fill the
cache, then the objects prefetched, o3 � on, will be replaced
before being accessed. This problem is even more serious
when the size of a structure context is large. Another
drawback of this method is that it does not prefetch objects
pointed by the value of noncollection reference attributes.
For example, when accessing o1 in Fig. 1, it prefetches only
o7 and o13, but does not prefetch objects o2 � o6, o8 � o12,
o14 � o18, which are connected from the objects o1, o7, and
o13 by noncollection reference attributes.

3 TYPE-LEVEL ACCESS PATTERNS

In this section, we define the notions of the type-level access
locality and the type-level access pattern. We also identify
type-level access patterns that occur frequently in object-
oriented navigational application. Fig. 3 depicts a university
database schema, which we will use as an explanatory
example. We first define some terminology in Section 3.1.

3.1 Terminology

A navigational root set is a set of root objects that the
navigational application obtains to start navigation. We
denote it by �. For example, the navigational root set in
Fig. 1 is fo1; o7; o13g (we call this �1). ORDBMSs provide the
query facility that can be used to obtain navigational root
sets [16], [23]. An application can acquire multiple naviga-
tional root sets by issuing a query to the server for each
navigational root set.

A navigational complex object is a set of objects that are
accessed during a navigation and that are recursively
connected from a navigational root set. Therefore, in
prefetching, we are interested in finding a navigational
complex object instead of an entire complex object stored in
the database.

The type-level path of an object o is the sequence of
attributes referenced from the root to the object. To express
the type-level path of the root object, we assume that a

navigational root set is the value of the virtual collection
attribute of a virtual object. We denote the name of the
virtual collection attribute by a�. We then access the
elements in a navigational root set as if we were accessing
the elements of the collection attribute a�. For example, in
Fig. 1, the type-level path of o1 is a�; that of o2 a�:address;
that of o3 a�:owns; and that of o4 a�:owns:manufacturer.

The type-level path reference string for the navigational root
set � is a sequence of type-level paths referenced in
accessing the objects that are connected directly or indir-
ectly from �. For example, in Fig. 1, the type-level path
reference string for �1 is

½a�1
; a�1

:address; a�1
:owns; a�1

:owns:manufacturer;

a�1
:owns:drivetrain; � � � ; a�1

:owns:drivetrain;

a�1
:owns:drivetrain:engine�:

The type-level path graph for the navigational root set � is a
directed graph, where the nodes are the types of the objects
accessed, and the directed edges the attributes referenced.
The type-level path graph can be extended to store the
information about attributes actually accessed instead of
storing all the attributes [10]. All the edges are numbered to
represent the order of insertion to the graph. This graph is
used for capturing type-level access patterns. The types of
the objects accessed are connected directly or indirectly from
the root of the graph corresponding to�. The type-level path
graph allows cycles of attributes to represent recursive
patterns, which we discuss in Section 3.3.3. If there is a node
on multiple paths (except for cycles) from the root node, the
type-level path for the node becomes ambiguous. Thus, we
disambiguate the paths by using a separate instance of the
node for each distinct path. To capture the type-level access
pattern, we keep additional information within the type-
level path graph: iterative attribute marking and recursive
attribute marking. If a certain attribute evolves in iteration, we
mark the attribute as an iterative attribute. If it evolves in
recursion, we mark it as a recursive attribute. We dynami-
cally build the type-level path graph by deriving the type-
level paths of the objects as they are accessed. We will show
examples in Section 3.3. Table 1 summarizes the notation to
be used throughout the paper.

3.2 Type-Level Access Locality

ORDBMSs provide the reference and collection type
attributes to model complex objects. Applications navigate
navigational complex objects using these attributes. If
applications navigate navigational complex objects of the
same type, the same attributes are referenced repeatedly,
even though the objects referenced are all different. We call

1438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 2. An example of context-based prefetching.

Fig. 3. An example university database schema.

this phenomenon the type-level access locality. We define it
formally in Definition 1.

Definition 1. The type-level access locality is a phenomenon
that a large portion of substrings of the type-level path
reference string is generated by a small number of type-level
access patterns.

We define the type-level access pattern formally in
Definition 2.

Definition 2. A type-level access pattern is a finite set of
production rules [22] that generates type-level path reference
substrings appearing in a given type-level path reference
string.

Here, a production rule is in the form of A ! x, where A
is a nonterminal and x is a string consisting of terminals
and/or nonterminals.

It is not feasible to capture all possible type-level access
patterns from a single type-level path reference string
generated by a navigation at runtime. Thus, we predefine
important classes of type-level access patterns and capture
only these patterns at runtime.

3.3 Characteristics of Navigational Applications

We identify two important classes of type-level access
patterns from the characteristics of navigational applica-
tions: iterative patterns and recursive patterns. Iterative
patterns frequently occur due to the presence of collection
attributes. Recursive patterns occur when navigating com-
plex objects of recursive types. Recursive types are those that
form a cycle in the schema graph. We frequently encounter
recursive types in object-oriented applications [19].

3.3.1 Representation of Type-level Path Reference

Strings

Before predefining important classes of type-level access
patterns, we first introduce the formal representation of
type-level path reference strings. We use the string
concatenator � in (1) and a newly defined operator � called
the path constructor in (2) as follows:

The properties of the operator �:

½ P0; � � � ; Pm� � ½ P 0
0; � � � ; P 0

n� ¼ ½ P0; � � � ; Pm; P
0
0; � � � ; P 0

n�:
ð1Þ

The properties of the operator �:

½P0�� ½ P1; P2; � � � ; Pk� ¼ ½P0; P0:P1; P0:P2; � � � ; P0:Pk�: ð2Þ

Here, m, n � 0, Pi, P
0
i is a subpath of a type-level path,

and [] is the string constructor.

S � S0 represents the concatenation of the two input type-
level path reference strings, S and S0. ½P � � S represents a
type-level path reference string generated from the type-
level path reference string S by prefixing the type-level
subpath P to each element of S and by including P itself.
Typically, S is generated from a type-level path subgraph.
Thus, the operator � represents concatenation of a type-
level subpath with a type-level path subgraph.

3.3.2 Iterative Patterns

ORDBMSs provide a method for iteration (via Get NextðÞ,
etc.) to access elements in a navigational root set or in the
value of a collection attribute. Applications use iteration to
access the objects pointed by the elements in a collection
one by one. Thus, the objects accessed through iteration
tend to have the same type-level paths. The type-level
access pattern that generates such type-level paths repeat-
edly is called the iterative pattern.

Definition 3. An iterative pattern is a type-level access pattern
that generates type-level path reference strings, in which
identical type-level paths appear repeatedly.

Example 1. Fig. 4 shows an example iterative pattern. In this
figure, the application finds the professor and TA for
each section of the course “database.” The object o1 (the
course “database”) is the root object and has been
obtained by the query, “SELECT * FROM Courses
WHERE name=‘database’.” The application iterates over
the elements of the collection attribute has sections of the
object o1, accessing the section objects, o2, o5, and o8. For
each section object, in turn, it accesses objects pointed by
the values of the attributes is taught by and has TA,
finding professors and TAs for each section. The type-
level path reference string for this navigation is

½a�; a�:has sections; a�:has sections:is taught by;

a�:has sections:has TA; a�:has sections;

a�:has sections:is taught by; a�:has sections:has TA;

a�:has sections; a�:has sections:is taught by;

a�:has sections:has TA�:

Note that the type-level paths, a�:has sections,

a�:has sections:is taught by;

and a�:has sections:has TA, appear repeatedly. The
string can be represented as1

HAN ET AL.: A FORMAL FRAMEWORK FOR PREFETCHING BASED ON THE TYPE-LEVEL ACCESS PATTERN IN OBJECT-RELATIONAL... 1439

TABLE 1
Summary of Notation

Fig. 4. An example iterative pattern. (a) The objects assessed. (b) The

type level path graph.

1. ½A�þ means A can appear one or more times.

½a�� � ð½a�:has sections; a�:has sections:is taught by;

a�:has sections:has TA�Þþ:

If there are multiple root objects, the string will become as

ð½a�� � ð½a�:has sections; a�:has sections:is taught by;

a�:has sections:has TA�ÞþÞþ

forming a nested iterative pattern.

Iterative patterns can be nested in multiple levels since

iteration occurs whenever a collection attribute appears in

the type-level path graph. Suppose an application follows a

path a�:a1:a2::an in the type-level path graph using

iteration. Suppose that there are jðj � nÞ collection attributes

ac1 ; ac2 ; � � � ; acj in the path. An iterative pattern for each

collection attribute is ½a�::ac1 ; � � ��
þ, ½a�::ac2 ; � � ��

þ; � � � , and

½a�::acj ; � � ��
þ, respectively. Therefore, the type-level access

pattern for this navigation is

½� � �� � ð½a�::ac1 ; � � �� � ð½a�::ac2 ; � � �� � ð½a�::acj ; � � ��Þ
þÞþÞþ

forming a nested iterative pattern. Here, .. means omission

of attributes in a type-level path. Production rules for this

iterative pattern are as in (3):

Ak ! ð½ak� � ðAkþ1ÞÞiterðakÞ ; 0 � k � n
Ak ! ½ � ; k ¼ nþ 1

�
: ð3Þ

Here, the starting symbol is A0, and a0 is a�. The

superscript iterðakÞ means zero or more iterations, and is

dynamically determined according to the type and the

cardinality of ak: If ak is a collection attribute, iterðakÞ is the
number of element references in the collection attribute; if a

noncollection attribute, it is 0 or 1 (we denote this special

case as iter1ðakÞ). If iterðakÞ is greater than zero, we call the

corresponding rule the iter-rule. If iterðakÞ is equal to zero,

we call the corresponding rule the NULL-rule.
Since each node(type) in a type-level path graph can

have more than one outgoing edge(attribute), (3) should be

extended to include this case. In this section, we limit our

discussion to a type-level path tree, which is a type-level

path graph having no cycles. We will discuss type-level

path graphs having cycles in Section 3.3.3 regarding the

recursive pattern. We construct production rules for the

iterative pattern by mapping each edge in the type-level

path tree to a production rule by using the following rule:

Rule 1. Suppose that the nonleaf node A in the type-level

path tree is connected through the incoming edge a, and

nodes B1; B2; � � � ; Bjðj � 0Þ through the outgoing edges

b1; b2; � � � ; bj from A, respectively. Edges bi are numbered

in the order of the subscript. Then, the production rule A0

corresponding to the edge a is represented as follows2:

A0 ! ð½a� � ð½ � �B0
1 �B0

2 � � � � �B0
jÞÞ

iterðaÞ; ð4Þ

where B0
1; B

0
2; � � � ; B0

j are the left sides of the production rules

corresponding to the edges b1; b2; � � � ; bj, respectively.

In (4), if j ¼ 0, the resulting rule becomes (5):

A0 ! ½a�iterðaÞ: ð5Þ

We note that (5) represents a special case of (4) when the

node A is a leaf.
Using Rule 1, the iterative pattern for the application in

Fig. 4 can be represented as the production rules in (6) with

A0 as the start symbol:

A0 ! ð½a�� � ð½ � �A1ÞÞiterða�Þ

A1 ! ð½has sections� � ð½ � � B1 �B2ÞÞiterðhas sectionsÞ

B1 ! ½is taught by�iter1ðis taught byÞ

B2 ! ½has TA�iter1ðhas TAÞ

9>>>=
>>>;
:

ð6Þ

The context-based prefetching method, in the absence of

hints, can be regarded as the one having only one-level

iterative patterns for prefetching. When an application

accesses an object pointed by an element of the collection

attribute ai, this method only prefetches all the other objects

pointed by the elements of ai. That is, in the absence of

hints, it does not prefetch other objects connected directly or

indirectly from ai. If some hints, such as MR [2],3 about the

type-level paths that the application is to follow are given,

the method can prefetch all the objects connected along

these paths. The reference [2] points out that automatically

issuing hints about such paths requires future work. Our

method does automatically capture the access pattern

generating the type-level paths that the application is to

follow and prefetch objects using that pattern.

3.3.3 Recursive Patterns

When an application accesses objects of recursive types,

cycles of attributes will appear repeatedly in the type-level

paths. The path ai::aj is cyclic if the type Tai�1
referenced by

ai�1 is the same as the type Taj referenced by aj including its

subtypes or supertypes [12]. We define the recursive pattern

in Definition 4.

Definition 4. A recursive pattern is a type-level access pattern

that generates type-level path reference strings having type-

level paths, in which cycles of attributes appear repeatedly.

Example 2. Fig. 5 shows an example recursive pattern. The

application in this figure accesses a linked list. The

application first accesses the root object, o1, and then,

recursively accesses the other objects directly or

indirectly connected from o1 using the attribute next.

Therefore, the object reference string is ½o1; o2; o3; � � � ; on�,
and the corresponding type-level path reference string

is ½a�; a�:next; a�:next:next; � � � ; a�:ðnextÞn�2:next�. In

this type-level path reference string, the type-level

paths, starting from the second one, contain cycles of

the attribute next—forming a recursive pattern. The

1440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

2. Here, we consider the order only among the outgoing edges of each
incoming edge for the sake of a clearer concept. That is, we only allow
navigations doing depth first-search over the type-level path graph. We
discuss the general case of navigation without this limitation in Appendix A
which can be found on the Computer Society Digital Library at http://
computer.org/tkde/archives.htm. 3. However, these objects are limited to local contexts.

type-level path reference string for this navigation is

represented as A0, where the production rules are

fA0 ! ð½a�� � ð½ � �A1ÞÞiter1ða�Þ;
A1 ! ð½next� � ð½ � �A1ÞÞiter1ðnextÞg:

In general, the number of attributes that appear
repeatedly in a type-level path generated by a recursive
pattern is equal to or greater than one, being the same as the
number of attributes comprising the cycle in the schema
graph. For example, consider an application that follows a
type-level path ::ai::aj. We assume that the path ai::aj makes
a cycle. The type-level path reference string for this

navigation is

½ � � � ; ::ai; ::ai:aiþ1; � � � ; ::ai::aj; ::ai::aj:ai; ::ai::aj:ai:aiþ1;

� ��; ::ðai::ajÞ2; ::ðai::ajÞ2:ai; � � ��:

We construct production rules for the recursive patterns by
mapping each edge in the cycle in the type-level path graph
to a production rule by using the following rule.

Rule 2. Suppose that the path ai::aj makes a cycle. Suppose that a

node Ak in the type-level path graph is connected through

akði � k � jÞ. Then, the production rule A0
k for the edge ak is

defined as follows:

A0
k ! ð½ak� �ð½ � �A0

kþ1ÞÞ
iterðakÞ ; i � k < j

A0
k ! ð½ak� �ð½ � �A0

iÞÞ
iterðakÞ ; k ¼ j

)
: ð7Þ

Rule 2 also represents cases where some of the attributes

making a cycle in the schema graph are of collection types.
Thus, each nonterminal in (7) also has two alternative rules,
depending on the value of iterðakÞ: one iter-rule and one
NULL-rule. Using such attributes, we can also model
mixtures of iterative and recursive patterns. For example,
in Fig. 6, the application retrieves all the prerequisites of
each course. Since the attribute has prerequisites is of a
collection type and is involved in a cycle, the production
rules for this case are as in (8):

A0 ! ð½a�� � ð½ � �A1ÞÞiterða�Þ

A1 ! ð½has prerequisites� � ð½ � � A1ÞÞiterðhas prerequisitesÞ

)
:

ð8Þ

We note that the grammar generated by Rules 1 and 2 is
a regular tree grammar [5], [15]. Thus, a type-level path
reference string can be represented as an equivalent

ordered labeled tree generated by a regular tree grammar.

For example, the type-level reference string in Example 1

can be replaced by an equivalent ordered labeled tree as

follows:

ð½a�� � ð½address� � ð½ �Þ � ð½owns� � ðmanufacturer� ð½ �ÞÞÞÞÞ
¼ a�ðaddressðÞ; ownsðmanufacturerðÞÞÞ:

Here, lðT1; T2; � � � ; TnÞ represents a tree consisting of a

labeled node l and n subtrees [5].4

In this section, we have considered the recursion
involving only one cycle. Theoretically, more complex

types of recursion involving multiple cycles can be

modeled. However, we only consider the case involving

one cycle since most recursions in real-world applications

are in this form [1].

4 CAPTURING TYPE-LEVEL ACCESS PATTERNS

AND PREFETCHING

This section presents the detailed techniques for capturing
iterative and recursive patterns at runtime and prefetching

based on the patterns captured. Section 4.1 describes the

concept. Section 4.2 proposes the prefetching algorithm.

Section 4.3 explains implementation issues.

4.1 The Concept

We formally define the notions of capturing the type-level

access pattern and prefetching based on the pattern

captured.

Definition 5. Capturing the type-level access pattern is the

process of identifying the type-level path subgraph (which

corresponds to a set of production rules) representing a useful

pattern.

A useful pattern is the one that makes the prefetching

effective, i.e., the one that correctly anticipates the objects

to be fetched in the future. In this paper, we define the

iterative and recursive patterns as useful patterns.
According to Rules 1-2, there exists a mapping between

HAN ET AL.: A FORMAL FRAMEWORK FOR PREFETCHING BASED ON THE TYPE-LEVEL ACCESS PATTERN IN OBJECT-RELATIONAL... 1441

Fig. 5. An example recursive pattern. (a) The objects accessed. (b) The

type-level path graph.
Fig. 6. An example where both an iterative and recursive patterns occur

simultaneously. (a) The objects accessed. (b) The type-level path graph.

4. The reference [5] deals with ranked trees that have predefined bound
on the number of children of each node, whereas the reference [15] deals
with unranked trees (i.e., no predefined bound on the number of children of
each node) using an encoding scheme. In our paper, since the cardinality of
a collection attribute is not predefined, we can use the encoding scheme in
the reference [15] to handle unranked trees. We omit the detailed discussion
of the regular tree grammar since it is not a main focus of our paper.

the type-level path subgraph and the type-level access
pattern (i.e., a set of production rules).

Definition 6. Prefetching based on the type-level access pattern
captured is the process of finding the object reference string
that corresponds to the type-level path reference string
generated by applying the production rules of the pattern
captured according to the order of the edges.

Here, there is an interactive process between the type-
level path reference string generated and the corresponding
object reference string since the number of iterations or
recursions in the type-level path reference string depends
on the specific value of the object in the object reference
string.

Formally, let G be the grammar for the pattern captured

and A0 be the starting nonterminal symbol of G. The

derivation of the type-level path reference string S by using

the grammar G can be represented as A0)
	

G
S. At each step

of the derivation, a nonterminal A is substituted with the

rightside of the production rule for A. However, since each

nonterminal has two alternative rules, a iter-rule and a

NULL-rule, we have to decide which rule to apply to

generate the type-level path reference string S. In case of the

iter-rule, we also have to decide the number of iterations for

the rule. To do so, we need to check the specific value of the

object (i.e., a valid pointer or null pointer to the child object)

in the object reference string that corresponds to the type-

level path reference string. That is, by accessing the value of

the current object, we can produce a symbol (i.e., a type-

level path) in S for the next object to access.
Now, we explain the detailed procedure of capturing

iterative patterns and subsequent prefetching using the
Current Type-Level Path Graph(CTLPG). CTLPG is a
dynamic data structure for representing the production
rules that have been identified by the current time during
the capturing process. Consider a navigational application
that follows a type-level path subgraph starting with a�::ai,
where the attribute ai is of a collection type. If the type-level
path a�::ai appears in the type-level path reference string
for the first time, we insert it into the CTLPG. When this
type-level path appears again in the type-level path
reference string, we recognize an iteration on the collection
attribute ai, mark the attribute ai in the CTLPG as an
iterative attribute, and capture an iterative pattern consist-
ing of the subgraph having the attribute ai as the root in the
CTLPG. Next, the algorithm prefetches objects based on the
pattern captured. In summary, at the first iteration of a
collection attribute, the algorithm stores in the CTLPG all
the type-level paths traversed. At the second iteration, the
algorithm recognizes the iteration and captures the iterative
pattern, and then prefetch objects based on the pattern
captured.

Capturing recursive patterns and prefetching based on
them are done similarly. The recursive pattern is captured
by checking if a subpath of the type-level paths forms a
cycle. Consider an application that follows a type-level
path, a�::ai::aj, where the subpath ai::aj makes a cycle.
When an object whose type-level path is a�::ðai::ajÞ is

accessed, the algorithm recognizes that the subpath ai::aj
completes a cycle.5 Then, the algorithm marks every
attribute in the cycle as a recursive attribute and captures
the recursive pattern. Next, the algorithm prefetches objects
based on the pattern captured.

Appendix B which can be found on the Computer Society
Digital Library at http://computer.org/tkde/archives.htm
contains illustrative examples of capturing and prefetching
steps for iterative and recursive applications.

4.2 The Capturing and Prefetching Algorithms

Before presenting the proposed prefetching algorithm, we
first define a basic navigational function that accesses an
object pointed by a reference attribute or by an element of
a collection attribute. Conventional ORDBMSs provide
similar navigational functions [17], [23] for use in
navigational applications. Thus, we explain how to
augment the basic navigational function with the concept
of capturing and prefetching. Fig. 19 of Appendix C
(which can be found on the Computer Society Digital
Library at http://computer.org/tkde/archives.htm) shows
the algorithm Basic-Navigate for the basic navigational
function without prefetching. The inputs to Basic-Navi-
gate are the object (ocurr) to access and the name of the
attribute (a) to access. The output is the object onext
pointed by ocurr:a or by an element of ocurr:a if a is of a
collection type. (Due to space limit, we present it in
Appendix C (which can be found on the Computer
Society Digital Library at http://computer.org/tkde/
archives.htm)).

Fig. 7 shows the algorithm of Prefetch-Navigate, which
augments Basic-Navigate with capturing and prefetching
based on the type-level access pattern. First, Prefetch-
Navigate obtains next_oid (lines 1-4). Next, Prefetch-
Navigate inserts type-level paths in the CTLPG, captures

1442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 7. The navigational function augmented with capturing and

prefetching.

5. For conservative prefetching, we can defer the decision on the
recognition of a recursion until a cycle appears more than once.

iterative and recursive patterns, and prefetches objects
based on the captured pattern, instead of simply returning
onext from the cache or the server as in Basic-Navigate. We
explain the method of obtaining the type-level path TLP
(ocurr) of object ocurr in Section 4.3.2.

In lines 5 -10, the algorithm inserts type-level paths in the
CTLPG, captures an iterative or recursive pattern if any
exists. First, if the type level path of the object onext,
TLPðonextÞð¼ TLPðocurr:aÞÞ, is not in the CTLPG (line 5), it
inserts TLPðonextÞ into the CTLPG (line 6). It then checks if
the inserted path completes a cycle. If there is a cyclic
subpath that has a as the ending attribute, it marks the
attribute a in the CTLPG as a recursive attribute and
captures a recursive pattern (lines 7-8). If the path
TLPðonextÞ already exists in the CTLPG (line 9), the
algorithm marks the attribute a in the CTLPG as an iterative
attribute if a is of a collection type and captures the type-
level access pattern consisting of the subgraph having a as
the root.

In lines 11-18, objects are prefetched based on the
patterns captured, and onext is returned. If onext is not in
the cache (line 11), it should be fetched from the server. If a
is marked as an iterative attribute or a recursive attribute
(i.e., if a is part of a pattern captured) (line 12), objects
including onext will be prefetched from the server based on
the pattern captured by calling the function PrefetchObjects
(lines 13-15). If no pattern has been captured, onext is simply
fetched from the server. Finally, in line 18, the object onext is
returned.

A CTLPG is allocated to each navigational root set.
Whenever a query producing a navigational root set is
issued, a CTLPG is created. When the navigation from the
navigational root set is completed, the CTLPG is destroyed.
The size of a CTLPG is proportional to the number of types
and attributes accessed in the navigation. Since it is
generally small, the CTLPG can be resident in main
memory.

Before presenting the detailed algorithm for Prefetch-
Objects, we describe the connection between the formal
framework and the prefetch algorithm. Fig. 8 shows the
overall architecture of our prefetch module. The module
contains a type-level path graph (= a type-level access
pattern) and a state. Here, a state is a stack of the triple

< nodenumber; childindex; ocurr > , w h e r e nodenumber
points to a node N in the type-level path graph, and
childindex means the edge connected to a child node from
the node N . As described in Definition 6, the prefetch
module

1. consumes a type-level path generated by applying
the production rules of the pattern captured,

2. prefetches an object using the type-level path
consumed and the state information, and

3. produces a type-level path for the object to access
next.

Here, the resulting type-level path reference string is a
string in the language generated by the grammar, in
particular, by the production rules of the pattern. Here,
the generation of the string is controlled by the interactive
process between the type-level path reference string and the
corresponding object reference string by checking the
specific value of the object (i.e., a valid pointer or null
pointer to the child object) in the object reference string. If
the pointer is valid, then apply the iter-rule; if null, apply
the NULL-rule.

Fig. 9 shows the detailed algorithm for PrefetchObjects.
The inputs to PrefetchObjects are the object accessed (ocurr)
and the current edge of CTLPG (currEdge). The output is a
set of objects prefetched (oset). It consumes the current
symbol and makes a state transition by calling MakeState-
Transition, where MakeStateTransition prefetches objects
by using ocurr and the symbol consumed (type-level path)
and produces a next input symbol.

We now describe the algorithm MakeStateTransition in
detail. In lines 3-4, if the value of ocurr:a is NULL or
EndOfCursor (ocurr:a) is false, no objects (an empty set) are
prefetched for the subgraphhaving currEdge as the incoming
edge to its root. Thus, we follow sibling edges or backtrack to
the parent by calling FollowSiblingORBackTrack.

In lines 5-18, objects are prefetched based on the iterative
pattern. If a is marked as an iterative attribute, the
algorithm fetches the object pointed by each element in
the collection attribute a one by one navigating the
subgraph connected from the object. This case corresponds
to applying an iter-rule with n iterations to generate the
type-level path reference string. Here, the originating edge

HAN ET AL.: A FORMAL FRAMEWORK FOR PREFETCHING BASED ON THE TYPE-LEVEL ACCESS PATTERN IN OBJECT-RELATIONAL... 1443

Fig. 8. Architecture of the prefetch module.

of the iterative pattern is of a collection type, but the other

edges in the pattern may be either of a collection type or of a

noncollection type. In lines 5-12, the case having edges of

collection types is handled; in lines 13-18, the case having

edges of noncollection types is handled.
In lines 19-30, objects are prefetched based on the

recursive attribute. If a is marked as a recursive attribute,

the algorithm follows the cycle corresponding to the

recursive pattern.6 In lines 24-30, as stated in Section 3.3.3,

we handle the case (the mixed pattern) where some of the

edges making the cycle are of collection types.
An additional issue in prefetching is how many objects

we should prefetch at one time. In this paper, to avoid

ineffective prefetch, we use a heuristic. Here, we use the
(prefetch hit) ratio of the number of objects that have
actually been accessed to the number of objects prefetched
in the past to determine the number of objects to prefetch in
the future. If the ratio is � X percent, the number of objects
to prefetch is reduced by Y percent. If the ratio is >
X percent, the number of objects to prefetch is increased by
Y percent with a constraint that the total space for the
objects fetched should not exceed the maximum prefetch
buffer size. In our experiments, even if we increase the
prefetch buffer size above some threshold, it affects the
number of fetches, but much less does the total elased time.
This is because, once the number of fetches improves
significantly, the query processing time would be a
dominant factor in the total elapsed time. Further improve-
ment in the fetches has a marginal effect on the total elapsed
time. Thus, we have determined the prefetch buffer size to

1444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 9. The prefetch algorithm.

6. For the recursive pattern, by checking if the objects themselves
accessed form a cycle, we prevent the algorithm from getting into an infinite
loop.

be 1M bytes. The rationale for setting X (= 50 percent) is as
follows: Even if half of the objects prefetched are indeed
accessed, we still have performance gain since the round-
trip cost occupies more than 50 percent of the total
performance in our experiments. The rational for setting
Y (= 50 percent) is as follows: By adapting the prefetch
buffer size exponentially based on the recent prefetch hit
ratio (Y = 50 percent), we can easily accommodate even the
worst cases.

4.3 Implementation Issues

4.3.1 Client/Server Prefetching Architecture

The prefetching method based on the type-level access
pattern is implemented as a module for capturing the access
pattern (the capturing module) and a module for prefetching
based on the pattern captured (the prefetching module). Thus,
where to put these modules in the client/server architecture
is an important issue that can affect the performance.

The capturing module is placed at the client-side for the
following reasons: Navigation is accomplished by calling
the navigational function in the client. Thus, if an object to
be fetched already exists in the client cache, any message
from the navigation function will not be delivered to the
server and, thus, the server is not able to know accurate
access patterns of an application. On the other hand, the
prefetching module is placed at the server-side because the
oids of the objects to prefetch can only be obtained by
navigating through the objects stored in the server accord-
ing to the type-level access pattern. Since the capturing
module is placed on the client-side, however, we need to
send the pattern captured to the server on every request for
prefetching. Experimental results show, however, the over-
head of shipping the pattern to the server constitutes only
around 5 percent of the total processing time, becoming
negligible. We can further minimize this overhead by
caching the pattern in the server rather than sending the
pattern from the client to the server at each prefetch request.

4.3.2 Maintenance of Type-Level Paths

To maintain the type-level path of an object ocurr, TLPðocurrÞ,
we use the smart pointer with an extension. The smart
pointer is a data structure that can point either to the object
in the cache or to the object in the database. Examples of
smart pointers are ORRef [17] and odb_Ref [23]. This
extension augments the data structure of the smart pointer
pointing to an object to be able to store the pointer to the

node in the CTLPG that corresponds to the type-level path
of the object. To use smart pointers, we need to replace the
input/output parameters (ocurr and onext) of Prefetch-
Navigate by smart pointers to these objects. The pointer to
the root of the CTLPG is stored in the cursor of the
navigational root set.

Example 3. Fig. 10 shows how we maintain type-level paths
of objects using smart pointers. Suppose that, in accessing
the object o2 in Fig. 4, Prefetch-Navigateðr; is taught byÞ is
called. Here, r is the smart pointer to the object o2 and has a
pointer to the node sections, which corresponds to the
type-level path of o2. Prefetch-Navigate augments the
CTLPG by connecting the new node Professors through
the attribute is_taught_by and stores a pointer to this new
node in the output smart pointer r0.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
prefetching method (TypePrefetch) and compare it with
those of on-demand fetching (OnDemandFetch) and con-
text-based prefetching (ContextPrefetch). Section 5.1 ex-
plains the experimental environment and data sets.
Section 5.2 presents the experimental results.

5.1 Experimental Data and Environment

We have performed four different experiments:

1. a navigational application described in Fig. 1
(Iterative-Application) having iterative patterns and
one in Fig. 5 (Recursive-Application) having recursive
patterns;

2. the OO7 benchmark [6], [21], which is a standard
workload in object-oriented navigational applica-
tions. Here, we have used three different sizes of the
database: small, medium, and large;

3. a geographical information system (GIS) application
as the representative real-world application;

4. an XML database application for exporting XML
data from the database.

Due to a space limit, we present experimental results for the
XML database application in Appendix D which can be
found on the Computer Society Digital Library at http://
computer.org/tkde/archives.htm.

We have implemented the three fetching methods on the
ODYSSEUS ORDBMS prototype being developed at KAIST.
We have used a Sun Ultra-2 workstation for the client and a
Sun Ultra-60 workstation for the server. The object cache
size for the client is 8M bytes, and the page buffer size for
the server is 16M bytes. We have used a disk manager that
directly handles raw disks to avoid any operating system’s
buffering effect. We use the LRU replacement algorithm for
the object cache.

As the performance measures, we have used the relative
number of fetches and the relative elapsed time.7 To avoid
the effects of noise and to increase the accuracy, we have
run each experiment five times and averaged the results.

HAN ET AL.: A FORMAL FRAMEWORK FOR PREFETCHING BASED ON THE TYPE-LEVEL ACCESS PATTERN IN OBJECT-RELATIONAL... 1445

7. We have measured the number of fetches as the number of RPCs
(remote procedure calls) between the client and the server and have
counted all the RPCs, including transaction start and transaction commit,
made by the application.

Fig. 10. Maintenance of type-level paths using smart pointers.

5.2 Experimental Results

5.2.1 Iterative-Application and Recursive-Application

The data set used for Iterative-Application is as follows: The
total number of professors is 1,000, and the number of
professors whose salary is more than $100; 000 is 200. Each
professor owns one car. The total number of car manufac-
turers is 5. Here, for each professor object, five objects
(address, car, drivetrain, engine, manufacturer) are con-
nected, and the number of manufacturers of the qualifying
professors’ cars is 3. Thus, the number of objects accessed in
the application is 1,003 (=200*5(professor, address, car,
drivetrain, engine) + 3(three manufacturers)). The data set
used for Recursive-Appilication is a linked-list similar to the
one shown in Fig. 5. Here, 500 objects are connected from the
root object in sequence.

Fig. 11 shows the experimental results for Iterative-
Application and Recursive-Application. In both of these
applications, TypePrefetch significantly outperforms not
only OnDemandFetch but also ContextPrefetch. Compared
with OnDemandFetch, TypePrefetch reduces the number of
fetches by up to 67.4 times and improves the elapsed time
by up to 2.49 times. Compared with ContextPrefetch,
TypePrefetch reduces the number of fetches by up to
54.13 times and improves the elapsed time by up to
1.95 times. The analysis for the experimental results is in
Appendix F which can be found on the Computer Society
Digital Library at http://computer.org/tkde/archives.htm.

The relative elapsed time is smaller than the relative
number of fetches because the former includes the disk
access time to retrieve the objects from the database (i.e., the
query processing time) in addition to the time for fetches,
but the disk access time can not be reduced by prefetching.

Fig. 11 shows similar results for Recursive-Application.
The relative elapsed time of TypePrefetch improves in
Recursive-Application because objects accessed in this
experiment are clustered according to the order they are
retrieved, thus making the disk access cost smaller than in
Iterative-Application. This indicates that prefetching can be
much more effective if objects accessed are well clustered in
the server.

5.2.2 The OO7 Benchmark

Table 2 in Appendix E which can be found on the
Computer Society Digital Library at http://computer.org/
tkde/archives.htm summarizes the parameters of the OO7
benchmark database. The data sets we used (small3, med3,
large3) consist of modules (root objects), a 7-level assembly
hierarchy, and 500 composite part graphs connected from
the leaf (base assembly) of the assembly hierarchy. The
composite part graphs consist of atomic parts and connec-
tions. The data sets small3 and med3 are similar in all
parameters except that med3 is larger than small3 by a
factor of 10 in NumAtomic and Documentsize; similarly,

large3 is identical to med3 except for large3 is larger than
med3 by a factor of 10 in NumModules.

In this experiment, we have executed traversal opera-
tions defined in the OO7 benchmark. We briefly explain
traversal operations in OO7; more details can be found at
[6]. In the traversal T1, applications visits root modules, and
then traverses the assembly hierarchy connected from the
root. For each leaf-level assembly, applications traverse its
composite parts connected from the leaf-level assembly. For
each composite parts, applications traverse its atomic parts
and connections. In the traversals T2a, T2b, T2c, T3a, T3b,
and T3c, applications do the same traversal as T1, but
update some of objects. In the traversal T6, applications
traverse the assembly hierarchy and traverse only the root
part of the composite part graph.

Fig. 12 shows the relative number of fetches of Type-
Prefetch for the OO7 benchmark. For the traversal T1,
TypePrefetch reduces the number of fetches by up to
195 times compared with OnDemandFetch and by
97.8 times compared with ContextPrefetch. For the traver-
sals T2a-T3c, the results, which are in Appendix G which
can be found on the Computer Society Digital Library at
http://computer.org/tkde/archives.htm, are similar to
those for T1 since the traversal patterns are as same as T1
except some updates. For the traversal T6, TypePrefetch
reduces the number by up to 63.3 and 35.4, respectively. We
have more improvement for T1 than for T6 since T1 accesses
both the assembly hierarchy and the composite part graph
while T6 does only the assembly hierarchy. There are
significantly more repetitive type-level accesses in the
composite part graph than in the assembly hierarchy.

Fig. 13 shows the relative elapsed time for the OO7
benchmark. For the traversal T1, TypePrefetch reduces the
total elapsed time by up to 11.1 times compared with
OndemandFetch and by up to 6.39 times compared with
ContextPrefetch;8 For T2a-T3c, the results, which are in
Appendix G which can be found on the Computer Society

1446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 11. Experimental results for iterative-application and recursive

application. (a) Relative number of fetches and (b) relative elapsed time.

Fig. 12. The relative number of fetches for the OO7 benchmark.

(a) Traversal T1. (b) Traversal T6.

Fig. 13. The relative elapsed time for the OO7 benchmark. (a) Traversal
T1. (b) Traversal T6.

8. In the reference [2], experiments were performed using a relational
DBMS. In this paper, we have used an ORDBMS instead. The implicit join
operation in the ORDBMS, which follows the references, is relatively
cheaper than the join operation in the relational DBMS [24], which uses
value matching. Thus, the performance results for T1-T6 for ContextPre-
fetch appears better in this paper than in the reference [2].

Digital Library at http://computer.org/tkde/archives.htm,
are similar to those for T1. For T6, TypePrefetch improves
the total elapsed time by up to 3.57 times compared with
OnDemandFetch and by up to 3.10 times compared with
ContextPrefetch.

We note that, for the first measure (#of fetches), Type-
Prefeth leads to better improvement for the large3 database
than the med3 database since there are more repetitive type-
level accesses in the large database with the same schema.
However, for the second measure (total elapsed time), the
improvement for the large3 database is slightly worse than
the med3 database. This is because the total elapsed time
includes the query processing time, in particular, the disk
access time to retrieve the objects from the database. Once
the number of fetches improves significantly, the query
processing time would become one of the dominant factors
in the total elapsed time. Further improvement in the
fetches has a marginal effect on the total elapsed time.
However, the query processing cost highly depends on
clustering, which is not controlled by TypePrefetch. Thus, to
speed up further for large databases, we need a good
clustering algorithm. As a future research, we are working
on the use of the materialized view (well clustered for each
query) in TypePrefetch.

5.2.3 A Real GIS Application

In this experiment, we have used the map browser of a GIS
system running on top of the ORDBMS. Here, we have used
a real-world data set—the map of KangNam District of the
Seoul city consisting of about 80,000 geometric objects. The
database size is about 10M bytes. Roads are modeled as
polylines, and buildings as polygons. Both polylines and
polygons consist of several line segments. In the experiment
the map browser is to read the geometric objects of the
entire map to the client.

Fig. 14 shows the results for this experiment. Compared
with OnDemandFetch, TypePrefetch reduces the number of
fetches by up to 402 times and improves the elapsed time by
up to 9.50 times. Compared with ContextPrefetch, Type-
Prefetch reduces the number of fetches by up to 51.3 times
and improves the elapsed time by up to 2.38 times. This
indicates that type-level access locality indeed occurs in
real-world GIS applications and that prefetching based on
the type-level access pattern is effective in real-world
applications as well.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed new notions of the type-
level access pattern and the type-level access locality and
presented a new prefetching method based on these
notions. We also have proposed a formal framework for
understanding underlying mechanisms of capturing and
prefetching. We have shown that the proposed method
reduces the number of fetches and improves elapsed time

drastically compared with the existing fetching methods:
on-demand fetching and context-based prefetching.

We have formally defined the type-level access pattern
as a set of production rules that generates the type-level
path reference strings; capturing as the process of identify-
ing the set of production rules representing a useful pattern;
prefeching as the process of producing the object reference
string that corresponds to the type-level path reference
string generated by the type-level access pattern. We have
identified two typical type-level access patterns in
ORDBMSs: the iterative pattern and the recursive pattern.
Using these predefined access patterns, we have described
the detailed mechanisms for capturing and prefetching and
incorporated them in the algorithm.

We have performed extensive experiments using various
types of data sets including the OO7 benchmark, a real GIS
application, and an XML export application. Experimental
results show that the proposed method significantly outper-
forms over both on-demand fetching and context-based
prefetching. Compared with on-demand fetching, the pro-
posed method reduces the number of fetches by up to
402 times and improves the elapsed time by up to 11.1 times.
Compared with context-based prefetching, the proposed
method reduces the number of fetches byup to 97.8 times and
improves the elapsed time by up to 6.39 times. Especially, the
proposed method provides large improvements in the
OO7 benchmark and in the real GIS application, where more
complex object hierarchies are involved.

Overall, these results indicate that our approach pro-
vides a new paradigm for prefetching that improves
performance significantly in navigational applications and
is a practical method that can be implemented in commer-
cial ORDBMSs.

As future work, we address the following issues. First,
our algorithm can be extended to handle more general
types of recursion. Currently, our algorithm handles
iterative patterns and limited yet useful recursive patterns
involving one cycle (linear recursion). Second, our algo-
rithm can be extended to reduce the query processing time
during prefetch. One possibility is to use the materialized
view, which is well clustered for a certain query pattern.

ACKNOWLEDGMENTS

An earlier version of this paper was presented in the
IEEE International Conference on Data Engineering (IEEE
ICDE) held in Heidelberg in 2-6 April, 2001. The paper
has been significantly extended by adding the formal
framework for capturing and prefetching (Sections 3.3,
4.1, and Appendix A (which can be found on the
Computer Society Digital Library at http://computer.
org/tkde/archives.htm), the detailed prefetching algo-
rithm (Section 4.2), implementation issues (Section 4.3),
and extended experiments for an XML application
(Appendix D which can be found on the Computer
Society Digital Library at http://computer.org/tkde/
archives.htm). The most important contribution of exten-
sion in the TKDE submission is the formal framework for
capturing and prefetching, which was somewhat pre-
liminary and was not quite sufficiently elaborated in the
ICDE version. A part of a preliminary version of this
paper “PrefetchGuide: Capturing Navigational Access
Patterns for Prefetching in Client/Server Object-Or-
iented/Object-Relational DBMSs” has appeared in Infor-
mation Sciences [10]. This paper deals with an extension
of a small part of the ICDE version constituting less than

HAN ET AL.: A FORMAL FRAMEWORK FOR PREFETCHING BASED ON THE TYPE-LEVEL ACCESS PATTERN IN OBJECT-RELATIONAL... 1447

Fig. 14. Experimental results for a GIS application using a real data set.

45 percent of the contents of the current paper. The

authors wish to acknowledge the contribution of Il-Yeol

Song to the earlier version that was presented in ICDE

2001. This work was supported by the Korea Science and

Engineering Foundation (KOSEF) through the Advanced

Information Technology Research Center (AITrc). This

work was performed while Wook-Shin Han and Yang-Sae

Moon were with the AITrc at KAIST.

REFERENCES

[1] E. Bertino et al., “Object-Oriented Query Languages: The Notion
and The Issues,” IEEE Trans. Knowledge and Dat Eng., vol. 4, no. 3,
pp. 223-237, June 1992.

[2] P.A. Bernstein, S. Pal, and D. Shutt, “Context-Based Prefetch for
Implementing Objects on Relations,” Proc. 25th Int’l Conf. Very
Large Data Bases, pp. 327-338, 1999.

[3] R. Cattel and D.K. Barry, The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, 1997.

[4] E.G. Cooffman Jr. and P.J. Denning, Operating Systems Theory.
Prentice-Hall, 1973.

[5] H. Common et al., Tree Automata Techniques and Applications,
http://www.grappa.univ-lille3.fr/tata/tata.pdf, 1999.

[6] M.J. Carey, D.J. DeWitt, and J.F. Naughton, “The OO7 Bench-
mark,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 12-
21, 1993.

[7] K.M. Curewitz, P. Krishnan, and J.S. Vitter, “Pratical Prefetching
via Data Compression,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 257-266, 1993.

[8] E.E. Chang, R.H. Katz, “Exploiting Inheritance and Structure
Semantics for Effective Clustering and Buffering in an Object-
Oriented DBMS,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 348-357, 1989.

[9] W. Han, K. Whang, Y. Moon, and I. Song, “Prefetching Based on
the Type-Level Access Pattern in Object-Relational DBMSs,” Proc
17th IEEE Int’l Conf. Data Eng., pp. 651-660, 2001.

[10] W. Han, K. Whang, and Y. Moon, “PrefetchGuide: Capturing
Navigational Access Patterns for Prefetching in Client/Server
Object-Oriented/Object-Relational DBMSs,” Information Sciences,
vol. 152, nos. 1-4, pp. 47-61, 2003.

[11] W. Kim et al., “Architecture of the ORION Next-Generation
Database System,” IEEE Trans. Knowledge and Data Eng., vol. 2,
no. 1, Mar. 1990.

[12] W. Kim, Introduction to Object-Oriented Databases. The MIT Press,
1990.

[13] B. Liskov et al., “Safe and Efficient Sharing of Persistent Objects in
Thor,” Proc. Int’l Conf. Management of Data, pp. 318-329, 1996.

[14] C. Lamb et al., “The ObjectStore System,” Comm. ACM, vol. 34,
no. 10, pp. 50-63, 1991.

[15] T. Milo, D. Suciu, and V. Vianu, “Typechecking for XML
Transformers,” Proc. ACM Symp. Principles of Database Systems,
pp. 11-20, 2000.

[16] Oracle Corp., Oracle Call Interface Programmer’s Guide Release 8.0.
1997.

[17] C.M. Park, M.J. Carey, and S. Dessloch, “MAJOR: A Java
Language Binding for Object-Relational Databases,” Proc. Eighth
Int’l Conf. Workshop Persistent Object Systems, 1998.

[18] Z. Palmer and S.B. Zdonik, “Fido: A Cache That Learns to Fetch,”
Proc. 17th Int’l Conf. Very Large Data Bases, pp. 255-264, 1991.

[19] A. Rosenthal et al., “Traversal Recursion: A Practical Approach to
Supporting Recursive Applications,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 166-176, 1986.

[20] M. Stonebraker and P. Brown, Object-Relational DBMSs. Morgan
Kaufmann, 1999.

[21] M. Subramanian and V. Krishnamurthy, “Performance Challeges
in Object-Relational DBMSs,” IEEE Data Eng. Bull., vol. 22, no. 2,
pp. 27-31, 1999.

[22] R.G. Taylor, Models of Computation and Formal Languages. Oxford
Univ. Press, 1998.

[23] UniSQL Inc., UniSQL/X Application Program Interface Reference
Guide. 1995.

[24] K. Whang and R. Krishnamurthy, “Query Optimization in a
Memory-Resident Domain Relational Calculus Database System,”
ACM Trans. Database Systems, vol. 15, no. 1, pp. 67-95, 1990.

Wook-Shin Han received the BS degree in
computer engineering from Kyungpook National
University in 1994 and the MS and PhD
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), in 1996 and 2001, respectively. He is
currently an assistant professor in the Depart-
ment of Computer Engineering at Kyungpook
National University. His research interests
include object-oriented/object-relational data-

bases, XML databases, and information retrieval. He is a member of
the IEEE and the ACM.

Kyu-Young Whang graduated (summa cum
laude) from Seoul National University in 1973
and received the MS degrees from the Korea
Advanced Institute of Science and Technology
(KAIST) in 1975 and Stanford University in 1982.
He received the PhD degree from Stanford
University in 1984. From 1983 to 1991, he was
a research staff member at the IBM T.J. Watson
Research Center, Yorktown Heights, New York.
In 1990, he joined KAIST, where he currently is

a full professor in the Department of Computer Science and the director
of the Advanced Information Technology Research Center (AITrc). His
research interests encompass database systems/storage systems,
object-oriented databases, multimedia databases, geographic informa-
tion systems (GIS), data mining/data warehouses, and XML databases.
He is an author of more than 90 papers in refereed international journals
and conference proceedings (and more than 140 papers in domestic
ones). Dr. Whang served as an IEEE Distinguished Visitor from 1989 to
1990, received the Best Paper Award from the Sixth IEEE International
Conference on Data Engineering (ICDE) in 1990, served ICDE seven
times as a program cochair and vice chair from 1989 to 2005, and
served on the program committees of more than 90 international
conferences including VLDB and ACM SIGMOD. He was the program
chair (Asia and Pacific Rim) for COOPIS’98 and the program chair (Asia,
Pacific, and Australia) for VLDB 2000. He is the general chair of VLDB
2006, PAKDD 2003, and DASFAA 2004. He twice received the External
Honor Recognition from IBM. Dr. Whang is an editor-in-chief of the
VLDB Journal having served the editorial board as a founding member
for 13 years. He was an associate editor of the IEEE Data Engineering
Bulletin from 1990 to 1993 and an editor of Distributed and Parallel
Databases Journal from 1991 to 1995. He is on the editorial boards of
the IEEE Transactions on Knowledge and Data Engineering and
International Journal of Geographic Information Systems. He was a
trustee of the VLDB Endowment from 1998 to 2004 and currently is a
steering committee member of the DASFAA Conference and the
PAKDD Conference. He served the IEEE Computer Society Asia/
Pacific Activities Group as the Korean representative from 1993 to 1997.
Dr. Whang is a senior member of the IEEE, a member of the ACM, and a
member of IFIP WG 2.6.

Yang-Sae Moon received BS (1991), MS
(1993), and PhD (2001) degrees in computer
science from the Korea Advanced Institute of
Science and Technology (KAIST). From 1993 to
1997, he was a research engineer at Hyundai
Syscomm, Inc., where he participated in devel-
oping 2G and 3G mobile communication sys-
tems. From 2002 to 2005, he was a technical
director in Infravalley, Inc., where he participated
in planning, designing, and developing CDMA

and W-CDMA mobile network services and systems. He is currently an
assistant professor at Kangwon National University. His research
interests include data mining, knowledge discovery, storage systems,
access methods, mobile/wireless comunication systems, and network
comunication systems. He is a member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1448 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

