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Abstract

Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution
switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum
interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics.
Because the closing velocity is 1-3mV/s, the deformation of the material of electrodes depends on the strain rate
and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of
the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split
Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and
dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the
Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic
behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out
with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial
offset of awipe spring and virtual fixed spring constant.
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Fig. 3 Fitted stress—strain curve of sintered Cu-Cr.
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Fig. 8 The effective stress of #3 for the movable
electrode with velocity of the movable electrode.
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Fig. 9 The distance between the fixed and the movable
electrodes with added movable mass
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Fig. 10 The effective stress versus time graph of the
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Fig. 12 The distance between the fixed and the movable
electrodes with the wipe spring constant.
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Fig. 13 The effective stress of #3 for the movable
electrode with the wipe spring constant.
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Fig. 14 The distance between the fixed and the movable
electrodes with the initial offset of the wipe spring.
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Fig. 15 The effective stress of #3 for the movable
electrode with initial offset of the wipe spring.
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Fig. 16 The distance between the fixed and the movable
electrodes with the virtual fixed spring constant.
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Fig. 17 The effective stress of #3 for the movable
electrode with the virtual spring constant.
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