
IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 9, SEPTEMBER 2007 765

Weakness of the Synchro-Difference LKH Scheme for Secure Multicast
Heeyoul Kim, Byungchun Chung, Younho Lee, Yongsu Park, and Hyunsoo Yoon

Abstract— Zhu proposed a Synchro-Difference LKH scheme
for secure multicast that appeared in IEEE Communications
Letters, vol. 9, no. 5, pp. 477–479, May 2005, which is an
enhancement of the well-known LKH scheme. In this letter, we
show that Zhu’s scheme is insecure against collusion of two or
more malicious adversaries by presenting two kinds of attack
scenarios.

Index Terms— Secure multicast, group secrecy, confidentiality,
collusion attack.

I. INTRODUCTION

IN secure multicast, the key server (KS) distributes a group
key to only authorized group members to encrypt group

communications. The group key should be changed to prevent
a joining/leaving member from accessing past/future commu-
nications. Since the group size may be very large, extensive
research have been conducted to improve the scalability.
Recently, Zhu [1] proposed a Synchro-Difference LKH (SD-
LKH) scheme for scalable group key management, which is
an improvement of the well-known LKH scheme [2]. This
scheme optimizes the computational overhead of the KS, and
the author claims that it achieves the same security level as
the LKH scheme.

In this letter, we show that the SD-LKH scheme fails
to provide the confidentiality of group communications as
claimed, by presenting two kinds of active attacks. Specifi-
cally, in the first attack, the collusion of leaving adversaries
can access future communications by discovering the next
group key. Similarly, in the second attack, the collusion
of joining adversaries can access past communications by
discovering the previous group key. Based on these attacks,
two or more unauthorized adversaries can collude and access
communications within the group, which violates the purpose
of secure multicast.

II. REVIEW OF THE SYNCHRO-DIFFERENCE LKH SCHEME

Zhu [1] presented the optimal key tree structure minimizing
the computational overhead of the key server and proposed
two kinds of schemes: the Iterated Hash Chain (IHC) scheme
and the Synchro-Difference LKH (SD-LKH) scheme. Among
them, the SD-LKH scheme has observably different strategy
from other variations of the LKH scheme. The difference is

Manuscript received March 5, 2007. The associate editor coordinating the
review of this letter and approving it for publication was Prof. Marc Fossorier.
This work was supported by the Korea Research Foundation Grant funded by
the Korean Government (MOEHRD) (KRF-2005-042-D00294).

H. Kim, B. Chung, Y. Lee, and H. Yoon are with the CS Divi-
sion, Korea Advanced Institute of Science and Technology, Korea (email:
hykim@nslab.kaist.ac.kr).

Y. Park is with the College of Information and Communications at Hanyang
University, Korea.

Digital Object Identifier 10.1109/LCOMM.2007.070325.

that in rekeying process new keys are generated based on the
previous ones by employing the distribution of the difference,
instead of being randomly generated.

Initial key generation and distribution in the SD-LKH
scheme are almost identical to those of the LKH scheme. First,
the KS constructs a logical tree where each node represents a
Key Encryption Key (KEK) that can be used to send rekeying
messages securely to the members in the subtree rooted at the
node. The key of the root node is appointed to a group key
which is used to encrypt the communications within the group.
Each group member corresponds to each leaf node and holds
the set of keys along the path from the root to the leaf node.
For example, a member u1 in Fig. 1 holds K3.1, K2.1, K1.1,
and K0, where K0 is a group key and K3.1 is his pair-wise
key shared with the KS.

When a new member wants to join the group, the KS
creates a new leaf node for him and shares the pair-wise key
of the node with him. To prevent him from accessing past
communications, i.e., for backward security, the keys along
the path from the root to the leaf node should be rekeyed.
Suppose u9 joins the group. After sharing K3.9 with u9, the
KS randomly generates a differential value D and transmits
the following rekeying messages:

KS → {u1, ..., u8, u10, ..., u27} : {D}K0

KS → u9 : {K ′
2.3,K

′
1.1,K

′
0}K3.9 .

After receiving D, each member except for u9 rekeys all and
only the keys he is entitled to receive by respective XOR
operations with D, e.g., u1 computes K ′

0 = K0 ⊕ D, and
K ′

1.1 = K1.1 ⊕ D.
When an existing member leaves the group, the KS rekeys

all the keys possessed by the member to prevent him from
accessing future communications, i.e., for forward security.
Suppose u9 leaves the group. The KS randomly generates D
and distributes it to all members except for u9 by transmitting
the following messages:

KS → u7 : {D}K3.7

KS → u8 : {D}K3.8

KS → {u1, u2, u3} : {D}K2.1

KS → {u4, u5, u6} : {D}K2.2

KS → {u10, ..., u18} : {D}K1.2

KS → {u19, ..., u27} : {D}K1.3

After receiving D, each member except for u9 rekeys all and
only the keys he is entitled to receive in the same manner.

From the viewpoint of security, the author claims that its
security level is equivalent to that of the LKH scheme, under
the assumption that the generation of D is unpredictable by
the members.

1089-7798/07$25.00 c© 2007 IEEE

766 IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 9, SEPTEMBER 2007

K
1.1

K
2.1

K
2.2

K
2.3

K
3.1

K
3.2

K
3.3

K
3.5

K
3.4

K
3.6

K
3.8

K
3.7

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

K
3.9

u
9

group key

possessed by u
1

K
0

K
1.2

u
10

, , u
18

K
1.3

u
19

, , u
27

join leave

Fig. 1. Rekeying process in the SD-LKH scheme with d = 3 and h = 3.

III. ATTACKS ON THE SYNCHRO-DIFFERENCE LKH
SCHEME

The security flaw of the SD-LKH scheme is due to the fact
that new keys are generated with the same difference, D. If
a non-member having previous keys discovers the difference,
he can also generate new keys from the previous ones. Based
on this, we show that the SD-LKH scheme cannot provide
forward and backward securiy by presenting two kinds of
collusion attack scenarios. Since two or more adversaries can
easily collude to discover group keys in many applications, the
SD-LKH scheme should be modified to defend against these
attacks.

A. Breaking Forward Security

The following scenario describes a kind of collusion attack
in which two adversaries act as legitimate members during
they are in the group and then cooperatively compute the next
group key with very high probability after leaving the group.
In Fig. 1, suppose that u1 is the adversary A and u8 is the
adversary B. Let K̄ be A’s topmost KEK which is not entitled
to B, i.e., K2.1 in this scenario. The detailed attack scenario
is as follows.

1) A leaves the group keeping the KEKs K0, K1.1, K2.1,
K3.1 which were previously transmitted from the KS.

2) B receives the following rekeying message from the KS:

KS → {u7, u8, u9} : {D}K2.3 .

Then, B stores D and rekeys the following KEKs: K ′
0 =

K0 ⊕ D, K ′
1.1 = K1.1 ⊕ D.

3) B leaves the group. A then overhears the following
rekeying message which is transmitted from the KS
through an open channel:

KS → {u2, u3} : {D′}K′
2.1

4) B informs D to A. Then, A computes rekeyed KEKs
with D: K ′

0 = K0⊕D, K ′
1.1 = K1.1⊕D, K̄ ′ = K ′

2.1 =
K2.1 ⊕ D.

5) Now A can obtain D′ by decrypting the rekeying
message in step 3) with K̄ ′. Then, he computes the
next group key K ′′

0 = K ′
0 ⊕ D′, and thus can access

future communications after B leaves. Moreover, A can
hold the same next KEKs that u2 holds as a legitimate
member except for the pair-wise key: K ′

2.1,K
′′
1.1 =

K ′
1.1 ⊕ D′,K ′′

0 . Similarly, B can hold the next KEKs:
K ′

2.3 = K2.3 ⊕ D′,K ′′
1.1,K

′′
0 .

Let us consider how other members’ join/leave operations
affect the scenario. The fact that join operations do no harm to
the scenario can be shown as follows. First, the join operations
before the scenario starts do no harm obviously. Second, if new
members join during the period between A’s leave and B’s
leave, each differential value is distributed to current group
members and B can always obtain it as a legitimate member.
Then, B informs all differential values to A in step 4) and
A can compute current K̄ regardless of the changes in the
tree structure. Third, if a new member joins after the attack
succeeds, the adversaries can always obtain the differential
value by decrypting the rekeying message with current group
key they already know. Then, they can compute the next group
key and rekey their KEKs with the differential value to prepare
the next join/leave operation.

In case of leave operations, the scenario rarely fails to
discover the next group key, which can be shown as follows.
First, the leave operations before the scenario starts do no harm
obviously. Second, if some members leave during the period
between A’s leave and B’s leave, B receives all differential
values as a legitimate member and A can also compute current
K̄ in step 4). However, if all members that K̄ is entitled to (u2

and u3 in this scenario) leave the group, K̄ will not be used by
the KS in step 3) and thus this attack will fail. More formally,
suppose a complete tree with degree d and height h. Assuming
that the positions of A and B are randomly chosen (A �= B),
the probability that they share exactly l KEKs (including the
root key), Pshare(l), is

Pshare(l) =
(d − 1)dh−l

dh − 1
.

Note that K̄ is shared with A and other dh−l − 1 members.
In this case, when totally m members (�= A,B) leave the
group before B’s leave, the probability that all these dh−l −1
members leave, Pleave(l,m), is

Pleave(l,m) =

⎧⎨
⎩

((dh−2)−(dh−l−1)
m−(dh−l−1))

(dh−2
m)

if m ≥ dh−l − 1

0 if m < dh−l − 1.

Thus, the average probability that this attack succeeds when
m members leave the group during the period between A’s
leave and B’s leave, Psucc(m), is

Psucc(m) = 1 −
h∑

i=1

Pshare(i) · Pleave(i,m),

which is very high for large groups, e.g., Psucc(m) ≥ 0.9 for
m ≤ 710 in a group with d = 3, h = 6, and dh − 2 = 727
members.

Third, suppose a member u leaves after the attack succeeds.
Let K̄A be A’s topmost KEK which is not entitled to u, and

KIM et al.: WEAKNESS OF THE SYNCHRO-DIFFERENCE LKH SCHEME FOR SECURE MULTICAST 767

known to the

adversaries

{rekeyed keys

{

Fig. 2. Attack scenario to break backward security.

let K̄B be B’s topmost KEK which is not entitled to u. If
either K̄A or K̄B is used by the KS for leave operation, the
adversaries can obtain the differential value and thus compute
the next group key and KEKs. For example, suppose that u4

leaves the group just after B leaves. The KS transmits rekeying
messages including the following:

KS → {u2, u3} : {D′′}K′
2.1

KS → {u7, u9} : {D′′}K′
2.3

.

And the adversaries can obtain D′′ with either A’s K ′
2.1 or B’s

K ′
2.3. Then they are able to not only compute the next group

key but also rekey their KEKs like other legitimate members
such as u2 or u7:

K ′′′
0 = K ′′

0 ⊕ D′′, K ′′′
1.1 = K ′′

1.1 ⊕ D′′.

If all members holding either K̄A or K̄B have left the group,
neither of them is used by the KS to distribute the differential
value and thus the adversaries fail to discover the next group
key. However, since the probability that neither K̄A nor K̄B

is used is also very low, the adversaries keep accessing
communications with very high probability.

In summary, the adversaries discover the next group key
with very high probability, and keep accessing communica-
tions with also very high probability even if other members
join/leave the group after the attack finishes. The batch rekey-
ing that manages multiple join/leave operations simultaneously
is not dealt with in the SD-LKH scheme. However, we
think that our attack still succeeds with acceptable probability
though batch rekeying is applied.

The proposed attack does not succeed in the LKH scheme.
After A leaves, the KS distributes randomly-generated KEKs
(instead of D) to only proper members. For example in the
scenario, the KEKs K0, K1.1, K2.1 are rekeyed but B receives
only K ′

0, K ′
1.1. Thus, A can not discover K̄ = K ′

2.1 and
then also can not obtain the next group key after B leaves.
Therefore, the LKH scheme is secure against this attack unlike
the SD-LKH scheme, which is contrary to the author’s claim
in [1].

B. Breaking Backward Security

We assume three adversaries A, B and C where initially A
is participating in the group, and both B and C are outside the
group. In the following attack scenario, the adversary A leaves
the group, and then both B and C joins the group successively.

The goal of them is to access the past communications during
the period between A’s leave and before B’s join. In Fig. 1

suppose u9 is the adversary A. The detailed attack scenario is
as follows, and Fig. 2 describes the change of KEKs according
to elapsed time.

1) A leaves the group keeping the KEKs
K0,K1.1,K2.3,K3.9.

2) The KS distributes a differential value D1, and the
following keys are rekeyed:

K ′
0 = K0 ⊕D1,K

′
1.1 = K1.1 ⊕D1,K

′
2.3 = K2.3 ⊕D1.

Then, A records the communications encrypted with K ′
0.

3) B joins the group assuming that he is located at the
position of u1 whose leaf node is not in the subtree
rooted at K2.3. Before B’s join, the KS distributes D2

and the following keys are rekeyed:

K ′′
0 = K ′

0 ⊕D2,K
′′
1.1 = K ′

1.1 ⊕D2,K
′
2.1 = K2.1 ⊕D2.

B receives K ′′
0 , K ′′

1.1, K ′
2.1, K3.1 from the KS.

4) C joins the group assuming that he is located at the
position of u8 whose leaf node is in the subtree rooted
at K2.3. Before C’s join, the KS distributes D3 and the
following keys are rekeyed:

K ′′′
0 = K ′′

0 ⊕D3,K
′′′
1.1 = K ′′

1.1⊕D3,K
′′
2.3 = K ′

2.3⊕D3.

B receives D3 as a legitimate member. C receives K ′′′
0 ,

K ′′′
1.1, K ′′

2.3, K3.8 from the KS.
5) The adversaries collude and compute

K ′′
2.3⊕D3⊕K2.3 = (K2.3⊕D1⊕D3)⊕D3⊕K2.3 = D1.

Finally, the group key K ′
0 between A’s leave and B’s

join can be computed with D1: K ′
0 = K0 ⊕ D1.

Thus, the adversaries can decrypt the recorded past
communications with K ′

0.

In step 3), we assume that A and B are located in different
subtrees of the root node, where the probability is d−1

d . In
step 4), we assume that A and C are located in the same
subtree of the root node, where the probability is 1

d . Therefore,
the probability that this attack succeeds is d−1

d2 , which is an
acceptable value.

Actually, this attack scenario is sensitive to other member’s
join/leave. If a legitimate member joins or leaves the group
during the period between A’s leave and C’s join, it is possible
that the attack fails to find out D1 in step 5). However, it is
valuable to consider this attack because the previous LKH
scheme and other variations are not vulnerable to this kind
of attack scenarios. Moreover, it is just one of many possible
attack scenarios in which colluding adversaries discover KEKs
not entitled to them, and it can be easily extended.

REFERENCES

[1] W. T. Zhu, “Optimizing the tree structure in secure multicast key
management,” IEEE Commun. Lett., vol. 9, no. 5, pp. 477–479, 2005.

[2] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Trans. Networking, vol. 8, no. 1, pp. 16–
30, 2000.

