IEICE TRANS. COMMUN., VOL.E90-B, NO.7 JULY 2007

1651

[PAPER

A Proximity-Based Self-Organizing Hierarchical Overlay
Framework for Distributed Hash Tables

Kwangwook SHIN'®, Student Member, Seunghak LEE", Geunhwi LIM'", and Hyunsoo YOON', Nonmembers

SUMMARY Several structured peer-to-peer networks have been cre-
ated to solve the scalability problem of previous peer-to-peer systems such
as Gnutella and Napster. These peer-to-peer networks which support dis-
tributed hash table functionality construct a sort of structured overlay net-
work, which can cause a topology mismatch between the overlay and the
underlying physical network. To solve this mismatch problem, we propose
a topology-aware hierarchical overlay framework for DHTs. The hierar-
chical approach for the overlay is based on the concept that the underlying
global Internet is also a hierarchical architecture, that is, a network of net-
works. This hierarchical approach for the overlay puts forth two benefits:
finding data in a physically near place with a high probability, and smaller
lookup time. Our hierarchical overlay framework is different from other
hierarchical architecture systems in a sense that it provides a specific self-
organizing grouping algorithm. Our additional optimization schemes com-
plete the basic algorithm which constructs a hierarchical structure without
any central control.

key words: peer-to-peer, DHT, physical topology, hierarchical architec-
ture, overlay network, efficient replication

1. Introduction

Peer-to-peer networks can be characterized as self-
organized dynamic server set (which also plays the role of
the client). In the peer-to-peer networks, the node can join or
leave the networks at any time and there is no control of the
central coordinator. Several peer-to-peer lookup networks
which support distributed hash table functionality have been
created to solve the scalability problems of previous peer-
to-peer systems such as Gnutella and Napster [1]-[3]. In
the DHT (Distributed Hash Table) systems, one stores data
in the node determined by the hash function and the other
looks up the node storing data with the same hash function.
Each node in the overlay network has the partial location in-
formation for logical routing. The partial location informa-
tion is well distributed, so that one can be closer and closer
to the destination on every logical hop. These peer-to-peer
networks which support distributed hash table functionality
construct a sort of structured overlay network, which can
cause a topology mismatch between the overlay and the un-
derlying physical network. The physical distance between
the node looking for some data and the node storing this data
may be long. In addition, the lookup time can also be large
because the system does not consider the physical topology
when it stores or replicates data.

Manuscript received September 7, 2006.
Manuscript revised January 5, 2007.
fThe authors are with EECS, KAIST, Korea.
""The author is with Samsung Electronics Co., Korea.
a) E-mail: kwshin@nslab.kaist.ac.kr
DOI: 10.1093/ietcom/e90-b.7.1651

super-network

leader of sub-network 1

sub-network 3

sub-network 1 sub-network 2

Fig.1 The hierarchical structure of Grapes.

We propose a hierarchical overlay framework, which
is named Grapes [4], for DHTs. Grapes constructs the
hierarchical structure using physical topology information.
Grapes has a two-layer hierarchical structure, sub-network,
and super-network as shown in Fig. 1. In Grapes, nodes
physically near each other construct the sub-network, and
the leaders of each sub-network form the super-network.
This hierarchical approach puts forth two benefits. First, a
node can find data in its sub-network with a high probability
due to the replicated data publication (data replication) in its
sub-network. Grapes supports the efficient data replication
considering the physical topology. Second, the hierarchical
structure with the physical information makes the lookup
time smaller. There are some other schemes to provide hi-
erarchical concepts for peer-to-peer networks. Our hierar-
chical overlay framework is different from other hierarchi-
cal architecture systems in a sense that it provides a spe-
cific self-organizing grouping algorithm. To the best of our
knowledge, Grapes is the only unique topology-aware hier-
archical overlay network which supports the original peer-
to-peer concept of self-organization.

The rest of this paper is structured as follows. We dis-
cuss the related work in Sect. 2. Sections 3 and 4 describe
the basic design of Grapes and the optimization methods for
the Grapes. Section 5 demonstrates the performance evalua-
tion by simulation. Finally, we conclude the paper in Sect. 6.

2. Related Work
2.1 DHT (Distributed Hash Tables) Systems

CAN [5], Chord [6], Pastry [7] and Tapestry [8] are repre-

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

1652

sentative DHT-based peer-to-peer lookup services. In CAN
[5], the problem due to lack of physical distance informa-
tion is compensated by two heuristic methods. First, each
node measures its network delay to a set of landmarks and
orders the landmarks in order of increasing RTT. Nodes with
the same orderings are inserted into the same portion of the
coordinate space, which makes logical neighbor physically
close to each other [5],[9]. This heuristic is categorized
into the Proximity Identifier Selection (PIS) by [10]. Sec-
ond, the CAN node can forward a message to its neighbor
with the maximum ratio of progress to RTT. This heuristic
is categorized into the Proximity Route Selection (PRS) by
[10]. Original Chord does not consider physical distance in-
formation, but enhanced scheme [11], [12] uses PRS. There
are potentially several possible next hop neighbors that are
closer to the message’s key in the id space. PRS is to se-
lect, among the possible next hops, the one that is closest
in the physical network or one that represents a good com-
promise between progress in the id space and proximity. In
Tapestry [8] and Pastry [7], when a new node is inserted to
the overlay network, it finds the bootstrap node close to it in
physical distance by expanded ring search or out of band
communication. Also, they can choose physically closer
neighbors among the neighbor candidates when they con-
struct the routing tables. This is categorized into Proximity
Neighbor Selection (PNS) by [10].

However, the objective of all the above optimization
methods (except Tapestry) considering physical topology is
only to make the immediate neighbors in the overlay net-
work close on the Internet. The physical distance between
the node looking for some data and the node storing this
data may still be long. It is because the above methods
do not provide the framework for the efficient data replica-
tion with the physical information. Tapestry provides some
kind of data replication scheme considering physical topol-
ogy. When the Tapestry node publishes an object, the node
stores its pointer in the root node of this object. The pointer
is also stored in the nodes on the path from the publishing
node to the root. When a node finds the object, it locates
the object by routing a message to the root. Each node on
the path checks whether it has a pointer for the object. If
so, it redirects the message to the node of the pointer. If
there are replicas of an object on various publishing node,
the node locates the object in the logically closer node. In
Tapestry, since the overlay is structured with PNS, the logi-
cal neighbor is somewhat physically close. This makes the
possibility that the node finds the object in the physically
closer node among the replicas higher. However, Tapestry
does not consider hierarchical architecture overlay. To har-
monize the virtual overlay with Internet physical topology,
we think, the hierarchical approach is one of the best so-
lution because global scale Internet is composed of various
localized networks, which forms a hierarchical architecture.

2.2 Hierarchical Architecture Systems

Brocade [13] proposed a similar hierarchical architecture

IEICE TRANS. COMMUN., VOL.E90-B, NO.7 JULY 2007

based on physical topology. Brocade constructs a secondary
overlay to be layered on top of peer-to-peer lookup sys-
tems. The secondary overlay builds a location layer between
the super-nodes. The nodes looking for some data which
is stored in the long distant node, find a local super-node
at first. Then the super-node determines the network do-
main of the destination and routes directly to that domain,
which brings the shorter lookup time. A super-node is de-
termined by the election algorithm between nodes or by the
system administrator. Gateway routers or machines close to
the routers are attractive candidates for super-nodes. Bro-
cade does not provide any specific algorithm to determine
whether the joining node is the super-node or the normal
node. [13] mentioned that Brocade uses a kind of election
algorithm to decide the super-node in an ISP, but no specific
algorithm has been proposed. Neither does Brocade suggest
any process to organize super-node’s cover set with normal
nodes in an ISP. Grapes suggests a specific self-organizing
algorithm which constructs the hierarchical structure. In
Grapes, any node can be a leader or sub-node depending
upon the order of node insertion, and the nodes construct
the hierarchical overlay network in an autonomous manner
without any support of central coordinator. This kind of self-
organization makes Grapes more suitable for pure peer-to-
peer concepts.

L. Garces-Erce et al. [14] provides a general framework
for a hierarchical DHT. The peers are organized into groups.
A group may consist of the peers topologically close to each
other. Each group is required to have one or more superpeers
which play the role of gateways between the groups. The
peer looking for some data sends a query message to one of
its superpeers. Then the message is delivered to the group
that stores the data by top-level lookup service. The super-
peer of the group that stores the data, routes the query mes-
sage to the peer that is responsible for the data with intra-
group routing. In this system, the peer joining the network
must know the identifier of the group that the peer belongs
to. The identifier may be the name of the peer’s ISP or uni-
versity campus. The peer looks up the group id in the peer-
to-peer network, and the destination gives the IP address of
the superpeer which the peer will join. In order to get well-
constructed hierarchy, we think, this system needs the help
of a central coordinator. Without the help of a central coor-
dinator, the peers having the same ISP name but physically
not close enough to each other may join the same group (e.g.
tier-1 ISP). Also, the group of the peers in a university cam-
pus can be too small. Too small groups may downgrade
the system performance like data lookup time. Grapes tries
to make well-constructed hierarchy without any centralized
control.

3. Design of Grapes
3.1 Node Insertion

Any new node joining Grapes must know the contact point
of at least one Grapes node, called the bootstrap node. When

SHIN et al.: A HIERARCHICAL OVERLAY FRAMEWORK FOR DHTS

Fig.2 Node insertion example in Grapes.

a new node is inserted into Grapes, the new node checks its
physical distance’ to the bootstrap node. If the physical dis-
tance is shorter than the given threshold, the new node is
inserted into the sub-network of the bootstrap node. If the
bootstrap node is the leader of the sub-network, the boot-
strap node will be the leader of the new node. Otherwise,
the bootstrap node notifies the new node of its leader. If the
physical distance between the new node and the bootstrap
node is longer than the threshold, the new node is inserted
into the super-network. The new node checks its physical
distance to the leaders on the route’" in the super-network.
If it finds the leader to which the physical distance is shorter
than the threshold, it is inserted into the sub-network of the
leader. If there is no leader into which the new node is
inserted on the route, the new node is inserted as a node
(leader) into the super-network. In each layer of the over-
lay network, any peer-to-peer lookup routing algorithm such
as CAN [5], Chord [6], Pastry [7], and Tapestry [8] can be
used.

In Fig. 2, the new node A joins Grapes with the help
of the bootstrap node B. If the distance between A and B is
shorter than the threshold, A is located in B’s sub-network
(A}). Otherwise, A is not inserted into B’s sub-network, but
to B’s super-network. A checks the physical distance to the
leaders on the route in the super-network. In the figure, A
is not inserted into C (and D, E, F)’s sub-network because
the distance between A and C (and D, E, F) is longer than
the threshold. If the distance between A and G is shorter
than the threshold, A is inserted into G’s sub-network (A,).
If there is no appropriate leader on the route, A is inserted as
a leader into the super-network (A3).

3.2 Data Publication

When a node publishes data, it looks for the node managing
the hashed key of the data in its sub-network first. The node
inserts the index of data into the node which manages the
key of the data, and then the node inserts the index into the
super-network. The node, with the help of its leader, looks
for the leader managing the key in the super-network. If the
destination leader does not have its own sub-network, the
index is inserted into the destination leader. If the destina-
tion leader has its sub-network, the node looks for the node
managing the key in the sub-network. In this case, finally,

1653

Fig.3 Data publication example in Grapes.

the index is inserted into the destination node in the sub-
network. The index of the data is a kind of metadata, one
can get the list of the addresses of the data publication nodes
from the index (The index can point to more than one data
location when several nodes publish the same data). Data
publication node periodically re-publishes the data, which
refreshes the index timer of the data or inserts the index if
the new destination node does not have the index. Every in-
dex has its own timer and when the timer expires the index
is invalidated and removed. This periodic data publication
makes Grapes fault-tolerant in a dynamic peer-to-peer envi-
ronment.

In Fig. 3, the node p is publishing the data into the net-
work. Firstly, the node p looks for the node managing the
key of the data in its sub-network. In this example, the node
d; is managing the key of the data. The node p inserts the in-
dex of data to the node d; (the index points to the publishing
node p). And then the node p looks for the node managing
the key of the data in the super-network through its leader B.
The lookup request is routed from B to G, and G forwards
the request to its sub-network. Finally the node p becomes
aware of the node d,, which is managing the key of the data
in the super-network. The node p inserts the index to the
node d, (this index also points to the publishing node p).

3.3 Data Retrieval

When a node retrieves data, it looks for the node managing
the hashed key of the data in its sub-network first. If the
sub-network does not have the index of data, the node looks
up its super-network with the help of the leader. After the
node retrieves the data from the target node to which the
index points, it publishes the retrieved data. That is, the new
index of data is inserted into both its sub-network and super-
network. This data publication after the retrieval results in

TKing [15], IDMaps [16], GNP [17] etc. suggested the latency
estimation method between the arbitrary Internet end hosts. We
assume that the physical distance can be obtained by any of the
latency estimation methods.

""The route is determined by a peer-to-peer lookup routing al-
gorithm e.g. CAN [5], Chord [6], Pastry [7], and Tapestry [8].

1654

Fig.4 Data retrieval example in Grapes.

the data replication. If the index points to more than one
node, the retrieving node selects the closest one as the target
node. This replication makes a node able to find the data in
its sub-network with a high probability.

In Fig.4, the nodes r; and r, are retrieving the data
from the network. When the node r; retrieves the data, r;
can find the index of data in its sub-network (from the node
dp). At the same time, the node r; gets the data from the
publishing node p to which d; points. When the node r,
retrieves the data, r; firstly looks up its sub-network. But
the node d; does not have the index. And then the node r;
looks for the node managing the key of the data in the super-
network through its leader D. The lookup request is routed
from D to G, and G forwards the request to its sub-network.
Finally the node r; is aware that the node d, has the index.
The node r, gets the data from the publishing node p to
which d, points. After the nodes r; and r, retrieve the data
from the target node p, they publish the data (r; inserts the
index of data into d; and d,; r, inserts the index into d; and
d>).

3.4 Neighbor Information

In comparison with peer-to-peer lookup services without
Grapes framework, the neighbor information in each Grapes
node increases only by one (its leader’s information or its
first sub-node’s information). The sub-node maintains a
list of its neighbor’s information collected from the sub-
network and it also maintains its leader’s information. The
leader maintains the neighbor’s information gathered from
the super-network and it also maintains the information
about one of its sub-nodes. This one of the sub-nodes which
joined the sub-network first of all is called the first sub-node.

3.5 Leader Replacement

Every node in the sub-network maintains its leader infor-
mation. Therefore, a sub-node can notice that its leader
is crashed or has left the network without any notification,
in the process of node inserting or data publication and re-
trieval. The sub-node that detects the leader’s crash or un-

IEICE TRANS. COMMUN., VOL.E90-B, NO.7 JULY 2007

expected leaving, firstly checks the specific logical location
in its sub-network whether there is any new leader candi-
date information. If the specific logical location has the new
leader information, the sub-node replaces its leader with the
new leader. Otherwise, the sub-node takes over the sub-
network as a new leader. The specific logical location also
maintains the neighbor information of the leader (the infor-
mation of the leader’s neighbors in the super-network and
the information of one of its sub-nodes), which makes the
new leader able to take over the old leader’s logical po-
sition in the super-network’. After the new leader took
over the sub-network of the old leader, one of the neigh-
bor nodes of the new leader becomes the first sub-node of
the sub-network. The new leader stores its information and
its neighbor information collected from the super-network
in a specific logical location (in its sub-network).

Each leader maintains the neighbor information of the
first sub-node in case the first sub-node is crashed or has left
the network without any notification. If the first sub-node
failed, the leader selects one neighbor of the first sub-node
as the new first sub-node.

4. Optimizations

In this section, we propose some additional optimization
schemes complementary to the basic algorithm. The addi-
tional optimization schemes are necessary because Grapes
constructs a hierarchical architecture without any central
control. If there is a central coordinator or a system ad-
ministrator, one can construct the optimal architecture based
on the physical proximity because the central coordinator
or the system administrator can acquire the global physical
topology information. In Grapes, however, it is not easy
to construct the optimal hierarchical architecture due to the
characteristic of the self organization. In this section, we
propose three optimization schemes; Sub-network partition,
Sub-network integration, and Sub-node migration. Even if
the three optimization schemes do not provide the optimal
hierarchical architecture, they help Grapes to have a more
efficient hierarchical structure.

4.1 Sub-Network Partition

Sub-network partition prevents the specific sub-network
from maintaining too large number of nodes. If the size
of the sub-network gets bigger, the average delay between
sub-nodes increases, which downgrades the system perfor-
mance (data lookup time and direct delay for data retrieval).
Sub-network partition procedure is as follows.

1. The leader (super-node) floods activate partition mes-
sage to the sub-network when it notices that the number

fWith CAN or Chord, the new leader takes over the old leader’s
logical position in super-network without considering node ID,
whereas with Tapestry or Pastry, we should consider node ID. To
prevent node ID collision problem, a new leader newly joins the
super-network and locates its logical position with its own node
ID.

SHIN et al.: A HIERARCHICAL OVERLAY FRAMEWORK FOR DHTS

of its sub-nodes is above the maximum limit’. The ac-
tivate partition message has the address of the leader
and the new leader candidate node.

2. Receiving the activate partition message, each sub-
node determines which node is its leader, the old leader
or the new leader candidate, depending upon its phys-
ical distance between them. The sub-node chooses the
closer node between the old leader and the new leader
candidate as the leader.

4.2 Sub-Network Integration

Sub-network integration plans to organize better architec-
ture by way of unifying two small sub-networks. Sub-
network integration procedure is as follows.

1. If a node chances on the super-node to which the phys-
ical distance is below the threshold in the process of
data publication or retrieval, the node sends initiate in-
tegration message to its leader'". Initiate integration
message has the address of the new near super-node
discovered.

2. If the number of sub-nodes is below the minimum
limit™¥T, and also if the distance between the leader and
the new near super-node is below half the threshold, the
leader checks whether the new near super-node can ac-
cept integration by sending check integration message.

3. The new near super-node checks how many sub-nodes
exist in its sub-network. If the summation of the num-
ber of sub-nodes in two sub-networks is above the max-
imum limit, sub-network integration process halts with
reject integration message from the new near super-
node.

4. If the new near super-node can accept integration, the
leader which has smaller number of sub-nodes between
two sub-networks floods activate integration message
to its own sub-network. Activate integration message
has the address of the corresponding super-node.

5. All the nodes (including the leader and the sub-nodes)
in the smaller sub-network are inserted to the larger
sub-network with the help of the leader of the larger
sub-network as the bootstrap node.

4.3 Sub-Node Migration

Sub-node migration is the optimization scheme to make
the average delay between sub-nodes in the sub-network
shorter. Sub-node migration procedure is as follows.

1. If a node chances on the super-node to which the phys-
ical distance is below half the distance to its leader in
the process of data publication or retrieval, the node
sends initiate migration message to its leader.

2. If the number of sub-nodes is not below the minimum
limit, the leader sends activate migration message to
the sub-node. If the number of sub-nodes is below the
minimum limit, Sub-network integration step 2 begins.

1655

3. The node is inserted to the new sub-network with the
help of the new near super-node as the bootstrap node.

Algorithm 1-7 present the pseudo code of the above
three optimization schemes. Algorithm 1-3 and Algorithm
4-7 respectively describe the action of the sub-node and the
super-node when the optimization process begins.

Algorithm 1
Action of the sub-node on discovering the new near super-
node to which distance is below the threshold T

ds « the distance to the new near super-node
d; « the distance to its leader

if ds > 1d; then
sends initiate integration message to its leader and waits the reply
from the leader
if receiving activate integration message then
bootstrap node « the new near super-node
re-inserts itself to the network
end if
if receiving no action message then
RETURN
end if
else
{ds < Ldp}
sends initiate migration message to its leader and waits the reply from
the leader
if receiving activate migration or activate integration message then
bootstrap node « the new near super-node
re-inserts itself to the network
end if
if receiving no action message then
RETURN
end if
end if

Algorithm 2
Action of the sub-node on receiving activate integration
message from its leader

{its leader receives check integration message from another super-node
S and its leader’s sub-network size is smaller than S’s}

bootstrap node « S
re-inserts itself to the network

"The maximum limit can be represented by f;(N). N is the
number of the nodes in the entire system and f; is the function
which the system can select. On the assumption that all the nodes
are linked by predecessor and successor on the identifiers’ space, N
can be estimated by 1/d(s, succ(s)) [18]. 1/d(s, succ(s)) is logical
distance between the node s and the successor of s.

TTIf a node chances on the super-node to which the distance
is also below half the distance to its leader, Sub-node migration
process is initiated.

TThe minimum limit can be represented by f,(N). N is the
number of the nodes in the entire system and f, is the function
which the system can select.

1656

IEICE TRANS. COMMUN., VOL.E90-B, NO.7 JULY 2007

Algorithm 3
Action of the sub-node on receiving activate partition mes-
sage from its leader

Algorithm 6
Action of the super-node on receiving initiate integration
message from one of its sub-nodes

{activate partition message has the address of its leader and the new
leader candidate node}

d; « the distance to its leader
dc < the distance to the new leader candidate node

if dc < dL then
bootstrap node « the new leader candidate node
re-inserts itself to the network
else
{dc > d}
bootstrap node « its leader
re-inserts itself to the network
end if

Algorithm 4
Action of the super-node on receiving check integration
message from another super-node S

{check integration message has the number of nodes in another super-
node S’s sub-network}

ny, < the number of the nodes in its sub-network
ny < the number of nodes in S’s sub-network

if (n; + ny) > maximum limit then
replies reject integration message to S
else
replies accept integration message to S
if n; < ny then
floods activate integration message to its sub-network
end if
end if

Algorithm 5
Action of the super-node on noticing the number of the
nodes in its sub-network is above the maximum limit

floods activate partition message to its sub-network

5. Simulation
5.1 Methodology

We used Inet [16] topologies of 3,500 autonomous systems
(AS) in our experiments. Among the 3,500 autonomous sys-
tems, we randomly chose 500 ASs. We assumed the number
of nodes in each AS is 10,000, and the maximum percentage
of nodes joining the system is 2% of the number of nodes
in each AS, which makes the maximum number of join-
ing nodes 100,000. We also assumed the delay between the
nodes in the same AS to be 0. We selected the 2-dimensional
CAN algorithm as the peer-to-peer lookup algorithm in both
the sub-network and super-network (when we use Grapes).

{initiate integration message has the address of the new near super-node}

ny, < the number of the nodes in its sub-network
drs « the distance to the new near super-node
T « threshold

TO_INTEGRATION:
if n;, > minimum limit or dyg > %T then
replies no action message to its sub-node
else
{n;, < minimum limit and d; 5 < %T}
sends check integration message to the new near super-node and waits
the reply from it
if receiving accept integration message then
{accept integration message has the number of the nodes in the
new near super-node’s sub-network}
ns « the number of the nodes in the new near super-node’s sub-
network
if n; < ng then
floods activate integration message to its sub-network
bootstrap node « the new near super-node
re-inserts itself to the network
else
{n > ns}
replies no action message to its sub-node
end if
else
{receiving reject integration message}
replies no action message to its sub-node
end if
end if

Algorithm 7
Action of the super-node on receiving initiate migration
message from one of its sub-nodes

{initiate migration message has the address of the new near super-node}

ny, < the number of the nodes in its sub-network
if n; > minimum limit then

replies active migration message to its sub-node
else

goto TO_INTEGRATION
end if

5.2 Effects of Optimizations

To show the effects of optimization schemes, we use the
simulation parameters as presented in Table 1. In the sim-
ulation, Sub-network integration or Sub-node migration is
initiated when each node chances on the super-node to
which the physical distance is below the threshold in the
process of 10 data lookup per a node. We decided the max-
imum limit to be the square root of the number of nodes
joining the system and the minimum limit to be the half
of the maximum limit. If 2-dimensional CAN is used as
a lookup algorithm in both the super-network and the sub-
network like our simulation environment, the summation of

SHIN et al.: A HIERARCHICAL OVERLAY FRAMEWORK FOR DHTS

Table 1 Simulation parameters (effects of optimizations).
Number of nodes 10,000
Maximum limit 100
Minimum limit 50

25,50,75,100,
Threshold 125,150 (ms)
Data lookup for optimizations 10 per 1 node

the average number of hops in the super-network and the
sub-network is minimal when the number of sub-networks
is VN and the size of each sub-network is VN (where N
is the number of nodes in the whole network). The simple
analysis is as follows.

e y: the summation of the average number of hops in the
super-network and the sub-network’

o x: the number of sub-networks

e N: the number of nodes in the whole network

1 1 |IN
= - VN + =4/ — 1
Y 2 2V x M

’

y = %x VNx2 2)

1
4
Wheny =0, x = VN. Therefore, if x = VN, y has
the minimum value.
Based on the simple analysis above, we choose VN as
a heuristic basis to decide the maximum limit and the min-
imum limit. We set the maximum limit and the minimum
limit to VN and % VN respectively in the simulation.
Figure 5 and Fig. 6 show the effects of three optimiza-
tion schemes; Sub-network partition, Sub-network integra-
tion and Sub-node migration. Figure 5 presents the number
of leaders in the network over a range of thresholds. The
heuristic basis number of leaders in our simulation environ-
ment is 100, the square root of the number of nodes that
joined the system. The number of leaders in the optimized
Grapes is closer to the basis number than that in the basic
Grapes. Figure 6 shows the average delay of each sub-node
to its leader over a range of thresholds. The average delay
in the optimized Grapes is about 30-70% of that in the basic
Grapes over a range of thresholds. Figure 5 and Fig. 6 also
show the performance difference over the various thresh-
olds. If the threshold is smaller, the average delay between
the sub-nodes and the leader is shorter but the number of
leaders is much larger than the basis number. If the thresh-
old is larger, the number of leaders is closer to the basis
number but the diameter of the sub-network is longer. The
optimal threshold is determined by considering the trade-
off between the number of leaders and the diameter of the
sub-network. Also, the optimal threshold is concerned with
the physical internet topology below and how many nodes
joined the system in each AS among the total number of
nodes in the system. Therefore, it is almost impossible to
find the optimal value of the threshold. We are researching
on some heuristic, distributed and dynamic methods of set-
ting the reasonable value of the threshold. In the following

1657
Number of Leaders with Threshold
8000
7000F "
v 6000F
L .
T 5000F
3
B 4000F
B P
£ 3000
g P
2 2000
1000F”
0!
25 50 75 100 125 150
O Basic Grapes threshold (ms)
B Optimized Grapes
Fig.5 The effects of optimizations (1).
Avg. Delay to Leader with Threshold
120,
100F
80F
L, 60
E
401
20¢°
ol
25 50 75 100 125 150
B Basic Grapes threshold (ms)
B Optimized Grapes
Fig.6 The effects of optimizations (2).
Table2 Simulation parameters (performance comparison).
Threshold 75(ms)
Kinds of data 1,000

10,000;40,000;
70,000; 100,000
Number of data access per node 5

Uniform
Exponential

Number of nodes

Data access pattern

simulations, the threshold is set to the specific value, 75 ms.
5.3 Performance Comparison

To compare the performance, we use the simulation param-
eters as presented in Table 2. We assumed that there were
1,000 kinds of data and each node looked up the data 5
times. The uniform data access pattern means the data ac-
cess pattern follows the uniform distribution. The proba-
bilities of accessing each piece of data are identical. And
the exponential data access means the data access pattern
follows the exponential distribution. The probability of ac-
cessing a few popular data is high and the probability of

"The average routing path length in CAN is %nﬁ [5]. d means
d-dimensional CAN and n equals the number of joining nodes.

1658

sec

10 4 70

—8-CAN number of nodes
—o— Basic Grapes (1,000 nodes)
—o— Optimized Grapes

—>— CAN+PIS

Fig.7 Data publication time.

accessing most of the unpopular data is low. Figure 7 shows
data publication time when an arbitrary node inserts data
index into bare bones CANT, CAN with PIS, Grapes, and
optimized Grapes. Grapes and optimized Grapes use bare
bones CAN as the peer-to-peer lookup algorithm in both the
sub-network and super-network. In Grapes, the data index
is inserted into both the sub-network and the super-network.
During the index insertion into the super-network, if the des-
tination leader has its own sub-network, the index is inserted
into the sub-network of the leader. In the maximum case, the
data publication needs two sub-network path routings and
one super-network path routing. Because the sub-network
is composed of the nodes near each other, the routing de-
lay for each hop in the sub-network is very small. In the
super-network, the average routing delay for each hop is
the same as the original CAN. However, the less number of
hops (in proportion to the number of leaders) makes the to-
tal routing delay smaller. The data publication time depends
on the index insertion path routing delay in the overlay net-
work. The hierarchical structure with the physical informa-
tion (the physically near sub-network and the super-network
with the small number of routing hops) makes Grapes have
the smaller path routing delay than that of the original CAN.
The figure presents the data publication time while the num-
ber of nodes is increasing. In spite of inserting data in-
dex twice, into the sub-network and super-network, the data
publication time in Grapes is shorter than that of the original
CAN and even that of CAN with PIS. The data publication
time in optimized Grapes is the shortest of all.

Figure 8 shows the data lookup time when an arbitrary
node retrieves data from bare bones CAN, CAN with PIS,
CAN with PRS, CAN with PIS and PRS, Grapes with bare
bones CAN and optimized Grapes with bare bones CAN.
The data lookup time depends on the path routing delay and
the effects of data replication. Even if the node storing data
is located in another sub-network, the total routing delay in
Grapes is smaller than that of CAN without Grapes frame-
work. Also, if the data is located in the same sub-network,
the path routing delay is much shorter. The figure presents
the data lookup time while the number of nodes is increas-
ing. It shows that optimized Grapes with exponential data
access (OG-E) is the most scalable scheme with regard to
the network size. The data lookup time in optimized Grapes

IEICE TRANS. COMMUN., VOL.E90-B, NO.7 JULY 2007

10 40 70 100

—E— CAN -+ CAN+PRS

number of nodes
—-ovu —#-OE (1,000 nodes)
—e—0G-U ~8—0G-E

—¢— CAN+PIS —X— CAN+PIS+PRS|

Fig.8 Data lookup time.

ms

10 40 70 100

number of nodes
(1,000 nodes)

—8-CAN ——G-E

—e—O0G-E —>— CAN+PIS

Fig.9 Direct delay for data retrieval.

with exponential data access is one thirtieth of that of bare
bones CAN when the number of nodes is 100,000. Also
we can find that Grapes with uniform data access (it has the
longest data lookup time among Grapes schemes) is more
scalable than CAN with PIS and PRS.

Figure 9 shows the delay between the data retrieving
node and the data storing node in the physical network. We
refer this delay as direct delay. The direct delay depends on
the location of the data. Data replication in Grapes makes
the node enable to find the data in its own sub-network with
a high probability. Therefore, the direct delay for data re-
trieval in Grapes is smaller than that in CAN. The figure
presents the direct delay between two ends while the num-
ber of nodes is increasing. The direct delay in both Grapes
and optimized Grapes is decreasing as the number of nodes
is increasing. The reason is as follows. While the number
of nodes is increasing in Grapes, the number of nodes in
the sub-network is also increasing, which makes the prob-
ability of retrieval from the sub-network high (The number
of autonomous systems is fixed to 3,500 in the simulation).
Also, we can find that the delay in CAN with PIS is longer
than that in bare bones CAN. CAN with PIS makes logical
neighbor physically closer. While the nodes that are physi-
cally close to each other are clustered in a logical space, the
data is distributed in a random way. It makes the data stor-

"Bare bones CAN is CAN with no optimization scheme [5].

SHIN et al.: A HIERARCHICAL OVERLAY FRAMEWORK FOR DHTS

3500

3000

2500

2000
»

1500

1000

500

50 100 150 200 250 300 350 400 450 500

6-0G-U number of data replica

—¥— CAN+PIS+PRS

Fig.10 Data lookup time with replication.

ms

50 100 150 200 250 300 350 400 450 500

——0G-U
—¥— CAN+PIS+PRS

number of data replica

Fig.11 Direct delay for data retrieval with replication.

ing node physically farther from the data lookup node. So
the average delay between the two ends in CAN with PIS is
a little bit longer than that in bare bones CAN.

Figure 10 and Fig. 11 present the data lookup time and
the direct delay for data retrieval with regard to the size of
data replication. To show the effects of the data replication,
we modified CAN. Modified CAN stores R replica at ran-
dom nodes in the overlay network. When a node retrieves
data, the lookup process checks for each node on the route,
whether or not the node has the replica of the data. If there
is a replica on the route, the node retrieves the data from the
first midway node storing the replica. We configured CAN
with PIS and used PRS routing in this simulation. PRS is
to select, among the possible next hops, the one that is clos-
est in the physical network. PRS routing makes data lookup
time shorter than the routing in selecting the random one
among the possible next hops. CAN with PIS makes logi-
cal neighbor physically close to each other. If we retrieve
data from the first midway node which stores a replica on
the DHT route, we can expect the data lookup time and the
direct delay for data retrieval be shorter as the number of
replicas increases. R replica in Grapes is to replicate the data
in R sub-network which is randomly selected. The maxi-
mum number of replicas in Grapes is the number of leaders
(or sub-networks). When the Grapes node retrieves data, it
looks for the node managing the hashed key of the data in
its sub-network first. If the sub-network does not have the
data, the node looks up its super-network with the help of

1659

Table 3
Threshold

Simulation parameters (communication overhead).
75(ms)
10,000;40,000;
70,000; 100,000
Maximum limit VN
Minimum limit 1 VN
Data lookup for optimizations 10 per 1 node

Number of nodes(N)

the leader. After the node retrieves the data from the tar-
get node, it replicates the data in its own sub-network. In
this simulation, we turned off this replication operation in
order to prevent the total number of replicas from exceed-
ing the simulation parameter value. In this simulation, the
number of hosts is set to 10,000. Both optimized Grapes
and CAN use uniform data access pattern which accesses
all the data with the same frequency. The number of leaders
in optimized Grapes is about 420, in this simulation. The
maximum number of replicas is limited by the number of
leaders in Grapes. Therefore, when the number of replicas
is above 400 (450 and 500), the effects of the replication are
restricted by the number of leaders.

Figure 10 shows the data lookup time while the num-
ber of replicas increases. The data lookup time in Grapes is
about one third of that in CAN when the number of replicas
is 50 and about one ninth of that in CAN when the num-
ber of replicas is 450. Figure 11 shows the direct delay for
data retrieval between the request node and the data stor-
ing node while the number of replicas increases. When the
number of replicas is 50, the average direct delay in both
Grapes and CAN is about 90 ms. However, the difference
in the delay between Grapes and CAN increases with regard
to the size of data replication. The maximum difference is
when the number of replicas is 450. In Grapes, both the
data lookup time and the direct delay with the larger data
replication above 450 mean nothing. (We limited the max-
imum number of replicas to the number of sub-networks.)
However, those in CAN decrease as the number of replicas
increases over 450. Although the figures show the results
below 500 data replicas, but we found a fact, through simu-
lation, that for Grapes data lookup time and direct delay is
visible for around 450 replicas whereas for CAN a similar
data lookup time and direct delay is visible for around 3,000
and 3,500 replicas respectively. The 3,000 and 3,500 data
replicas are about one third of the number of total hosts in
the network, which is considerably a huge data replication.

5.4 Communication Overhead

While the performance of Grapes is superior to that of
the original CAN, Grapes need additional communication
overhead cost. To analyze the communication overhead of
Grapes, we use the simulation parameters as presented in
Table 3. The threshold used for structuring the hierarchy of
Grapes is set to 75ms. We took a look at the changes in
the communication overhead while the number of nodes is
increasing. The maximum limit used for the optimization
schemes is set to the square root of the number of nodes

IEICE TRANS. COMMUN.,

VOL.E90-B, NO.7 JULY 2007

1660
Table4 Communication overhead per a node.

Node RTT ActPart | PartRoute | InitInteg | ChkInteg | ActInteg | IntRoute | InitMig | ActMig | MigRoute
10,000 16.428 0.079 0.554 23.475 0.268 0.479 3.167 0.307 0.067 0.332
40,000 25.383 0.044 0.435 30.428 0.242 0.866 7.690 0.312 0.132 1.143
70,000 29.692 0.040 0.450 32.458 0.225 1.017 10.256 0.267 0.123 1.227
100,000 | 32.652 0.035 0.424 33.571 0.210 1.066 11.550 0.249 0.111 1.245

and the minimum limit is set to the half of the maximum — Tal;le 5 TOtallcommumcaicon overhead. .
limit. Optimization process, especially Sub-network inte- Num e1r® o@@; odes | Total message Ggeglllgncy Per 3 moce
gration and Sub-node migration, is initiated when each node 26690 93388

happens to come in contact with a super-node where physi- 70,000 105.752

cal distance is below the threshold in the process of 10 data 100,000 114.045

lookup per node. In this part of simulation, we did not con-
sider the node’s leave or failure. Additional communication
overhead of the optimized Grapes is as follows. Table 4
shows how many messages each node transmits while the
number of nodes is increasing.

The new node inserted to Grapes checks its physical
distance to the leaders on the route in the super-network.
This needs the RTT check message, which the new node
sends to the leaders and the response message that the leader
sends back. The frequency of the RTT check message is
equal to that of the response message. RTT column in Ta-
ble 4 shows the frequency of the RTT check message and
the response message per node while the number of nodes
is increasing. When the number of the sub-nodes is above
the maximum limit, the leader floods activate partition mes-
sage to its sub-network. Each sub-node receiving the acti-
vate partition message checks its physical distance to the
leader candidate. The address of the new leader candidate
is included in the activate partition message. The sub-node
chooses the closer node (between the old leader and the new
leader candidate) as the leader, which partitions the sub-
network. When all the sub-nodes check the physical dis-
tance, the RTT check message and the response message is
transmitted. The frequency of the activate partition message
is equal to that of the RTT check message and the response
message. ActPart column in Table 4 shows the frequency of
the activate partition message, the RTT check message and
the response message. When the sub-network is partitioned,
its sub-nodes are inserted either to old leader’s sub-network
or to new leader candidate’s sub-network. This additional
insertion of sub-nodes produces a routing message overhead
on the sub-network. PartRoute column in Table 4 shows the
frequency of the additional sub-network routing message.

If a sub-node happens to come in contact with a super-
node to which the physical distance is below the threshold in
the process of data publication or retrieval, the node sends
an initiate integration message to its leader. If a sub-node
happens to come in contact with a super-node to which the
physical distance is below half the distance to its leader, the
node sends an initiate migration message to its leader in-
stead of initiate integration message. InitInteg and InitMig
column in Table 4 show the frequency of initiate integra-
tion message and initiate migration message respectively.
If the number of sub-nodes is small enough for an efficient
integration (below the minimum limit), and also if the dis-

tance between the leader and the new near super-node is
considerably near (below half the threshold), the leader re-
ceiving initiate integration message checks whether the new
near super-node can accept integration by sending check in-
tegration message. The new near super-node checks how
many sub-nodes exist in its sub-network. If the summation
of the number of sub-nodes in two sub-networks is below
the maximum limit, the new near super-node sends accept
integration message. Otherwise, the new near super-node
sends reject integration message. The frequency of check
integration message is equal to that of the response mes-
sage (acceptfreject integration message). ChkInteg column
in Table 4 shows the frequency of check integration mes-
sage and the response message. If the new near super-node
can accept integration, the leader which has smaller num-
ber of sub-nodes between two sub-networks floods activate
integration message to its own sub-network (Actlnteg col-
umn in Table 4). The sub-nodes receiving activate integra-
tion message are inserted to the correspondent leader’s sub-
network. This additional insertion of sub-nodes produces
routing message overhead on the sub-network (IntRoute col-
umn in Table 4). If the number of sub-nodes is small enough
(below the minimum limit), the leader receiving initiate mi-
gration message tries to do Sub-network integration process.
Otherwise, the leader sends activate migration message to
the sub-node (ActMig column in Table 4). The sub-node
receiving activate migration message is inserted to the cor-
respondent leader’s sub-network. This additional insertion
of the sub-node produces routing message overhead on the
sub-network (MigRoute column in Table 4).

Table 4 shows top three messages (RTT, InitInteg, and
IntRoute) produce most of communication overhead (about
96-97% of total communication overhead in Table 5). The
frequency of these three messages per node is increasing as
the number of nodes is increasing. The degree of the in-
crement, however, is decreasing. Table 5 presents the to-
tal message frequency per node while the number of nodes
is increasing. The total message frequency includes all
kinds of overhead messages in Table 4 (especially the fre-
quency of RTT which is added twice, ActPart three times,
and Chklteg twice). The frequency of the total messages
per node is increasing while the number of nodes is increas-
ing. The degree of the increment, however, is decreasing.

SHIN et al.: A HIERARCHICAL OVERLAY FRAMEWORK FOR DHTS

If we assume the size of all the messages to be 50 bytes (IP
header —20 bytes, TCP header —20 bytes, and additional in-
formation such as message identification tag and node ad-
dress —10bytes), total communication overhead is about
5,700 bytes per node even when the number of nodes is
100,000. The simulation time where each node executes 10
data lookups is 1,000 seconds. The communication over-
head each node produces is about 5.7 bytes per second (that
is 45.6 bps) when the number of nodes is 100,000.

6. Conclusion

In this paper, we proposed a proximity-based self-
organizing hierarchical overlay framework for DHTs, called
Grapes. In Grapes, a node can find data in its sub-network
with a high probability due to the data replication in its
sub-network. In DHT systems, the replication is impor-
tant to make up for the reliability problem due to the dy-
namic characteristic of peer-to-peer network. Grapes sup-
ports an efficient data replication considering the physical
topology. Grapes also makes the lookup time smaller than
that of the flat one due to the hierarchical structure using
the physical information. There are some other schemes
to provide hierarchical concepts for peer-to-peer networks.
Grapes is different from those in a sense that it provides the
specific grouping algorithm without any centralized control.
Grapes is the only unique topology-aware hierarchical over-
lay network supporting the original peer-to-peer concept of
self-organization. Due to its self-organization characteristic,
Grapes is not easy to make an optimal hierarchical struc-
ture. To solve this problem, we proposed three optimiza-
tion schemes; Sub-network partition, Sub-network integra-
tion, and Sub-node migration. The optimization schemes do
not provide an optimal architecture, but they help Grapes to
have a more efficient hierarchical structure.

Acknowledgments

This work was supported by the Korea Science and Engi-
neering Foundation (KOSEF) through the Advanced Infor-
mation Technology Research Center (AITrc) and University
IT Research Center Project.

References

[1] Gnutella, http://www.gnutella.com

[2] Napster, http://www.napster.com/

[3] S. Ratnasamy, S. Shenker, and I. Stoica, “Routing algorithms for
DHTs: Some open questions,” Proc. 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), Cambridge, MA, March 2002.
http://www.cs.rice.edu/Conferences/IPTPS02

[4] K. Shin, S. Lee, G. Lim, J. Ma, and H. Yoon, “Grapes: Topology-
based hierarchical virtual network for peer-to-peer lookup services,”
Proc. International Workshop on Ad Hoc Network, pp.159-166,
Vancouver, B.C., Canada, Aug. 2002.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” Proc. ACM SIGCOMM,
pp-161-172, San Diego, CA, Aug. 2001.

[6] 1. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H.

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

1661

Balakrkshnan, “Chord: A scalable peer-to-peer lookup service for
Internet applications,” Proc. ACM SIGCOMM, pp.149-160, San
Diego, CA, Aug. 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” Proc. 18th
IFIP/ACM Int. Conf. Distributed Systems Platforms (Middleware
2001), pp.329-350, Nov. 2001.

B.Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing,” Comput. Sci.
Div., Univ. California, Berkeley, Tech. Rep., UCB/CSD-01-1141,
2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically
aware overlay construction and server selection,” Proc. IEEE INFO-
COM Conference, pp.1190-1199, New York, NY, June 2002.

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, “The impact of DHT routing geometry on resilience
and proximity,” Proc. ACM SIGCOMM, pp.381-394, Karlsruhe,
Germany, Aug. 2003.

F. Dabek, A cooperative file system, Master’s Thesis, Massachusetts
Inst. Technol., Cambridge, 2001.

1. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for Internet applications,” IEEE/ACM Trans. Netw.,
vol.11, no.1, pp.17-32, Feb. 2003.

B.Y. Zhao, Y. Duan, L. Huang, A.D. Joseph, and J.D.
Kubiatowicz, “Brocade: Landmark routing on overlay net-
works,” Proc. 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), Cambridge, MA, March 2002. http://www.cs.rice.edu/
Conferences/IPTPS02

L. Garces-Erce, E. Biersack, P. Felber, K.W. Ross, and G. Urvoy-
Keller, “Hierarchical peer-to-peer systems,” Proc. ACM/IFIP Inter-
national Conference on Parallel and Distributed Computing (Euro-
Par), LNCS 2790, pp.1230-1239, Klagenfurt, Austria, 2003.

K.P. Gummadi, S. Saroiu, and S.D. Gribble, “King: Estimating la-
tency between arbitrary Internet end hosts,” Proc. SIGCOMM IMW
2002, pp.5-18, Nov. 2002.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L.
Zhang, “IDMAPS: A global Internet host distance estimation ser-
vice,” IEEE/ACM Trans. Netw., vol.9, no.5, pp.525-540, Oct. 2001.
E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” Proc. IEEE INFOCOM Conference,
pp-170-179, New York, NY, June 2002.

D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” Proc. ACM Conf. on Principles
of Distributed Computing (PODC), pp.183-192, Monterey, CA, July
2002.

J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,”
Technical Report CSE-TR-456-02, University of Michigan, EECS
Dept., 2002.

Z. Xu, M. Mahalingam, and M. Karlsson, “Turning heterogeneity
into an advantage in overlay routing,” Proc. IEEE INFOCOM Con-
ference, pp.1499-1509, San Francisco, CA, April 2003.

M. Castro, P. Druschel, Y.C. Hu, and A. Rowstron, “Exploiting
network proximity in distributed hash tables,” Proc. International
Workshop on Future Directions in Distributed Computing (FuDiCo),
pp-52-55, June 2002.

M. Castro, P. Druschel, Y.C. Hu, and A. Rowstron, “Topology-aware
routing in structured peer-to-peer overlay networks,” Technical Re-
port MSR-TR-2002-82, Microsoft Research, 2002.

S. Ratnasamy, A scalable content-addressable network, Doctor’s
Dissertation, University of California at Berkeley, 2002.

IEICE TRANS. COMMUN., VOL.E90-B, NO.7 JULY 2007

1662

Kwangwook Shin received the B.S. degree
in computer science from the Sogang Univer-
sity, Korea, in 1997, the M.S. degree in com-
puter science from the Korea Advanced Institute
of Science and Technology (KAIST), in 1999.
He is currently working toward the Ph.D. degree
at the Division of Computer Science, Depart-
ment of Electrical Engineering and Computer
Science, KAIST. His research interests include
mobile and wireless communications, mobile ad
hoc networks, and peer-to-peer networks.

Seunghak Lee received the B.S. degree and
the M.S. degree in computer science from the
KAIST in 2000 and 2003 respectively. He is
currently working toward the Ph.D. degree at the
Division of Computer Science, Department of
Electrical Engineering and Computer Science,
KAIST. His research interests include wireless
sensor networks, mobile ad hoc networks, and
peer-to-peer networks.

Geunhwi Lim received the B.S. degree,
the M.S. degree, and the Ph.D. degree in com-
puter science from the KAIST in 1996, 1998,
and 2003 respectively. He has been working
for the Global Standard and Research team in
Samsung Electronics since 2003. His research
interests include wireless communications, mo-
bile ad hoc networks, and peer-to-peer net-
works.

Hyunsoo Yoon received the B.S. degree in
electronics engineering from the Seoul National
University, Korea, in 1979, the M.S. degree in
computer science from the KAIST, in 1981, and
the Ph.D. degree in computer and information
science from the Ohio State University, Colum-
bus, Ohio, in 1988. From 1988 to 1989, with
the AT&T Bell Labs. as a Member of Technical
Staff. Since 1989 he has been a Faculty Mem-
ber of the Division of Computer Science at the
KAIST. His research interests include parallel
computer architecture, mobile communication, ad hoc networks, and in-
formation security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

