
Improved base-f expansion method for Koblitz
curves over optimal extension fields

B. Chung, H. Kim and H. Yoon

Abstract: An improved base-f expansion method is proposed, in which the bit-length of coeffi-
cients is shorter and the number of coefficients is smaller than in Kobayashi’s expansion
method. The proposed method meshes well with efficient multi-exponentiation algorithms. In
addition, two efficient algorithms based on the proposed expansion method, named f-wNAF
and f-SJSF, are presented which significantly reduce the computational effort involved in
online precomputation by using the property of Frobenius endomorphism. The proposed algorithms
noticeably accelerate computation of a scalar multiplication on Koblitz curves over optimal exten-
sion fields (OEFs). In particular, for OEFs where the characteristic is close to 32 bits or 64 bits, the
required number of additions is reduced up to 50% in comparison with Kobayashi’s base-f scalar
multiplication algorithm. Finally, a method that significantly reduces the memory usage of the
precomputation table at the expense of slightly more computation is presented.
1 Introduction

The elliptic curve cryptosystem (ECC) has been recognised
as a secure and efficient cryptosystem, since it was intro-
duced by Miller [1] and Koblitz [2] independently in
1985. The ECC requires shorter key length than the crypto-
system on finite fields. In general, 160-bit elliptic curves are
known to be as secure as 1375-bit finite fields [3]. This
advantage enhances the adaptability of the ECC to resource-
limited devices such as smart cards or wireless communi-
cation devices.
The main computation of the ECC is a scalar multipli-

cation of a point on the elliptic curve. Because scalar
multiplication is performed by iterative point additions
and doublings, the performance of the ECC is proportional
to the number of point operations. The method to reduce the
number of such operations is similar to previous efforts
to reduce the number of multiplications in modular
exponentiation [4].
In an elliptic curve group, there is almost no difference in

the amount of computation between addition and subtraction.
Thus, we can adopt other methods that are not readily appli-
cable to modular exponentiation such as a signed binary
method, addition–subtraction chains or signed window
methods. Moreover, the number of doublings can be con-
siderably reduced if base-f expansion methods based on
the Frobenius endomorphism [5–11] or other endomorph-
isms [12, 13] are applied. These methods are known to be
the most efficient approaches in terms of reducing the elliptic
curve operations.
The base-f expansion method using the Frobenius map

was first proposed by Koblitz [5]. Koblitz’s method is appli-
cable only to elliptic curves defined over F2, F22, F23 and F24

The Institution of Engineering and Technology 2007

doi:10.1049/iet-ifs:20060033

Paper first received 15th February and in revised form 1st September 2006

The authors are with the Computer Science Division, Department of EECS,
Korea Advanced Institute of Science and Technology (KAIST), 373-1
Guseong-Dong, Yuseong-Gu, Daejeon 305-701, Republic of Korea

E-mail: bcchung@nslab.kaist.ac.kr
IET Inf. Secur., 2007, 1, (1), pp. 19–26
finite fields. Müller [8] and Cheon et al. [9] extended the
base-f expansion method to elliptic curves defined over
F2r, where r is less than 6. In addition, Koblitz proposed a
base-f expansion method defined over finite fields whose
characteristic is odd such as F3 and F7. Smart generalised
the base-f expansion method for elliptic curves defined
over finite fields of the form Fq whose characteristic is
odd and less than 128 [10]. Such kinds of elliptic curves
are especially called Koblitz curves.

Nowadays, many embedded systems (such as cellular
phones or handheld computers) and most desktop PCs use
32-bit m-processors, and many servers and new powerful
desktop PCs use 64-bit m-processors. In 1998, Bailey and
Paar [14, 15] proposed optimal extension fields (OEFs) of
the form Fpm, which are suitable for software implemen-
tation in 32-bit or 64-bit m-processors. In OEFs, the charac-
teristic p is chosen as a large prime of special form less than
but close to the word size of the processor (jpj ’ 32 or 64
bits) for full utilisation of its built-in operations. Because
of their higher characteristic, the base-f expansion
methods of Müller [8] and Smart [10] are not directly appli-
cable to elliptic curves over OEFs. Kobayashi et al. [11]
(Kobayashi for short) extended Müller’s method to be appli-
cable to elliptic curves over OEFs with a small reference
table.

Kobayashi’s base-f expansion method converts the com-
putation of a scalar multiplication into the sum of multiple
scalar multiplications with relatively small m coefficients.
In general, it is inefficient to compute each small scalar mul-
tiplication separately and then add them. Kobayashi’s
approach combines the basic multi-exponentiation algor-
ithm with an optimisation technique that minimises the
total sum of the Hamming weights of the coefficients. If,
however, the more efficient multi-exponentiation algor-
ithms are employed, they can yield better performance.

Kobayashi’s expansion method has several points that
require improvement. First, after the expansion, the
bit-length of the coefficients is longer by 2 than that of
the characteristic p. This results in additional memory
usage for representing the coefficients in the case of OEFs
whose characteristic is very close to the word size of the
19

processor. Moreover, it increases the number of elliptic
curve operations, which is proportional to the bit-length
of p. Secondly, the optimisation technique is targeted for
only basic multi-exponentiation algorithm. It does not
maximise the performance when the more efficient
multi-exponentiation algorithms, interleaved wNAF [16]
and simultaneous simple joint sparse form (SJSF) [17],
are employed.

Taking the above into consideration, we design an
improved base-f expansion method in which the bit-length
of the coefficients is the same as that of p and the number of
coefficients ism2 1. Optimisation that involves eliminating
one coefficient has advantages in both interleaved wNAF
and simultaneous SJSF algorithms. In the former algorithm,
the number of additions decreases significantly because it is
proportional to the number of coefficients. In the latter
algorithm, both the number of additions required for pre-
computation and the total joint Hamming weight decrease.

The computational effort involved in online precomputa-
tion can be significantly reduced by employing the basic
concept of using the property of Frobenius endomorphism
[12, 18]. On the basis of this consideration, we present
two efficient algorithms, named interleaved f-wNAF and
simultaneous f-SJSF. The combination of the proposed
expansion method with these two algorithms yields far
better performance for OEFs where the characteristic is
close to 32 bits or 64 bits and the extension degree is rela-
tively small. In particular, it reduces the required number of
additions by 35–50% compared with Kobayashi’s base-f
scalar multiplication algorithm. We note that, however,
Gaudry [19] has recently proposed an index calculus
method to solve the elliptic curve discrete logarithm
problem (ECDLP) on elliptic curves defined over small
extension fields Fp3 or Fp4, which is asymptotically faster
than Pollard’s rho method. Hence, this weakness should
be dealt carefully to provide concrete security.

Finally, we present a method that significantly reduces
the memory usage of the precomputation table at the
expense of slightly more computation. This method
enables a scalar multiplication to be performed with a refer-
ence table of less than 10 precomputed points.

2 Preliminaries

2.1 Optimal extension fields

An OEF is a finite field Fpm such that

1. p is a pseudo-Mersenne prime of the form 2n+ c less
than but close to the word size of the processor,
2. An irreducible binomial f(x) ¼ xm2 w exists over Fp.

OEFs are suitable for software implementation because
they fully utilise the computational capability of the pro-
cessor. Moreover, the following conditions yield additional
arithmetic advantages for subfield modular reduction and
extension field modular reduction [14, 15]

2n ; +c mod p

x
m ; w mod f ðxÞ

2.2 Koblitz curves over OEFs

Let p be a prime, where p . 3, and let E be a non-
supersingular elliptic curve defined over Fp

E: y2 ¼ x3 þ axþ b ð1Þ
20
where a, b [Fp and 4a3þ 27b2 = 0. The Koblitz curve E
is defined over Fp so as to admit the use of base-f expansion
methods in the scalar multiplication.
E(Fpm) is defined as a set of Fpm-rational points on the

Koblitz curve E defined over Fp. E(Fpm) consists of a
point at infinity O and points of (x, y) [Fpm � Fpm that
satisfy (1). Then, E(Fpm) forms an additive abelian group
with an identity element O.

2.3 Frobenius map

Let P ¼ (x, y) be an Fpm-rational point on the Koblitz curve
E defined over Fp. The Frobenius map f is then defined as

f : ðx; yÞ �! ðxp; y p
Þ

The Frobenius map f is an endomorphism over E(Fpm) and
satisfies

f2
� tfþ p ¼ 0; �2

ffiffiffi
p
p
� t � 2

ffiffiffi
p
p

In a polynomial basis representation, the Frobenius map f
can be evaluated using 2(m2 1) multiplications on Fp
[11]. This takes negligible time compared with multipli-
cation on Fpm that needs m2 multiplications on Fp.

2.4 Base-f scalar multiplication

Scalar multiplication is to compute kP for a random scalar
multiplier k in the range 1 � k � ord(P) and a point P that
is an Fpm-rational point and is not an Fp-rational point on
the Koblitz curve E. Since the Frobenius map f satisfies
f22 tfþ p ¼ 0 and fm ¼ 1, the multiplier k can be
expressed as a series of Frobenius maps with length m,
which is referred to as a Type I expansion by Kobayashi [11]

k ¼
Xm�1
i¼0

dif
i; where jdij ,

3p

2
ð2Þ

A Type I expansion can be further optimised using the
property that

P
i¼0
m21 fiP ¼ O if gcd(ord(P), #E(Fp)) ¼ 1

(the proof for this is given in [20]), which is referred
to as a Type II expansion by Kobayashi. We can then
rewrite (2) as follows

Xm�1
i¼0

dif
i
¼
Xm�1
i¼0

ðdi þ a� zÞfi

¼
Xm�1
i¼0

cif
i; where jcij , 3p ð3Þ

where � denotes a bitwise subtraction. Here, a is an integer
thatmakes all (diþ a)s be non-negative and z is an integer that
minimises the sum of the Hamming weights of cis, that isP

i wH(ci). In other words, if the Hamming weight of each
column of (diþ a)s is greater than m/2, then all elements
in the column should be complemented to reduce the
Hamming weight to less than m/2, that is, 1! 0 and 0! 1̄.
By (3), scalar multiplication kP can be represented as

follows

kP ¼
Xm�1
i¼0

ciPi; where Pi ¼ fi
ðPÞ ð4Þ

First, Pi ¼ fi(P) for 0 � i , m is precomputed. Then, kP is
computed by the table lookup method. The overall pro-
cedure is described in Algorithm 1.
Let L be the bit-length of maxfkcik: 0 � i , mg, and let m

be an odd integer. The theoretical number of operations
IET Inf. Secur., Vol. 1, No. 1, March 2007

required for Algorithm 1 with Type II expansion is

2

2m
�
Xbm=2c
i¼0

i
m

i

� � !
L

additions on average and L2 1 doublings.

Algorithm 1: Kobayashi’s base-f scalar multiplication
algorithm

Input: k, P, E, t, p where E is an elliptic curve, t ¼ tr(E)

Output: Q ¼ kP

Base-f expansion of k
1-1 i 0, x k, y 0, uj 0 for all j
1-2 while x = 0 or y = 0 do
1-3 ui x mod p
1-4 if ui . p/2 then ui ui2 p
1-5 v (x2 ui)/p, x tvþ y, y 2v, i iþ 1

Optimisation of base-f expansion
2-1 di uiþ uiþmþ uiþ2m for 0 � i , m
2-2 ci diþ a � z for 0 � i , m, where � denotes a

bitwise subtraction

Table reference multiplication
3-1 Pi fi(P) for 0 � i , m
3-2 Q O, L ¼ max fkcik: 0� i , mg
3-3 for j ¼ L2 1 down to 0 do
3-4 Q 2Q
3-5 for i ¼ 0 to m21 do
3-6 if ci[j] ¼ 1 then Q Qþ Pi

3-7 if ci[j] ¼ 1̄ then Q Q2 Pi

3 Multi-exponentiation algorithms

Multi-exponentiation in a commutative group is a common
computation in many public-key cryptosystems especially
for the verification of ElGamal, DSA or ECDSA signatures.
Instead of computing each exponentiation separately, com-
puting them all together yields better performance. In the
ECCs, the multi-exponentiation corresponds to the evalu-
ation of a sum

P
1�i � d kiPi, where d � 2, each Pi is a

point on E, and each ki � ord(P) is a scalar multiplier. We
assume that ki s are uniformly distributed random integers
up to a respective maximum bit-length L. The notation
ki[j] denotes the jth bit of ki.

The basic algorithm looks at one bit of each ki in
left-to-right order. First, the previous result is doubled.
For each ki, Pi is then added to the intermediate result if
ki[j] ¼ 1. The subsequent bits are performed similarly.
Although the number of additions does not decrease, the
number of doublings is L2 1 independently of d. This
advantage mainly accounts for the enhanced performance
of multi-exponentiation algorithms compared with the use
of separate computations.

Algorithm 2: Straus’s simultaneous multi-exponentiation

Precomputation stage

Precompute the 2d values
P

i¼1
d
f0, 1g Pi and store them

in the table.

Evaluation Stage
1 Q O
2 for j ¼ L21 down to 0 do
3 Q 2Q
4 if (k1[j], . . . , kd[j]) = (0 . . . 0) then

5 Q Qþ
P

i ki[j]Pi fby table lookupg
IET Inf. Secur., Vol. 1, No. 1, March 2007
If additional memory is available, a table reference
method reduces the number of additions. First, an auxiliary
table is precomputed from the elements Pi s in the precom-
putation stage. The final result is then computed with the
help of this table in the evaluation stage. The well-known
Straus’s trick (also known as Shamir’s trick) is a simple
example of a table reference [21].

Each scalar integer ki can be recoded into a signed binary
representation, where each bit ki[j] [f21, 0, 1g. In the
ECC, this representation is meaningful because addition
and subtraction have almost the same computation cost.
For a single scalar integer, the non-adjacent form (NAF)
[22] has the minimal Hamming weight among many differ-
ent representations of ki. Since the number of non-zero bits
is minimised, the number of additions and subtractions is
also minimised. On average, only L/3 bits of an NAF are
non-zero. For multiple scalars, the joint sparse form (JSF)
[23] minimises the number of non-zero columns, which is
called the joint Hamming weight, and consequently
reduces the number of additions.

The multi-exponentiation algorithms can be classified
into two approaches: simultaneous exponentiation and
interleaved exponentiation [16, 24]. The former combines
all Pis with each other to make a table in the precomputation
stage. All ki s are then considered simultaneously in the
evaluation stage. The latter makes separate tables for
each Pi in the precomputation stage. The evaluation
stage then utilises interleaving of the ki s. In this section,
we present an overview of two representative algorithms:
a simultaneous SJSF algorithm and an interleaved wNAF
algorithm.

3.1 Simultaneous SJSF algorithm

Recently, Grabner et al. [17] presented another joint rep-
resentation called the SJSF. Like the JSF, this representation
also has a minimal joint Hamming weight, but it is con-
structed in a simpler manner than the JSF. Grabner et al.
[17] also presented a general algorithm to find the SJSF,
ki
0 s, of d integers k1, . . . , kd. First, Aj for 0 � j � L is

defined as

Aj ¼ f1 � i � d jk
0
i ½ j�= 0g ð5Þ

The algorithm then finds a SJSF that satisfies the following
rule

Ajþ1$= Aj or Ajþ1 ¼ f; j � 0 ð6Þ

The joint Hamming weight of ki
0s is then minimal among all

joint representations.
After finding the SJSF, Straus’s trick or its variation [25]

can be used to compute
P

1�i � dki
0Pi. In this case, the

number of additions needed in the evaluation stage is
reduced to the minimal joint Hamming weight. However,
((3d2 1)/2)2 d additions, which are over a hundred for
d . 4, are needed in the precomputation stage. Instead of
finding the SJSF of all ki s, combining two or three of ki s
into a unit block and then finding the SJSF of each block
gives better performance.

Furthermore, the window method can be used with the
SJSF. As noted in a previous work [17], however, the
number of precomputed values increases exponentially as
the window size w grows. Only the case d ¼ 2, w ¼ 2 is
reasonable in current ECCs; other parameters require
more than hundreds of additions.
21

3.2 Interleaved wNAF algorithm

The wNAF algorithm combines an NAF algorithm and a
window method using a table reference [7, 26]. Given
a window size w and an integer ki, there exists a unique
width-(wþ 1) NAF Ni[L], . . . , Ni[0] such that

(wNAF-1) ki ¼
P

0� j � L Ni[j] . 2
j.

(wNAF-2) Each Ni[j] is 0 or odd with an absolute value less
than 2w.
(wNAF-3) Among any wþ 1 consecutive components, at
most one is non-zero.

The ordinary NAF is the case w ¼ 1.
The average density, that is the proportion of non-zero

components in Ni, is 1/(wþ 2). Thus, the expected
number of additions for a scalar multiplication is L/(wþ 2).

The interleaved wNAF algorithm [16] finds the wNAFs,
Ni s, separately for each ki. Then, the multi-exponentiationP

1�i � d ki Pi is computed concurrently with Ni s. The pre-
computation stage requires a total of d . 2w21 additions to
make non-trivial table entries. The evaluation stage requires
d . (L/(wþ 2)) additions on average and L doublings.

4 Proposed base-f scalar multiplication

In this section, we propose a base-f expansion method in
which the bit-length of the coefficients is the same as that
of characteristic p and the number of coefficients is
m2 1. In addition, we present two efficient algorithms,
named interleaved f-wNAF and simultaneous f-SJSF.
These algorithms combine the proposed expansion method
with two efficient multi-exponentiation algorithms, an inter-
leaved wNAF and a simultaneous SJSF, respectively. In
order to reduce the computational effort involved in
online precomputation, we employ a basic technique that
uses the property of Frobenius endomorphism [12, 18].

4.1 Improved base-f expansion with
Frobenius map

Our proposed base-f expansion method is described in
Algorithm 3. For a Type I expansion, we combine two
parts of Kobayashi’s method: expanding a scalar k as a
series of base-f with length 2mþ 4 and reducing the
length of the series into m. This enables the Type I expan-
sion to be performed with m words memory. We also care-
fully deal with w w2 p operation in consideration of di,
which always guarantees the condition jdij , p/2. The fol-
lowing theorem provides the foundation for the proposed
expansion.

Theorem 1: All coefficients di s of Type I expansion in
Algorithm 3 always satisfy the condition jdij , p/2.

Proof 1: Without loss of generality, we assume that
jdij , p/2 and 0 � w , p in step 1–4 of Algorithm 3.

If diþ w , p/2, then w0 ¼ w, so that diþ w0 ¼ diþ
w , p/2 and diþ w0 . 2p/2 since w0 � 0 and di .
2 p/2. Hence, jdiþ w0j , p/2.

Algorithm 3: (f-EXP) Proposed base-f expansion method

Input: k, E, t, p where E is an elliptic curve, t ¼ tr(E)

Output: fc0 . . . cm22g, where jcij , p

[Type I] Base-f expansion of k
1-1 i 0, x k, y 0, dj 0 for 0 � j , m
1-2 while x = 0 or y = 0 do
22
1-3 w x mod p
1-4 if (diþ w) . p/2 then w w2 p
1-5 di diþ w
1-6 v (x2 w)/p, x tvþ y, y 2v
1-7 i iþ 1 mod m

[Type II] Optimisation of base-f expansion
2-1 ci di2 dm21 for 0� i � m2 2

If diþ w . p/2, then w0 ¼ w2 p, so that diþ w0 ¼
diþ w2 p. Since diþ w . p/2 and 0 � w , p, p/2
,diþ w , 3p/2. Therefore 2p/2 , diþ w2 p , p/2.
Hence, jdiþ w0j, p/2.
Therefore a scalar k is expanded as a series of base-fwith

length m

k ¼
Xm�1
i¼0

dif
i; where jdij ,

p

2
ð7Þ

Similar to Kobayashi’s Type II expansion, we utilise the
property that

P
i¼0
m21fi P ¼ O if gcd(ord(P), #E(Fp)) ¼ 1.

We can then rewrite (7) as a base-f series with length m2 1

Xm�1
i¼0

dif
i
¼
Xm�1
i¼0

ðdi � dm�1Þf
i

¼
Xm�2
i¼0

cif
i; where jcij , p ð8Þ

Our Type II expansion is targeted for OEFs whose charac-
teristic is close to the word size of 32-bit or 64-bit
m-processors. In this case, the extension degree of OEFs
will be relatively small due to their higher characteristic.
For reasonable security, elliptic curves should have a
cyclic subgroup of over 160-bit prime order [3]; hence, a
reasonable extension degree of OEFs whose characteristic
is close to 32 bits or 64 bits is 7 or 5, respectively, for
current and near future levels of security. A smaller exten-
sion degree may be allowed for lower levels of security,
depending on the application. Gaudry’s index calculus
method [19], however, can solve an ECDLP defined
over Fp3 in time O(p4/3) with a reasonably small constant
instead of O(p3/2) for Pollard’s rho. In consideration of
this weakness, the case of extension degree 3 for 64-bit
m-processors should be applied carefully.
Given that the extension degree is relatively small, we

effectively focus on adapting the multi-exponentiation tech-
niques into the scalar multiplication rather than merely
minimising the total sum of the Hamming weights of the
coefficients. The simultaneous SJSF multi-exponentiation
algorithm computes five coefficients in the form of (2, 3)
and computes seven coefficients in the form of (2, 2, 3).
If, however, one coefficient is eliminated, the algorithm
gains computational advantage by computing in the form
of (2, 2), (3, 3) or (2, 2, 2); in other words, the joint
Hamming weight decreases due to the use of small blocks
of equal size. This gives another advantage when the
Frobenius endomorphism is introduced for online precom-
putation, which is explained later. In addition, since the per-
formance of the interleaved wNAF multi-exponentiation
algorithm is proportional to the number of coefficients, it
is logical to reduce one coefficient.

4.2 Scalar multiplication with interleaved f-wNAF

We propose a f-wNAF scalar multiplication algorithm that
combines our base-f expansion method with an interleaved
wNAF multi-exponentiation algorithm. We also introduce a
IET Inf. Secur., Vol. 1, No. 1, March 2007

Table 1: Expected number of operations in one block

Algorithm Parameter Precomputaiton Evaluation

d w Add f Add Double

SJSF 2 1 2 — (1/2)L L2 1

2 2 10 — (3/8)L L2 1

3 1 10 — (23/39)L L2 1

f-SJSP 3 1 8 2† (23/39)L L2 1

†fPþ f2P ¼ f(Pþ fP), fP2 f2P ¼ f(P2 fP)
method that considerably reduces the computational effort
involved in online precomputation. This algorithm is
described in Algorithm 4.

Algorithm 4: (f-wNAF) Scalar multiplication with inter-
leaved f-wNAF

Input: k, P, E, t, p, w where E is an elliptic curve, t ¼ tr(E)

Output: Q ¼ kP

Precomputation stage:
fFor 0 � i � m2 2, precompute Ti[j] ¼ jfiP for all odd j
s.t. 1 � j , 2w.g
1-1 T0[1] P; X 2P
1-2 for j ¼ 3 to 2w2 1 by 2 do
1-3 T0[j] ¼ T0[j2 2]þ X
1-4 for i ¼ 1 to m2 2 do
1-5 for j ¼ 1 to 2w2 1 by 2 do
1-6 Ti[j] ¼ f(Ti21[j])

Evaluation stage:
2-1 fk0, . . . , km22 g f-EXP(k, E, t, p)
2-2 fN0, . . ., Nm22 g wNAF(fk0, . . . , km22g)
2-3 Q O, L ¼ max fkNik: 0 � i � m2 2g
2-4 for j ¼ L2 1 down to 0 do
2-5 Q 2Q
2-6 for i ¼ 0 to m2 2 do
2-7 if Ni[j] . 0 then Q Qþ Ti[Ni[j]]
2-8 if Ni[j] , 0 then Q Q2 Ti[2Ni[j]]

After the precomputation table T0 is first computed for P,
that is jP for all odd j such that 1 � j , 2w, the other pre-
computation tables, Ti s, for 1 � i � m2 2 are computed
in this manner

Ti½ j� ¼ fðTi�1½ j�Þ for all odd j s.t. 1 � j , 2w

Thus, only one table precomputation for P and dozens
of inexpensive f operations are required for all
precomputations.
In the precomputation stage, the normal wNAF multi-

exponentiation algorithm requires (m2 1) . 2w21 elliptic
curve additions, whereas the f-wNAF algorithm requires
just 2w21 elliptic curve additions and (m2 2) . 2w21 f
operations.
IET Inf. Secur., Vol. 1, No. 1, March 2007
In the evaluation stage, the f-wNAF algorithm uses
(m2 1) . (L/(wþ 2)) additions on average and L2 1
doublings. On the other hand, if Kobayashi’s base-f expan-
sion is applied, the f-wNAF algorithm uses m . ((Lþ 1)/
(wþ 2)) additions on average and L doublings.

4.3 Scalar multiplication with simultaneous
f-SJSF

We also propose a f-SJSF scalar multiplication algorithm
that combines our base-f expansion method with a simul-
taneous SJSF multi-exponentiation algorithm. Like the
f-wNAF algorithm, the f-SJSF can reduce the compu-
tational effort involved in online precomputation. It only
precomputes for one block; precomputations for the other
blocks are performed with the Frobenius map. In the evalu-
ation stage, the f-SJSF algorithm becomes more compli-
cated; specifically, it entails simultaneous processing
within an inner block and interleaved processing between
inter blocks. This algorithm is described in Algorithm 5.

In the precomputation stage, the required number of oper-
ations varies depending on the block size and window size,
as summarised in Table 1 [24]. In the evaluation stage, the
f-SJSF algorithm uses the sum of additions required for
each block and L2 1 doublings. The number of additions
required for each block is summarised in Table 1.

5 Performance comparison

In this section, we analyse the required number of elliptic
curve operations over F(23225)5, F(23121)7, F(26121)3, and
F(26121)5. We also compare the expected number of oper-
ations when SJSF, f-SJSF, wNAF, and f-wNAF algorithms
are applied to either Kobayashi’s Type II expansion or the
proposed expansion. Since the coefficients of Kobayashi’s
Type II expansion are not uniformly distributed, it is very
difficult to analyse the precise complexity. Thus, we evalu-
ated the expected number of operations through simulation,
the results of which are shown in Tables 2–5. For each
algorithm, we chose the parameter that minimised the
number of operations. In the SJSF and f-SJSF algorithms,
the parameter (2,3) implies that we must find the SJSF of
Table 2: Expected number of elliptic curve operations over F(23225)5

Algorithm Kobayashi’s expansion Proposed expansion

Parameter Precomputation Evaluation Parameter Precomputation Evaluation

Add f Add Double Add f Add Double

Basic — — 4 52.0 33 — — 3 63.0 31

SJSF (2, 3) 12 4 33.5 33 (2, 2) 4 3 32.4 32

f-SJSF (2, 3) 10 12 33.5 33 (2, 2) 2 9 32.4 32

wNAF w ¼ 2 10 4 35.5 33 w ¼ 2 8 3 33.1 32

f-wNAF w ¼ 4 8 32 25.0 33 w ¼ 4 8 24 22.3 32
23

Table 3: Expected number of elliptic curve operations over F(23121)7

Algorithm Kobayashi’s expansion Proposed expansion

Parameter Precomputation Evaluation Parameter Precomputation Evaluation

Add f Add Double Add f Add Double

Basic — — 6 78.8 32 — — 5 92.0 30

SJSF (2, 2, 3) 14 6 49.3 32 (2, 2, 2) 6 5 47.6 31

f-SJSF (2, 2, 3) 10 20 49.3 32 (3, 3) 8 43 37.2 31

wNAF w ¼ 2 14 6 51.8 32 w ¼ 2 12 5 48.1 31

f-wNAF w ¼ 4 8 48 36.3 32 w ¼ 4 8 40 32.6 31
the first two coefficients and separately find the SJSF of the
other three coefficients. The two SJSFs are subsequently
used in the evaluation stage. In the wNAF and f-wNAF
algorithms, the parameter w denotes window size.

Algorithm 5: (f-SJSF) Scalar multiplication with simul-
taneous f-SJSF

Input: k, P, E, t, p, w, d where E is an elliptic curve,
t ¼ tr(E)

Output: Q ¼ kP

Precomputation stage:
fFor 0 � i , (m2 1)/d, precompute Ti[I0 . . . Id21] ¼P
0�j � d 2 1 Ijf

jP for some d-tuples (I0, . . . , Id21) [
f2(2w2 1), . . . , 2w2 1g depending on d and w.g

1-1 T0[I0 . . . Id21]
P

0�j � d 2 1 Ijf
j(P) for some (I0,

. . . , Id21)
1-2 for i ¼ 1 to (m2 1)/d 21 do
1-3 Ti[j] ¼ fd(Ti21[j]) for all j

Evaluation stage:
2-1 n (m2 1)/ d
2-2 fk0, . . . , km22g f-EXP(k, E, t, p)
2-3 fNd�i, . . . , Nd�i+d21 g SJSF(fkd�i, . . . , kd�i+d21g) for

0 � i � n2 1
2-4 Q O, L ¼ max fkNik: 0 � i � m2 2g
2-5 for i ¼ 0 to n21 do
2-6 window_handlei nil
2-7 for j ¼ L21 down to 0 do
2-8 Q 2Q
2-9 for i ¼ 0 to n21 do
2-10 if window_handlei ¼ nil and (Nd�i[j], . . . ,

Nd�i+d21[j]) = (0 . . . 0) then
2-11 J j2 wþ 1
2-12 while (Nd�i[j], . . . , Nd�i+d21[j]) = (0 . . . 0) do
2-13 J Jþ 1
2-14 fnow j � J . j2 w and J � 0g
2-15 window_handlei J
2-16 Ii,0 . . . Ii,d21 Nd�i[j . . . J] . . . Nd�i+d21

[j . . . J]
24
2-17 if window_handlei ¼ j then
2-18 Q Qþ Ti[Ii,0 . . . Ii,d21]
2-19 window_handlei nil

Without applying any algorithm, the proposed expansion
requires many more additions compared with Kobayashi’s
expansion. However, the combination of the proposed
expansion with any one of the algorithms shows better per-
formance, as shown in the tables. In the case of using SJSF
and f-SJSF, the required number of additions in the pre-
computation stage is smaller because the number of con-
sidered coefficients is smaller than that in Kobayashi’s.
Moreover, the number of additions in the evaluation stage
is reduced because the joint Hamming weight of two coeffi-
cients is lower than that of three coefficients. In the case of
using wNAF and f-wNAF, the number of additions in the
evaluation stage is reduced significantly due to the
decreased number of interleaved coefficients.
Thef-SJSF andf-wNAF algorithms reduce the number of

additions to make table entries in the precomputation stage by
performing f operations instead of additions. Because the f
operation is �20–30 times faster than an addition operation
[15], this technique contributes significantly to improving
the performance. In the f-SJSF, this makes a window size
of w ¼ 2 an optimal parameter. In the f-wNAF, this enlarges
the optimal window size and consequently reduces the
number of additions in the evaluation stage.
In all cases, the combination of the proposed expansion

with f-wNAF shows the best performance. In particular,
the number of total additions decreases to just 50–65% of
Kobayashi’s basic algorithm. The combination of the pro-
posed expansion with f-SJSF shows far better performance
than Kobayashi’s algorithm and requires only a few more
additions than the f-wNAF algorithm.

6 Memory usage

The SJSF, f-SJSF, wNAF and f-wNAF algorithms create
the table entries and store them in the precomputation
stage. The case requiring the largest table size is the
f-wNAF over F(23121)7, and a total of 48 points are stored.
Table 4: Expected number of elliptic curve operations over F(26121)3

Algorithm Kobayashi’s expansion Proposed expansion

Parameter Precomputation Evaluation Parameter Precomputation Evaluation

Add f Add Double Add f Add Double

Basic — — 2 46.1 62 — — 1 60.0 60

SJSF (3) 10 2 33.8 62 (2) 2 1 30.2 61

f-SJSF (3) 8 4 33.8 62 (2) 2 1 30.2 61

wNAF w ¼ 3 12 2 29.1 62 w ¼ 3 8 1 24.3 61

f-wNAF w ¼ 4 8 16 25.2 62 w ¼ 4 8 8 20.2 61
IET Inf. Secur., Vol. 1, No. 1, March 2007

Table 5: Expected number of elliptic curve operations over F(26121)5

Algorithm Kobayashi’s expansion Proposed expansion

Parameter Precomputation Evaluation Parameter Precomputation Evaluation

Add f Add Double Add f Add Double

Basic — — 4 97.5 62 — — 3 121.0 60

SJSF (2, 3) 12 4 63.4 62 (2, 2) 4 3 61.4 61

f-SJSF (2, 3) 10 12 63.4 62 (2, 2)† 10 25 45.9 61

wNAF w ¼ 3 20 4 55.6 62 w ¼ 3 16 3 49.6 61

f-wNAF w ¼ 4 8 32 47.5 62 w ¼ 4 8 24 41.4 61

†Window size w ¼ 2
If the amount of available memory is restricted, the table
size can be reduced by simply storing the table entries for
P (eight points in this case) in the precomputation stage,
that is Tab[j] ¼ jP for all odd integers j such that
1 � j , 2w; other table entries are computed in the evalu-
ation stage by applying f operations to existing entries
without storing all entries. However, all table entries do
not need to be computed for all iterations. Since a
non-zero component appears only once within a
(wþ 1)-width window, it is sufficient to compute some
non-zero entries of the following for each iteration j

fðTab½N1½ j��Þ;
f2
ðTab½N2½ j��Þ;

..

.

fm�2
ðTab½Nm�2½ j��Þ

The total number of f operations required in the evaluation
stage is an average of

L

wþ 2

Xm�2
i¼1

i

 !

For the above case of the f-wNAF over F(23121)7, an
additional 80 f operations are required in the evaluation
stage. However, the f operations required to make other
table entries are no longer needed in the precomputation
stage (in this case, 40 f operations). Thus, this approach
significantly reduces the table size at the expense of slightly
more computations.
Furthermore, if the algorithm is performed with a

left-to-right signed recording scheme such as wMOF [27]
on the fly, then further reduction in memory usage will be
possible.

7 Conclusions

In this paper, we have proposed an improved base-f expan-
sion method in which the bit-length of coefficients is shorter
and the number of coefficients is smaller than in the
Kobayashi’s expansion method. Moreover, we have pre-
sented two efficient algorithms, an interleaved f-wNAF
and a simultaneous f-SJSF, which reflect the properties
of Frobenius endomorphism, and thus reduce the amount
of online precomputation. The combination of the proposed
expansion with these algorithms noticeably accelerates the
computation of a scalar multiplication on Koblitz curves
over OEFs. In particular, for OEFs, where the characteristic
is close to 32 or 64 bits, the required number of additions is
reduced by up to 50% compared with Kobayashi’s base-f
scalar multiplication algorithm.
IET Inf. Secur., Vol. 1, No. 1, March 2007
8 Acknowledgments

This work was supported by the Ministry of Science and
Technology (MOST)/Korea Science and Engineering
Foundation (KOSEF) through the Advanced Information
Technology Research Center (AITrc) and the Ministry of
Information and Communication (MIC), Republic of
Korea, under the Information Technology Research
Center (ITRC) support program supervised by the
Institute of Information Technology Assessment (IITA),
(IITA-2006-C1090-0603-0075).

9 References

1 Miller, V.: ‘Use of elliptic curve in cryptography’. Proc. Advances in
Cryptology – CRYPTO’85, 1985, (Lect. Notes Comput. Sci., 218),
pp. 417–426

2 Koblitz, N.: ‘Elliptic curve cryptosystems’, Math. Comput., 1987, 48,
pp. 203–209

3 Lenstra, A.K.: ‘Selecting cryptographic key sizes’, J. Cryptol., 2001,
14, pp. 255–293

4 Gordon, D.: ‘A survey of fast exponentiation methods’, J. Algorithms,
1998, 27, pp. 129–146

5 Koblitz, N.: ‘CM-curves with good cryptographic properties’. Proc.
Advances in Cryptology – CRYPTO’91, 1991, (Lect. Notes
Comput. Sci., 576), pp. 279–287

6 Meier, W., and Staffelbach, O.: ‘Efficient multiplication on certain
nonsupersingular elliptic curves’. Proc. Advances in Cryptology –
CRYPTO’92, 1992, (Lect. Notes Comput. Sci., 740), pp. 333–344

7 Solinas, J.A.: ‘An improved algorithm for arithmetic on a famaily of
elliptic curves’. Proc. Advances in Cryptology – CRYPTO’97, 1997,
(Lect. Notes Comput. Sci., 1294), pp. 357–371

8 Müller, V.: ‘Fast multiplication on elliptic curves over small fields of
characteristic two’, J. Cryptol., 1998, 11, pp. 219–234

9 Cheon, J., Park, S., and Kim, D.: ‘Two efficient algorithms for arithmetic
of elliptic curves using Frobenius map’. Proc. 1st Int. Workshop –
PKC’98, 1998, (Lect. Notes Comput. Sci., 1431), pp. 195–202

10 Smart, N.P.: ‘Elliptic curve cryptosystems over small fields of odd
characteristic’, J. Cryptol., 1999, 12, pp. 141–151

11 Kobayashi, T., Morita, H., Kobayashi, K., and Hoshino, F.: ‘Fast elliptic
curve algorithm combining Frobenius map and table reference to adapt
to higher characteristic’. Proc. Advances in Cryptology –
EUROCRYPT’99, 1999, (Lect. Notes Comput. Sci., 1592), pp. 176–189

12 Gallant, R.P., Lambert, R.J., and Vanstone, S.A.: ‘Faster point
multiplication on elliptic curves with efficient endomorphisms’.
Proc. Advances in Cryptology – CRYP’2001, 2001, (Lect. Notes
Comput. Sci., 2139), pp. 190–200

13 Ciet,M., Lange, T., Sica, F., and Quisquater, J.-J.: ‘Improved algorithms
for efficient arithmetic on elliptic curves using fast endomorphisms’.
Proc. Advances in Cryptology – EUROCRYPT’03, 2003, (Lect.
Notes Comput. Sci., 2656), pp. 388–400

14 Bailey, D., and Paar, C.: ‘Optimal extension fields for fast arithmetic
in public-key algorithms’. Proc. Advances in Cryptology –
CRYPTO’98, 1998, (Lect. Notes Comput. Sci., 1462), pp. 472–485

15 Bailey, D., and Paar, C.: ‘Efficient arithmetic in finite field extensions
with application in elliptic curve cryptography’, J. Cryptol., 2001, 14,
pp. 153–176

16 Möller, B.: ‘Algorithms for multi-exponentiation’. Proc. Selected
Areas in Cryptography – SAC’01, 2001, (Lect. Notes Comput. Sci.,
2259), pp. 165–180
25

17 Grabner, P.J., Heuberger, C., Prodinger, H., and Thuswaldner, J.M.:
‘Analysis of linear combination algorithms in cryptography’, ACM
Trans. Algorithms, 2005, 1, (1), pp. 123–142

18 Sarkar, P., Mishra, P.K., and Barua, R.: ‘New table look-up
methods for faster Frobenius map based on scalar multiplication
over GF(pn)’. Proc. Applied Cryptography and Network
Security – ACNS’04, 2004, (Lect. Notes Comput. Sci., 3089),
pp. 479–493

19 Gaudry, P.: ‘Index calculus for Abelian varieties and the elliptic curve
discrete logarithm problem’. Cryptology ePrint Archive: Report
2004/073, 2004

20 Kobayashi, T.: ‘Base-f method for elliptic curves over OEF’, IEICE
Trans. Fundam., 2000, E83-A, (4), pp. 679–686

21 Straus, E.G.: ‘Addition chains of vectors (problem 5125)’, Am. Math.
Mon., 1964, 71, pp. 806–808
26
22 Jedwab, J., and Mitchell, C.J.: ‘Minimum weight modified
signed-digit representations and fast exponentiation’, Electron. Lett.,
1989, 25, pp. 1171–1172

23 Solinas, J.A.: ‘Low-weight binary representations for pairs of
integers’, Combinatorics and Optimization Research Report CORR
2001-41 Report, 2001

24 Avanzi, R.M.: ‘The complexity of certain multi-exponentiation
techniques in cryptography’, J. Cryptol., 2005, 18, pp. 357–373

25 Yen, S.-M., Laih, C.-S., and Lenstra, A.K.: ‘Multi-exponentiation’,
IEE Proc., Comput. Digit. Tech., 1994, 141, pp. 325–326

26 Solinas, J.A.: ‘Efficient arithmetic on Koblitz curves’, Des. Codes.
Cryptogr., 2000, 19, pp. 195–249

27 Okeya, K., Schmidt-Samoa, K., Spahn, C., and Takagi, T.: ‘Signed
binary representations revisited’. Proc. Advances in Cryptology –
CRYPTO’04, 2004, (Lect. Notes Comput. Sci., 3152), pp. 123–139
IET Inf. Secur., Vol. 1, No. 1, March 2007

