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Abstract 
Thzs paper deals with the problem of hardware-software 

codesign of hard real-time systems. For a given task set, we 
per form a n  exact schedulability test to determine whether 
the task set i s  schedulable or  not.  W h e n  there is a task 
that cannot meet  the deadline, we compute the amount  o j  
t ime  by which the deadline i s  missed. T h e n  we determine 
which tasks should reduce their execution t ime  to compen- 
sate that amoun t  of t i m e  deviation. T h e  reduction o f  exe- 
cution t i m e  i s  achieved by implementing parts of the tasks 
with hardware. With this approach, we can systematically 
design a hard real-time sys tem which is infeasible with all 
software implementation. Preliminary experimental results 
are given to  demonstrate the effectiveness of our approach. 

I. Introduction 
In recent years, hardware-software codesign has be- 

come a major concern for a design of embedded systems. 
Embedded systems are special purpose systems composed 
of reprogrammable components(microprocessor, microcon- 
troller, DSP, etc.) and a dedicated application-specific 
hardware components. As the complexity of this kind of 
systems increases, a systematic design approach receives a 
lot of attention. 

Most embedded systems are described as a set of pro- 
cesses or tasks which communicate with each other through 
shared medium or using message passing. Usually tim- 
ing or resource constraints are specified together with the 
system description. Depending on the characteristics of 
timing constraints, a system can be referred to as a hard 
real-time or a soft real-time system. In a hard real-time 
system, all tasks should complete their computation within 
specified deadlines. In usual approaches to a real-time sys- 
tem design, if there exists no feasible schedule for a given 
task set, redesign processes are repeated through modifi- 
cation of deadlines or periods of some tasks or through 
tuning of tasks. In designing complex systems, however, 
these engineering approaches are hard to employ or even 
are not acceptable. Therefore, we need a systematic ap- 
proach which will replace the ad hoc approaches. 

In this paper, we take an approach in which the exe- 
cution time of tasks can be reduced by moving some code 
fragments to hardware components. In other words, when 
the given task set do not satisfy schedulability condition, 
we reduce the execution time of some tasks by employing 
a coprocessor which is a hardware implementation of the 
code fragments of the tasks. In this approach, the essential 
problem is a decision about which tasks and which part of 
the tasks should be implemented with hardware compo- 

nents. This problem can be simplified by dividing it into 
three subproblems as follows. 

1. Which tasks should be entirely implemented with 
hardwtare. 

2. Which tasks shaNuM be partially implemented with 
hardware and how big is the hardware portion in each 
of the tasks. 

3. Within each of the tasks determined as in 2 above, 
which portion should be implemented with hardware. 

The first two decisions must be made in such a way to 
minimize hardware resources. When resource constraints 
are given, decision should be made to meet these con- 
straints. The last subproblem is similar to the circuit par- 
titioning problem. The circuit partitioning problem can 
be modeled as the graph partitioning problem which is 
known to be NP-hard[l]. In contrast to the circuit parti- 
tioning which is homogeneous, the partitioning in our case 
is heterogeneous in that some one part is implemented in 
software and the other part is implemented in hardware. 
Therefore, t,he latter p.roblem is considered to be harder to 
solve. There have bee.n many reiearches about this prob- 
lem[2]; [3], 1141, but it i:i beyond the scope of this paper. 

We tackle the first two subproblems using the exact 
schedulability test, of t,he rate monotonic scheduling algo- 
rithm[5]. The rate monotonic algorithm in which a task 
with shorter period or with higher execution rate is as- 
signed a higher priority is proved to be an optimal fixed pri- 
ority algorithm[6]. Among various scheduling algorithms, 
the rate monotonic algorithm is widely used and of great 
practical importance[5], [7]. One of the reasons is that 
there exist schedulability tests[5], [6 ] ,  [8] for a given task 
set. 

The overall flow of our approach is as follows. First, 
the system is specified as a set of tasks, timing at- 
tributes/constraints, ,and hardware cost of each task. 
There have been m a y  researches for estimating the ex- 
ecution time of a task[9], (101 and computing the detailed 
timing information(period, deadline, etc.) from the timing 
constraints at the higher abstraction level[ll]. We perform 
an exact schedulability test[5] for the task set. If there ex- 
ists a task which violates the schedulability condition, we 
compute the percentage of the task's execution time to 
be cut off in order to satisfy the schedulability condition. 
Then parts of the task are implemented with hardware 
such that the execution time is reduced. All these pro- 
cesses are performed in such a way to minimize the hard- 
ware cost of the resulta.nt implementation. The partitioner 
also finds hardware modules which are shared among dif- 
ferent parts in the taslks. Hardware sharing incurs block- 
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Fig .  1. Conceptual design flow 

ing or mutually exclusive relation for tasks thereby low- 
ering schedulability. Using this information on hardware 
sharing, we repeat the above mentioned procedures until 
all tasks meet their deadlines. All these processes are il- 
lustrated in Fig. l .  Automatic partitioning is currently 
under development and is beyond the scope of this paper. 

The rest of the paper is organized as follows. In the 
next section, we describe basic assumption and its under- 
lying effects on the design of hardware-software mixed sgs- 
tems. We propose and describe a new algorithrn for achiev- 
ing schedulability using schedulability test in section 111. 
In section IV, we consider the effect of hardware resource 
sharing and task blocking. We show experimental results 
in section V and draw conclusions in section VI. 

11. Basic Assumption 

lows. 
To simplify our problem we make assumptions as fol- 

Hardware components have bounded deiay. This is 
enforced by the property of predictability of real-time 
systems. 

a Communication overhead between hardware and soft- 
ware is determined only by the number and the type 
of data to be transferred. 

The first assumption can be relaxed in non real-time or 
in soft real-time applications and in that case handshak- 
ing protocol can be used to synchronize a communication 
between hardware and software. However, in hard real- 
time systems which enforce predictability of system be- 
havior, bounded delay of hardware components is a nec- 
essary condition. The property of bounded delay of hard- 
ware components can be effectively used in two respects. 
First, handshaking is not necessary because the completion 
time of hardware execution can be known in advance(off- 
line). Therefore, the overhead for synchronization can be 
removed thereby enhancing the system performance. Sec- 
ond, a measure of parallelism between hardware and soft- 
ware can be determined in advance and used for execu- 
tion overlap between hardware and software. In this case, 
the execution overlap can be efficiently realized with static 
scheduling only in contrast to the realization with mixed 
static and dynamic scheduling in[l2], where unbounded 
delay is allowed. 

The second assumption is based on the fact that in 
most embedded systems, reprogrammable components are 
usually a bus-master and therefore bus arbitration is not 
needed. Communication latency is dependent only on the 

size of data to be transferred and on the bandwidth of the 
bus between the reprogrammable and the hardware com- 
ponents. Data which can not be packed into the bus bit 
width should be properly divided into packets and an ap- 
propriate communication protocol should be used between 
the hardware and the software[l3]. 

111. Algorithm for Achieving Schedulability 
Consider a set of n periodic tasks 71, r2,. . . , T ~ ,  and a 

pair (T,:C,) for each of the tasks, where T, is the period 
of task r, and C, is the execution time of the task and 
7,'s are assumed to be sorted in the ascending order of the 
period. LVe define m r c L  as the maximum value by which 
we can reduce the execution time of task 7;. When there 
are no resource constraints, this value is achieved when 
r, is implemented entirely with hardware. m r c i  can be 
computed using the following equation. 

mrc, = C, - [ input -communicat ion-overhead + 
cr it ical -pat h J e n g t  h + 
output -communicat ion-overhead]  (1) 

where cr i t i ca l -pa th leng th  is the latency obtained with 
hardware after scheduling' and allocation. 

As a first step, we perform an exact schedulability 
test[5] for a given task set, which tests on the sets of 
scheduling points defined by the following equation. 

(2) 
T, s, = {ICT, l j  = 1 , .  . . , i ;  IC = 1,. . . , LT]} 

JVe define St,] as the j t h  scheduling point of task r, 
when elements of S, are sorted in the ascending order. A 
task r, is schedulable if it satisfies the following equation. 

(3) 

We can find out tasks which cannot meet their deadlines 
in a critical instant[6] by the above equation. For each task 
which does not satisfy equation (3), we compute the time 
deviation by which the task misses its deadline. We define 
IC, as the time deviation of task r, at the j t h  scheduling 
point. It is given by the following equation. 

(4) 

For each we compute the time dz3k, k = 1,. . . , i ,  
by which the execution time of each task rr~ must be re- 
duced in order to make r, schedulable. It is computed by 
the following equation. 

( 5 )  

'This  should not he confused with the  scheduling of real t ime tasks. 
Scheduling in this  phrase means assigning a control s t ep  t o  each operation 
in hardware implementation and is one of t he  phases performed in a high- 
level synthesis. 

1577 



It can be easily shown that if the execution time of each 
task n is reduced by the amount given in equation ( 5 ) ,  
then rz can be made schedulable. From this computation, 
we can compute the minimum required time by which the 
execution time of T k  must be reduced in order to make all 
tasks schedulable as follows. 

r 1 

I'br any k ,  if we reduce the execution time of T k  by Dk, 
then all tasks become schedulable. However, if Vk is larger 
than mrck, the maximum value we can take off from the 
execution time of task Tk, then it is impossible to achieve 
our goal by only reducing the execution time of task rk. 
We solve this problem through iteration. First, we try to 
reduce the execution time of T I  by VI. If 'DI is larger than 
mrcl, then we reduce the execution time of 71 by mrcl. In 
that case, we iterate the above steps with T Z ,  7 3 , .  . . until all 
tasks become schedulable. We start from 71 because it is 
more effective than starting from any other task. Note that 
D ,  is always smaller than or equal to D n ,  provided that 
m is smaller than n. In the ( k  + 1)th iteration, Ac,,, com- 
puted in the lcth iteration should be updated. Note that 
the execution time of T I , .  . . , 7 k  have been modified dur- 
ing the first lc iterations. This computation is performed 
incrementally using the following equation. 

The following example helps clarify the above men- 

T I :  C1=4, Tl=lO, mrcl=2 
n: C2=9, T2=16, mrcz=5 
5-3: C3=7, T3=25, mrc3=3 
Then 
Si = {Ti } 
i s 2  = {TI, T2) 

We perform schedulability test for all three tasks at each 

tioned procedures. Consider the case of three tasks: 

s3 = {Tl,T2,2TI,T3} 

scheduling points as follows. 

T I  : Ci 5 TI 
r 2  : Ci + C2 > Ti, Ac2,i = 3 

A C Z J  = 1 2C1 + C 2  > T2, 
r3 : Ci + C 2  + C3 > Ti ,  

2C1 -k C.r + C3 > Tz, 
2C1 + 2C2 + C3 > 2T1, 
3C1 + 2C2 + CB > TB, 

A c ~ , I  = 10 
A c ~ , z  = 8 
Ac3,3 = 13 
A c B , ~  = 12 

Then it is found that task TI is schedulable, but r2 and 
7-3 are not. For each we compute the value of d z j k .  

Fig. 2 shows these values in a tabular form. Fig. 2 (a), 
which is the result of the first iteration, shows the value 
of dzJk for each combination of z, j ,  and k .  From these 
tables, we can conclude that 7 2  can be made schedulable if 
the execution time of TI is reduced by 0.5 or the execution 
time of 7 2  is reduced by 1. r3 can be made schedulable if 
C1 is reduced by 4, CZ is reduced by 6, or C3 is reduced 

Fig. 2. Deviation t ime ( a ) the  first i teration (b ) the  second iteration. 

Calcul2 l te .deviat io l . t~m~()  { 

~ = h ~ d n l a b ~ l i t r - t ~ s t ( ) ,  

f o r ( k = 1 , 2 .  . .  . n ) {  

fo r  (all t asks  7, wicli are n o t  schedulable)  

compute a t  S i , l ;  

DA. = max, [min ,,,, , lJ , , , ]  ; 

I f  ( "A .  > " ' C k )  1 
b,c;,J = A c i , j  .- m r c k  1 3 1 ;  

Tk 
implement  whole T~ with  hardware ,  

1 
else { 

implement  y p  of r k  with  hardware: 

exit  loop, 

} 

Fig. 3. A pseudo camde for calculation of deviation t ime. 

by 8. Applying equation (6), we obtain VI = 4 ,  V2 = 6 ,  
'D3  = 8 .  First, we try to subtract V I  from the execution 
time of 7 1 .  However, it fails because mrcl is lower than 
D l .  In the second it'eration, A c ~ , ~  is re-computed using 
the equation ( 7 ) ,  which gives the following results. 

Acs,i = 8 Ac:,,~ = 4 A~3 ,3  = 9 A c s , ~  = 6 

Negative value of A c z , ~  indicates that 7-2 is schedulable. 
For each A c , , ~ ,  we repeat the computation of equation (5) 
resulting in the table in Fig. 2 (b). The table for 7 2  is not 
shown because *r2 is now schedulable. From the table, we 
see that V2 is 3 which is lower than mrcz. Therefore, in 
order to satisfy the schedulability of all three tasks, TI  is 
entirely implemented in hardware and the execution time 
of r2 must be reduced by 33%. The pseudo code of the 
above mentioned procedures is shown in Fig. 3. 

IV. Resource Shatring and Task Blocking 
When tasks are implemented with hardware, there is a 

trade-off between the hardware cost and the overall sys- 
tem performance. To reduce the hardware cost, as many 
components as possible should be shared among tasks, but 
this causes mutually exclusive relations between tasks and 
unnecessary blocking time due to priority inversion. 

In this case, priority ceiling protocol[l4] can be used to 
solve the problem. When we use this protocol, the schedu- 
lability test given in equation ( 3 )  is modified as follows. 



T, 
C, 

Fig. 4 .  A task graph of CNC controller 

task 
smpl xref yref dist stts xctrl yctrl 
540 540 540 540 540 1620 1080 
39 51 51 54 216 19%5 195 

~~~ 

where B, indicates the worst case blocking time. \f'7hen 
a hardware module is shared among different tasks, B, is 
equal to the critical path length of that module. 

V. Experimental Results 
In this experiment, we have selected a 

CNC(computerized numerical control) machine controller 
which is an example of embedded digital controller. The 
CNC machine is an automatic machining tool which is used 
to produce user-designed workpieces[l5]. ,4 task graph for 
the controller is shown in Fig. 4. It consists of a set of tasks 
as shown in Fig. 4 by shaded boxes and a set of buffers 
together with precedence relations between them. We ap- 
plied the period calibration method proposed in [ll] to the 
task graph to calculate task-specific attributes(peri0d and 
deadline) from end-to-end timing constraints. The results 
of period calibration is shown in Table I together with the 
execution time of each task. Utilization of the resultant 
task set is computed as 1.06 which implies that the system 
is infeasible with all software implementation. We applied 
our algorithm to this example where we assumed mrcz to 
be 70% of C; for each task r,. The result shows that task 
smpl should be implemented totally in hardware and 30% 
of zrefshould be implemented in hardware in order to meet 
the condition for the schedulability of all tasks. 

VI. Conclusions 
In this paper, we have proposed the systematic ap- 

proach for hardware-software codesign of hard real-time 
systems. In this approach, we perform schedulability test 
to find out whether a given task set is schedulable or not. 
When there are tasks which cannot meet their deadlines 
at each critical instant, we compute the time deviation by 

which a deadline is missed. The amount of time devia- 
tion is used to  determine which tasks should reduce their 
execution time and what is the amount of each reduction. 
The reduction in execution time is obtained by implement- 
ing parts of tasks with hardware. With this approach, we 
can design a hard real-time system which is infeasible with 
software only implementation. 

W-e are exploring the way to extend our work to a more 
general hard real-time system design. This includes the 
case where a deadline is not equal to a period and the case 
where sporadic and/or aperiodic tasks exist. We are also 
working on extending our work so that hardware cost is 
considered. Minimum hardware cost can be achieved by 
avoiding hardware implementation of tasks if the hardware 
implementation is very expensive. 
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