1997 IEEE International Symposium on Circuits and Systems, June 9-12, 1997, Hong Kong

Enhancing Schedulability of Hard Real-Time Systems through Codesign

Youngsoo Shin

Kiyoung Choi

School of Electrical Engineering
Seoul National University, Seoul 151-742, Korea
Phone: +82-2-880-5457, fax: +82-2-887-6575
e-mail: ysshin@poppy.snu.ac.kr, kchoi@azalea.snu.ac.kr

Abstract

This paper deals with the problem of hardware-software
codesign of hard real-time systems. For a given task set, we
perform an ezact schedulability test to determine whether
the task set is schedulable or not. When there is a task
that cannot meet the deadline, we compute the amount of
time by which the deadline is missed. Then we determine
which tasks should reduce their execution time to compen-
sate that amount of time deviation. The reduction of exe-
cution time is achieved by implementing parts of the tasks
with hardware. With this approach, we can systematically
design a hard real-time system which is infeasible with all
software implementation. Preliminary experimental results
are given to demonstrate the effectiveness of our approach.

1. Introduction

In recent years, hardware-software codesign has be-
come a major concern for a design of embedded systems.
Embedded systems are special purpose systems composed
of reprogrammable components(microprocessor, microcon-
troller, DSP, etc.) and a dedicated application-specific
hardware components. As the complexity of this kind of
systems increases, a systematic design approach receives a
lot of attention.

Most embedded systems are described as a set of pro-
cesses or tasks which communicate with each other through
shared medium or using message passing. Usually tim-
ing or resource constraints are specified together with the
system description. Depending on the characteristics of
timing constraints, a system can be referred to as a hard
real-time or a soft real-time system. In a hard real-time
system, all tasks should complete their computation within
specified deadlines. In usual approaches to a real-time sys-
tem design, if there exists no feasible schedule for a given
task set, redesign processes are repeated through modifi-
cation of deadlines or periods of some tasks or through
tuning of tasks. In designing complex systems, however,
these engineering approaches are hard to employ or even
are not acceptable. Therefore, we need a systematic ap-
proach which will replace the ad hoc approaches.

In this paper, we take an approach in which the exe-
cution time of tasks can be reduced by moving some code
fragments to hardware components. In other words, when
the given task set do not satisfy schedulability condition,
we reduce the execution time of some tasks by employing
a coprocessor which is a hardware implementation of the
code fragments of the tasks. In this approach, the essential
problem is a decision about which tasks and which part of
the tasks should be implemented with hardware compo-

0-7803-3583-X/97 $10.00 ©1997 IEEE

1576

nents. This problem can be simplified by dividing it into
three subproblems as follows.

1. Which tasks should be entirely implemented with
hardware.

2. Which tasks should be partially implemented with
hardware and how big is the hardware portion in each
of the tasks.

3. Within each of the tasks determined as in 2 above,
which portion should be implemented with hardware.

The first two decisions must be made in such a way to
minimize hardware resources. When resource constraints
are given, decision should be made to meet these con-
straints. The last subproblem is similar to the circuit par-
titioning problem. The circuit partitioning problem can
be modeled as the graph partitioning problem which is
known to be NP-hard[1]. In contrast to the circuit parti-
tioning which is homogeneous, the partitioning in our case
is heterogeneous in that some one part is implemented in
software and the other part is implemented in hardware.
Therefore, the latter problem is considered to be harder to
solve. There have been many researches about this prob-
lem[2], [3], [4], but it is beyond the scope of this paper.

We tackle the first two subproblems using the exact
schedulability test of the rate monotonic scheduling algo-
rithm[5]. The rate monotonic algorithm in which a task
with shorter period or with higher execution rate is as-
signed a higher priority is proved to be an optimal fixed pri-
ority algorithm[6]. Among various scheduling algorithms,
the rate monotonic algorithm is widely used and of great
practical importance[d], [7]. One of the reasons is that
there exist schedulability tests[5], [6], [8] for a given task
set.

The overall flow of our approach is as follows. First,
the system is specified as a set of tasks, timing at-
tributes/constraints, and hardware cost of each task.
There have been many researches for estimating the ex-
ecution time of a task[9], [10] and computing the detailed
timing information(period, deadline, etc.) from the timing
constraints at the higher abstraction level[11]. We perform
an exact schedulability test[5] for the task set. If there ex-
ists a task which violates the schedulability condition, we
compute the percentage of the task’s execution time to
be cut off in order to satisfy the schedulability condition.
Then parts of the task are implemented with hardware
such that the execution time is reduced. All these pro-
cesses are performed in such a way to minimize the hard-
ware cost of the resultant implementation. The partitioner
also finds hardware modules which are shared among dif-
ferent parts in the tasks. Hardware sharing incurs block-

task set
timing constraints
cost of HW modules

Find HW sharing

There are no further HW sharing

Fig. 1. Conceptual design flow.

ing or mutually exclusive relation for tasks thereby low-
ering schedulability. Using this information on hardware
sharing, we repeat the above mentioned procedures until
all tasks meet their deadlines. All these processes are il-
lustrated in Fig. 1. Automatic partitioning is currently
under development and is beyond the scope of this paper.

The rest of the paper is organized as follows. In the
next section, we describe basic assumption and its under-
lying effects on the design of hardware-software mixed sys-
tems. We propose and describe a new algorithm for achiev-
ing schedulability using schedulability test in section III.
In section IV, we consider the effect of hardware resource
sharing and task blocking. We show experimental results
in section V and draw conclusions in section VI.

I1. Basic Assumption

To simplify our problem we make assumptions as fol-
lows.

o Hardware components have bounded delay. This is
enforced by the property of predictability of real-time
systems.

¢ Communication overhead between hardware and soft-
ware is determined only by the number and the type
of data to be transferred.

The first assumption can be relaxed in non real-time or
in soft real-time applications and in that case handshak-
ing protocol can be used to synchronize a communication
between hardware and software. However, in hard real-
time systems which enforce predictability of system be-
havior, bounded delay of hardware components is a nec-
essary condition. The property of bounded delay of hard-
ware components can be effectively used in two respects.
First, handshaking is not necessary because the completion
time of hardware execution can be known in advance(off-
line). Therefore, the overhead for synchronization can be
removed thereby enhancing the system performance. Sec-
ond, a measure of parallelism between hardware and soft-
ware can be determined in advance and used for execu-
tion overlap between hardware and software. In this case,
the execution overlap can be efficiently realized with static
scheduling only in contrast to the realization with mixed
static and dynamic scheduling in[12], where unbounded
delay is allowed.

The second assumption is based on the fact that in
most embedded systems, reprogrammable components are
usually a bus-master and therefore bus arbitration is not
needed. Communication latency is dependent only on the

1577

size of data to be transferred and on the bandwidth of the
bus between the reprogrammable and the hardware com-
ponents. Data which can not be packed into the bus bit
width should be properly divided into packets and an ap-
propriate communication protocol should be used between
the hardware and the software[13].

II1. Algorithm for Achieving Schedulability

Consider a set of n periodic tasks 71,72,...,7n, and a
pair (T3, C;) for each of the tasks, where T} is the period
of task 7 and C; is the execution time of the task and
7:’s are assumed to be sorted in the ascending order of the
period. We define mr¢; as the maximum value by which
we can reduce the execution time of task 7;. When there
are no resource constraints, this value is achieved when
7; is implemented entirely with hardware. mrc; can be
computed using the following equation.

C; — [input _communication_overhead +
critical_path. length +

mrce

(1)

where critical_path length is the latency obtained with
hardware after scheduling® and allocation.

As a first step, we perform an exact schedulability
test[5] for a given task set, which tests on the sets of
scheduling points defined by the following equation.

output_communication_overhead)

S, ={kTylj=1,...,i;k

T;
=1,...,|= 2
colph @
We define S;; as the jth scheduling point of task =
when elements of S; are sorted in the ascending order. A
task 7; is schedulable if it satisfies the following equation.

Zj:l C] l"]’}"| S]_

3)

min
{tes;} t

We can find out tasks which cannot meet their deadlines
in a critical instant[6] by the above equation. For each task
which does not satisfy equation (3), we compute the time
deviation by which the task misses its deadline. We define
Ac;,; as the time deviation of task 7; at the jth scheduling

point. It is given by the following equation.

i 51)
Acij = ch[T—:w - S (4)
k=1

For each Ac; ;, we compute the time d;jr, b =1,...,1¢,
by which the execution time of éach task 7. must be re-

duced in order to make 7; schedulable. It is computed by
the following equation.

Aci;
k-
Ty

(5)

dijrx =

1This should not be confused with the scheduling of real time tasks.
Scheduling in this phrase means assigning a control step to each operation
in hardware implementation and is one of the phases performed in a high-
level synthesis.

It can be easily shown that if the execution time of each
task 7% is reduced by the amount given in equation (5),
then 7; can be made schedulable. From this computation,
we can compute the minimum required time by which the
execution time of 7, must be reduced in order to make all
tasks schedulable as follows.

min dig
7 .k

Dy = max (6)
For any k, if we reduce the execution time of 74, by Dx,
then all tasks become schedulable. However, if Dy, is larger
than mreg, the maximum value we can take off from the
execution time of task 7%, then it is impossible to achieve
our goal by only reducing the execution time of task 1%.
We solve this problem through iteration. First, we try to
reduce the execution time of 71 by D;. If D; is larger than
mrcy, then we reduce the execution time of 71 by mrer. In
that case, we iterate the above steps with 73, 73, ... until all
tasks become schedulable. We start from 7, because it is
more effective than starting from any other task. Note that
D.» is always smaller than or equal to D,,, provided that
m is smaller than n. In the (k+ 1)th iteration, Ac;; com-
puted in the kth iteration should be updated. Note that
the execution time of 71,..., 7 have been modified dur-
ing the first k iterations. This computation is performed
incrementally using the following equation.
(M

e+l
JAV

S, .
= AC;'C’]‘ — mrcg - ‘—TLI;]-]
The following example helps clarify the above men-
tioned procedures. Consider the case of three tasks:
7. Cy=4, T1=10, mrc; =2
T2: 0229, Tz=16, mrca=>5
T3: 03—_—7, T3:25, m?"03=3

Then
S1 = {11}
S2 = {TlvTQ}

53 = {T],TQ, 2T1, Tg}
‘We perform schedulability test for all three tasks at each
scheduling points as follows.

T - Cl S T1

T2 C1+4+Cy>T1, Acz1 =3
2C1 + Cy > Th, Acap =1

73: Ci1+C2+Cs>T, Acs,1 = 10
20y + Co+ Cy > T, Acz 2 =8
2C1 +2C +Cs > 2Ty, Acsz =13
3C, +2Cy + C3 > T3, Acz s =12

Then it is found that task 7; is schedulable, but 7o and
73 are not. For each Ac;;, we compute the value of djjz.
Fig. 2 shows these values in a tabular form. Fig. 2 (a),
which is the result of the first iteration, shows the value
of diji for each combination of i, j, and k. From these
tables, we can conclude that 7o can be made schedulable if
the execution time of 71 is reduced by 0.5 or the execution
time of 72 is reduced by 1. 73 can be made schedulable if
C is reduced by 4, Cs is reduced by 6, or Cz is reduced

1578

i 2 3) T s]
N z ¥ 2 138 INKTTY z. [3
1 3 13 wlw] w0 1 3 | 8
2 0.5 1 4 8 8 2 4 4
3 5 6.5 13 3 45 i}
1 16 | 12 4 3 | 6

(@)

Fig. 2. Deviation time (a)the first iteration (b)the second iteration.

Calculate.deviation-time() {
schedulability.test();
for (b =1,2,..., n) {
for (all tasks 7; wich are not schedulable)

compute Ac; ;

at 5; 43
Dy = max; {minj’,.. ’liﬂx] H

if (D) > mrey) {
Si

2.
7L

implement whole 7, with hardware;

Acg,j = Acqj — mreg [

}

else {

: mrcy ~ D) .
implement Ak——h of 7}, with hardware;

[&

exit loop;

Fig. 3. A pseudo code for calculation of deviation time.

by 8. Applying equation (6), we obtain D; = 4, Ds = 6,
D3 = 8. First, we try to subtract D from the execution
time of 1. However, it fails because mrc; is lower than
D;. In the second iteration, Ac;; is re-computed using
the equation (7), which gives the following results.

Acay =1 Acso=-3

Acs1 =8 Aczp=4 Aczz=9 Ac3s=6

Negative value of Acs 2 indicates that 72 is schedulable.
For each Ac; ;, we repeat the computation of equation (5)
resulting in the table in Fig. 2 (b). The table for 7 is not
shown because T2 is now schedulable. From the table, we
see that Dy is 3 which is lower than mrez. Therefore, in
order to satisfy the schedulability of all three tasks, 71 is
entirely implemented in hardware and the execution time
of 72 must be reduced by 33%. The pseudo code of the
above mentioned procedures is shown in Fig. 3.

IV. Resource Sharing and Task Blocking

When tasks are implemented with hardware, there is a
trade-off between the hardware cost and the overall sys-
tem performance. To reduce the hardware cost, as many
components as possible should be shared among tasks, but
this causes mutually exclusive relations between tasks and
unnecessary blocking time due to priority inversion.

In this case, priority ceiling protocol[14] can be used to
solve the problem. When we use this protocol, the schedu-
lability test given in equation (3) is modified as follows.

TABLE I
TIMING ATTRIBUTES OF TASKS OF CNC
task
smpl [xref | yref | dist | stts | xctrl | yetrl
T, | 540 | 540 [540 | 540 [540 | 1620 | 1080
Ci | 39 | 51 | 51 | 54 [216 | 195 | 195
Fig. 4. A task graph of CNC controller.
11 Ci [£1+ B;
min Dy Nk <1 (8)
{teS;} t

where B; indicates the worst case blocking time. When
a hardware module is shared among different tasks, B; is
equal to the critical path length of that module.

V. Experimental Results

In this experiment, we have selected a
CNC(computerized numerical control) machine controller
which is an example of embedded digital controller. The
CNC machine is an automatic machining tool which is used
to produce user-designed workpieces[15]. A task graph for
the controller is shown in Fig. 4. It consists of a set of tasks
as shown in Fig. 4 by shaded boxes and a set of buffers
together with precedence relations between them. We ap-
plied the period calibration method proposed in. [11] to the
task graph to calculate task-specific attributes(period and
deadline) from end-to-end timing constraints. The results
of period calibration is shown in Table I together with the
execution time of each task. Utilization of the resultant
task set is computed as 1.06 which implies that the system
is infeasible with all software implementation. We applied
our algorithm to this example where we assumed mre; to
be 70% of C; for each task 7;. The result shows that task
smpl should be implemented totally in hardware and 30%
of zref should be implemented in hardware in order to meet
the condition for the schedulability of all tasks.

VI. Conclusions

In this paper, we have proposed the systematic ap-
proach for hardware-software codesign of hard real-time
systems. In this approach, we perform schedulability test
to find out whether a given task set is schedulable or not.
When there are tasks which cannot meet their deadlines
at each critical instant, we compute the time deviation by

1579

which a deadline is missed. The amount of time devia-
tion is used to determine which tasks should reduce their
execution time and what is the amount of each reduction.
The reduction in execution time is obtained by implement-
ing parts of tasks with hardware. With this approach, we
can design a hard real-time system which is infeasible with
software only implementation.

‘We are exploring the way to extend our work to a more
general hard real-time system design. This includes the
case where a deadline is not equal to a period and the case
where sporadic and/or aperiodic tasks exist. We are also
working on extending our work so that hardware cost is
considered. Minimum hardware cost can be achieved by
avoiding hardware implementation of tasks if the hardware
implementation is very expensive.

References
[1}] M. Garey and S. Johnson, Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979,
K. A. Olukotun, R. Helaihel, J. Levitt, and R. Ramirez, “A software-
hardware cosynthesis approach to digital system simulation,” IEEE
Micro, pp. 48-58, Mar. 1994.

A. Kalavade, System Level Codesign of Mized Hardware-Software Sys-
terns, Ph.D. thesis, University of California, Berkeley, Sept. 1995.
R. K. Gupta, Co-Synthesis of Hardware and Software for Digital Em-
bedded Systems, Ph.D. thesis, Stanford University, Dec. 1993.

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” 'in
Proc. IEEE Real-Time Systems Symposium, Dec. 1989, pp. 166-171.
C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real time environment,” Journal of the ACM,
vol. 20, no. 1, pp. 46-61, Jan. 1973.

C. Locke, “Software architecture for hard real-time applications:
Cyclic executive vs. fixed priority executives,” The Journal of Real-
Time Systems, vol. 4, no. 1, pp. 37-53, Mar. 1992.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“Hard real-time scheduling: the deadline-monotonic approach,” in
Proc. IEEE Workshop on Real-Time Operating Systems and Software,
May 19891, pp. 133-137.

S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park,
and C. Kim, “An accurate worst case timing analysis for RISC
processors,” in Proc. [EEE Real-Time Systemns Symposium, Dec. 1994,
pp. 97-108.

Y. S. Li, $. Malik, and A. Wolife, “Performance estimation of embed-
ded software with instruction cache modeling,” in Proc. Int. Conf.
on Computer Aided Design, Nov. 1995, pp. 380-387.

R. Gerber, S. Hong, and M. Saksena, “Guaranteeing end-to-end
timing constraints by calibrating intermediate processes,”
IEEE Real-Time Systems Symposium, Dec. 1995.

Y. Shin and K. Choi, “Software synthesis through task decompo-
sition by dependency analysis,” to appear in Proc. Int. Conf. on
Computer Aided Design, Nov. 1996.

K. Kim, Y. Kim, Y. Shin, and K. Choi, “An integrated hardware-
software cosimulation environment with automated interface genera-
tion,” in Proc. 7th IEEE Int. Workshop on Rapid Systems Prototyping,
June 1996, pp. 66-71.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization,” IEEE Tr. on
Computers, vol. 39, no. 9, pp. 1175-11853, Sept. 1990.

N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual
assessment of a real-time system design: a case study on a CNC con-
troller,” to appear in Proc. IEEE Real-Time Systems Symposium,
Dec. 1996.

[11]
in Proc.

(12]

