
1997 IEEE International Symposium on Circuits and Systems, June 9-12, 1997, H M K o n g

Enhancing Schedulability of Hard Real-Time Systems through Codesign

Youngsoo Shin Kiyoung C,hoi
School of Electrical Engineering

Seoul National University, Seoul 151-742, Korea
Phone: +82-2-880-5457, fax: +82-2-887-6575

e-mail : ysshine poppy. snu. ac. kr . kchoiQazalea. snu. i%c. kr

Abstract
Thzs paper deals with the problem of hardware-software

codesign of hard real-time systems. For a given task set, we
per form a n exact schedulability test to determine whether
the task set i s schedulable or not. W h e n there is a task
that cannot meet the deadline, we compute the amount o j
t ime by which the deadline i s missed. T h e n we determine
which tasks should reduce their execution t ime to compen-
sate that amoun t of t i m e deviation. T h e reduction o f exe-
cution t i m e i s achieved by implementing parts of the tasks
with hardware. With this approach, we can systematically
design a hard real-time sys tem which is infeasible with all
software implementation. Preliminary experimental results
are given to demonstrate the effectiveness of our approach.

I. Introduction
In recent years, hardware-software codesign has be-

come a major concern for a design of embedded systems.
Embedded systems are special purpose systems composed
of reprogrammable components(microprocessor, microcon-
troller, DSP, etc.) and a dedicated application-specific
hardware components. As the complexity of this kind of
systems increases, a systematic design approach receives a
lot of attention.

Most embedded systems are described as a set of pro-
cesses or tasks which communicate with each other through
shared medium or using message passing. Usually tim-
ing or resource constraints are specified together with the
system description. Depending on the characteristics of
timing constraints, a system can be referred to as a hard
real-time or a soft real-time system. In a hard real-time
system, all tasks should complete their computation within
specified deadlines. In usual approaches to a real-time sys-
tem design, if there exists no feasible schedule for a given
task set, redesign processes are repeated through modifi-
cation of deadlines or periods of some tasks or through
tuning of tasks. In designing complex systems, however,
these engineering approaches are hard to employ or even
are not acceptable. Therefore, we need a systematic ap-
proach which will replace the ad hoc approaches.

In this paper, we take an approach in which the exe-
cution time of tasks can be reduced by moving some code
fragments to hardware components. In other words, when
the given task set do not satisfy schedulability condition,
we reduce the execution time of some tasks by employing
a coprocessor which is a hardware implementation of the
code fragments of the tasks. In this approach, the essential
problem is a decision about which tasks and which part of
the tasks should be implemented with hardware compo-

nents. This problem can be simplified by dividing it into
three subproblems as follows.

1. Which tasks should be entirely implemented with
hardwtare.

2. Which tasks shaNuM be partially implemented with
hardware and how big is the hardware portion in each
of the tasks.

3. Within each of the tasks determined as in 2 above,
which portion should be implemented with hardware.

The first two decisions must be made in such a way to
minimize hardware resources. When resource constraints
are given, decision should be made to meet these con-
straints. The last subproblem is similar to the circuit par-
titioning problem. The circuit partitioning problem can
be modeled as the graph partitioning problem which is
known to be NP-hard[l]. In contrast to the circuit parti-
tioning which is homogeneous, the partitioning in our case
is heterogeneous in that some one part is implemented in
software and the other part is implemented in hardware.
Therefore, t,he latter p.roblem is considered to be harder to
solve. There have bee.n many reiearches about this prob-
lem[2]; [3], 1141, but it i:i beyond the scope of this paper.

We tackle the first two subproblems using the exact
schedulability test, of t,he rate monotonic scheduling algo-
rithm[5]. The rate monotonic algorithm in which a task
with shorter period or with higher execution rate is as-
signed a higher priority is proved to be an optimal fixed pri-
ority algorithm[6]. Among various scheduling algorithms,
the rate monotonic algorithm is widely used and of great
practical importance[5], [7]. One of the reasons is that
there exist schedulability tests[5], [6] , [8] for a given task
set.

The overall flow of our approach is as follows. First,
the system is specified as a set of tasks, timing at-
tributes/constraints, ,and hardware cost of each task.
There have been m a y researches for estimating the ex-
ecution time of a task[9], (101 and computing the detailed
timing information(period, deadline, etc.) from the timing
constraints at the higher abstraction level[ll]. We perform
an exact schedulability test[5] for the task set. If there ex-
ists a task which violates the schedulability condition, we
compute the percentage of the task's execution time to
be cut off in order to satisfy the schedulability condition.
Then parts of the task are implemented with hardware
such that the execution time is reduced. All these pro-
cesses are performed in such a way to minimize the hard-
ware cost of the resulta.nt implementation. The partitioner
also finds hardware modules which are shared among dif-
ferent parts in the taslks. Hardware sharing incurs block-

0-7803-3583-X/97 $10.00 01997 IEEE 1576

task set
timing COnSlraintS

cost 01 HW modules

Fig . 1. Conceptual design flow

ing or mutually exclusive relation for tasks thereby low-
ering schedulability. Using this information on hardware
sharing, we repeat the above mentioned procedures until
all tasks meet their deadlines. All these processes are il-
lustrated in Fig. l . Automatic partitioning is currently
under development and is beyond the scope of this paper.

The rest of the paper is organized as follows. In the
next section, we describe basic assumption and its under-
lying effects on the design of hardware-software mixed sgs-
tems. We propose and describe a new algorithrn for achiev-
ing schedulability using schedulability test in section 111.
In section IV, we consider the effect of hardware resource
sharing and task blocking. We show experimental results
in section V and draw conclusions in section VI.

11. Basic Assumption

lows.
To simplify our problem we make assumptions as fol-

Hardware components have bounded deiay. This is
enforced by the property of predictability of real-time
systems.

a Communication overhead between hardware and soft-
ware is determined only by the number and the type
of data to be transferred.

The first assumption can be relaxed in non real-time or
in soft real-time applications and in that case handshak-
ing protocol can be used to synchronize a communication
between hardware and software. However, in hard real-
time systems which enforce predictability of system be-
havior, bounded delay of hardware components is a nec-
essary condition. The property of bounded delay of hard-
ware components can be effectively used in two respects.
First, handshaking is not necessary because the completion
time of hardware execution can be known in advance(off-
line). Therefore, the overhead for synchronization can be
removed thereby enhancing the system performance. Sec-
ond, a measure of parallelism between hardware and soft-
ware can be determined in advance and used for execu-
tion overlap between hardware and software. In this case,
the execution overlap can be efficiently realized with static
scheduling only in contrast to the realization with mixed
static and dynamic scheduling in[l2], where unbounded
delay is allowed.

The second assumption is based on the fact that in
most embedded systems, reprogrammable components are
usually a bus-master and therefore bus arbitration is not
needed. Communication latency is dependent only on the

size of data to be transferred and on the bandwidth of the
bus between the reprogrammable and the hardware com-
ponents. Data which can not be packed into the bus bit
width should be properly divided into packets and an ap-
propriate communication protocol should be used between
the hardware and the software[l3].

111. Algorithm for Achieving Schedulability
Consider a set of n periodic tasks 71, r2,. . . , T ~ , and a

pair (T,:C,) for each of the tasks, where T, is the period
of task r, and C, is the execution time of the task and
7,'s are assumed to be sorted in the ascending order of the
period. LVe define m r c L as the maximum value by which
we can reduce the execution time of task 7;. When there
are no resource constraints, this value is achieved when
r, is implemented entirely with hardware. m r c i can be
computed using the following equation.

mrc, = C, - [input -communicat ion-overhead +
cr it ical -pat h J e n g t h +
output -communicat ion-overhead] (1)

where cr i t i ca l -pa th leng th is the latency obtained with
hardware after scheduling' and allocation.

As a first step, we perform an exact schedulability
test[5] for a given task set, which tests on the sets of
scheduling points defined by the following equation.

(2)
T, s, = {ICT, l j = 1 , . . . , i ; IC = 1,. . . , LT]}

JVe define St,] as the j t h scheduling point of task r,
when elements of S, are sorted in the ascending order. A
task r, is schedulable if it satisfies the following equation.

(3)

We can find out tasks which cannot meet their deadlines
in a critical instant[6] by the above equation. For each task
which does not satisfy equation (3), we compute the time
deviation by which the task misses its deadline. We define
IC, as the time deviation of task r, at the j t h scheduling
point. It is given by the following equation.

(4)

For each we compute the time dz3k, k = 1,. . . , i ,
by which the execution time of each task rr~ must be re-
duced in order to make r, schedulable. It is computed by
the following equation.

(5)

'This should not he confused with the scheduling of real t ime tasks.
Scheduling in this phrase means assigning a control s t ep t o each operation
in hardware implementation and is one of t he phases performed in a high-
level synthesis.

1577

It can be easily shown that if the execution time of each
task n is reduced by the amount given in equation (5) ,
then rz can be made schedulable. From this computation,
we can compute the minimum required time by which the
execution time of T k must be reduced in order to make all
tasks schedulable as follows.

r 1

I'br any k , if we reduce the execution time of T k by Dk,
then all tasks become schedulable. However, if Vk is larger
than mrck, the maximum value we can take off from the
execution time of task Tk, then it is impossible to achieve
our goal by only reducing the execution time of task rk.
We solve this problem through iteration. First, we try to
reduce the execution time of T I by VI. If 'DI is larger than
mrcl, then we reduce the execution time of 71 by mrcl. In
that case, we iterate the above steps with T Z , 7 3 , . . . until all
tasks become schedulable. We start from 71 because it is
more effective than starting from any other task. Note that
D , is always smaller than or equal to D n , provided that
m is smaller than n. In the (k + 1)th iteration, Ac,,, com-
puted in the lcth iteration should be updated. Note that
the execution time of T I , . . . , 7 k have been modified dur-
ing the first lc iterations. This computation is performed
incrementally using the following equation.

The following example helps clarify the above men-

T I : C1=4, Tl=lO, mrcl=2
n: C2=9, T2=16, mrcz=5
5-3: C3=7, T3=25, mrc3=3
Then
Si = {Ti }
i s 2 = {TI, T2)

We perform schedulability test for all three tasks at each

tioned procedures. Consider the case of three tasks:

s3 = {Tl,T2,2TI,T3}

scheduling points as follows.

T I : Ci 5 TI
r 2 : Ci + C2 > Ti, Ac2,i = 3

A C Z J = 1 2C1 + C 2 > T2,
r3 : Ci + C 2 + C3 > Ti ,

2C1 -k C.r + C3 > Tz,
2C1 + 2C2 + C3 > 2T1,
3C1 + 2C2 + CB > TB,

A c ~ , I = 10
A c ~ , z = 8
Ac3,3 = 13
A c B , ~ = 12

Then it is found that task TI is schedulable, but r2 and
7-3 are not. For each we compute the value of d z j k .

Fig. 2 shows these values in a tabular form. Fig. 2 (a),
which is the result of the first iteration, shows the value
of dzJk for each combination of z, j , and k . From these
tables, we can conclude that 7 2 can be made schedulable if
the execution time of TI is reduced by 0.5 or the execution
time of 7 2 is reduced by 1. r3 can be made schedulable if
C1 is reduced by 4, CZ is reduced by 6, or C3 is reduced

Fig. 2. Deviation t ime (a) the first i teration (b) the second iteration.

Calcul2 l te .deviat io l . t~m~() {

~ = h ~ d n l a b ~ l i t r - t ~ s t () ,

f o r (k = 1 , 2 n) {

fo r (all t asks 7, wicli are n o t schedulable)

compute a t S i , l ;

DA. = max, [min ,,,, , lJ , , ,] ;

I f ("A . > " ' C k) 1
b,c;,J = A c i , j .- m r c k 1 3 1 ;

Tk
implement whole T~ with hardware ,

1
else {

implement y p of r k with hardware:

exit loop,

}

Fig. 3. A pseudo camde for calculation of deviation t ime.

by 8. Applying equation (6), we obtain VI = 4 , V2 = 6 ,
'D3 = 8 . First, we try to subtract V I from the execution
time of 7 1 . However, it fails because mrcl is lower than
D l . In the second it'eration, A c ~ , ~ is re-computed using
the equation (7) , which gives the following results.

Acs,i = 8 Ac:,,~ = 4 A~3 ,3 = 9 A c s , ~ = 6

Negative value of A c z , ~ indicates that 7-2 is schedulable.
For each A c , , ~ , we repeat the computation of equation (5)
resulting in the table in Fig. 2 (b). The table for 7 2 is not
shown because *r2 is now schedulable. From the table, we
see that V2 is 3 which is lower than mrcz. Therefore, in
order to satisfy the schedulability of all three tasks, TI is
entirely implemented in hardware and the execution time
of r2 must be reduced by 33%. The pseudo code of the
above mentioned procedures is shown in Fig. 3.

IV. Resource Shatring and Task Blocking
When tasks are implemented with hardware, there is a

trade-off between the hardware cost and the overall sys-
tem performance. To reduce the hardware cost, as many
components as possible should be shared among tasks, but
this causes mutually exclusive relations between tasks and
unnecessary blocking time due to priority inversion.

In this case, priority ceiling protocol[l4] can be used to
solve the problem. When we use this protocol, the schedu-
lability test given in equation (3) is modified as follows.

T,
C,

Fig. 4 . A task graph of CNC controller

task
smpl xref yref dist stts xctrl yctrl
540 540 540 540 540 1620 1080
39 51 51 54 216 19%5 195

~~~ 

where B, indicates the worst case blocking time. \f'7hen 
a hardware module is shared among different tasks, B, is 
equal to the critical path length of that module. 

V. Experimental Results 
In this experiment, we have selected a 

CNC(computerized numerical control) machine controller 
which is an example of embedded digital controller. The 
CNC machine is an automatic machining tool which is used 
to produce user-designed workpieces[l5]. ,4 task graph for 
the controller is shown in Fig. 4. It consists of a set of tasks 
as shown in Fig. 4 by shaded boxes and a set of buffers 
together with precedence relations between them. We ap- 
plied the period calibration method proposed in [ll] to the 
task graph to calculate task-specific attributes(peri0d and 
deadline) from end-to-end timing constraints. The results 
of period calibration is shown in Table I together with the 
execution time of each task. Utilization of the resultant 
task set is computed as 1.06 which implies that the system 
is infeasible with all software implementation. We applied 
our algorithm to this example where we assumed mrcz to 
be 70% of C; for each task r,. The result shows that task 
smpl should be implemented totally in hardware and 30% 
of zrefshould be implemented in hardware in order to meet 
the condition for the schedulability of all tasks. 

VI. Conclusions 
In this paper, we have proposed the systematic ap- 

proach for hardware-software codesign of hard real-time 
systems. In this approach, we perform schedulability test 
to find out whether a given task set is schedulable or not. 
When there are tasks which cannot meet their deadlines 
at each critical instant, we compute the time deviation by 

which a deadline is missed. The amount of time devia- 
tion is used to  determine which tasks should reduce their 
execution time and what is the amount of each reduction. 
The reduction in execution time is obtained by implement- 
ing parts of tasks with hardware. With this approach, we 
can design a hard real-time system which is infeasible with 
software only implementation. 

W-e are exploring the way to extend our work to a more 
general hard real-time system design. This includes the 
case where a deadline is not equal to a period and the case 
where sporadic and/or aperiodic tasks exist. We are also 
working on extending our work so that hardware cost is 
considered. Minimum hardware cost can be achieved by 
avoiding hardware implementation of tasks if the hardware 
implementation is very expensive. 

References 
1'1 Garey and  S Johnson, C o m p u t e r s  and Intractabzlsty; a Gusde t o  
the T h e o r y  of K P - C o m p l e t e n e s s ,  Freeman, San Francisco, CA,  1979. 
K A. Olukotun. R.  Helaihel, J .  Levitt ,  a n d  R. Ramirez, "A software- 
hardware cosynthesis approach t o  digital system simulation." I E E E  
Mtcro ,  pp. 48-58, Mar.  1994. 
A .  Kalavade. S y s t e m  Leuel  Codrszgn of Mzzed Hardware-Sof tware S y s -  
t e m s .  P h  D.  thesis, University of California, Berkeley, Sept .  1595. 
R .  K. G u p t a ,  Go-Synthesis  o f  Hardware and Sof tware f o r  Dzgital E m -  
bedded S y s t e m s ,  Ph.D.  thesis, Stanford University, Dec. 1993. 

Lehoczky, L. Sha ,  and  Y .  Ding, "The rate monotonic scheduling 
algorithm: exact characterizat.ion and  average case behavior," i n  
Proc I E E E  R e a l - T t m e  S y s t e m s  S y m p o s i u m ,  Dec. 1989, pp. 166-171. 
C .  L. L I U  and  J .  W Layland, "Scheduling algorithms for multipro- 
gramming in a hard real t ime environment," J o v r n a l  of the A G M ,  
vol. 2 0 .  no. 1 .  pp.  46-61, Jan .  1973. 
C .  Locke. "Software architecture for hard real-time applications: 
Cyclic executive vs. fixed priority executives.'' The  Journal  o f  Real- 
Ttme S y s t e m s .  vol. 4 ,  no .  1, pp. 37-53, Mar. 1592. 
K C .  Audsley, A. Burns,  M .  F. Richardson, a n d  A .  J .  Wellings, 
, ,Hard real-time scheduling: t h e  deadline-monotonic approach," in 
Proc. I E E E  W o r k s h o p  on Real-Time Oprratzng S y s t e m s  a n d  Sof tware,  
May 1991, pp .  133-137. 
S. Lim, Y .  Bae. G Jang ,  B Rhee, S .  Min, C. Park,  H. Shin,  K.  Park,  
and  C. Kim, "An accurate worst  case t iming analysis for RISC 
processors," i n  Proc. I E E E  Real-Tzme S y s t e m s  Symposzum, Dec. 1994, 
pp. 97-108. 
Y .  S. Li,  S Malik. and  A. Wolfe, "Performance estimation of embed- 
ded software with instruction cache modeling," in Proc int. Conf. 
on C o m p u t e r  Azded Deszgn ,  Nov. 1995, pp. 380-387. 
R Gerber,  S. Hong, and  M.  Saksena, "Guaranteeing end-to-end 
timing constraints by calibrating intermediate processes," in Proc. 
I E E E  R e a l - T z m e  S y s t e m s  S y m p o s i u m ,  Dec. 1995. 
Y .  Shin and  K. Choi, "Software synthesis through task decompo- 
sition by dependency analysis," to  appear  in Proc.  Int .  Conf. on 
Computer Aided Design, Nov.  1996. 
K "An integrated hardware- 
software cosimulation environment with au tomated  interface genera- 
tion," in Proc. 7 t h  I E E E  Int .  W o r k s h o p  on R a p d  S y s t e m s  Prototypzng,  
June 1996, pp  66-71. 
L. Sha ,  R. Rajkumar,  and  J.  P. Lehoczky, "Priority Inheritance 
protocols. A n  approach to real-time synchronization." I E E E  Tr. on  

C o m p u t e r s ,  vol. 39, no 9, pp.  1175-1185, Sept.  1990. 
N. Kim, M .  Ryu, 5. Hong, M. Saksena, C. Choi,  a n d  H.  Shin ,  "Visual 
assessment of a real-time system design: a case s tudy  on a C N C  con- 
troller," t o  appear in Proc IEEE Real-Time Systems Symposium, 
Dec. 1996. 

Kim. Y .  Kim, Y .  Shin, and  K.  Choi, 

1579 


