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Abstract—The analysis of an antenna mutual coupling is a significant
issue for designing the wireless communication system especially
includesan array mutual coupling problem. The accurate analysis
of the mutual coupling between antennas is needed. Accordingly,
several methods for the mutual impedance calculation of dipoles
have been studied in cases of coplanar-skew and nonplanar-skew.
This paper proposes an exact and simple method for analyzing the
mutual impedance between two arbitrarily located and slanted dipoles
using the modified induced EMF method; their expressions and the
exact analytic solution. The proposed formula and their closed-form
solutions are verified by numerical solution using HFSS and give good
agreement.

1. INTRODUCTION

Antenna mutual coupling analysis is an important and significant issue
for the mobile communication system, radio frequency identification
(RFID) system, near field communication (NFC) system and even
the array antenna. For example, the mutual coupling may affect
the performance of localization algorithms if the mutual coupling is
not properly considered [1–5]. However, it is hard to predict such
mutual effects because the presence of another element, which could
be an antenna, can produce quite different radiated fields, current
distribution and input impedance at the end. For the effective design of
an antenna system, the input impedance has to be considered together
with the mutual effects between antennas. That is called the driving
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point impedance, which consists of self-impedance, mutual impedance
and the ratio of their current distributions. Based on this physical view,
the exact calculation of mutual impedance is important for efficient
performances of the antenna system [6].

There are several applications using the mutual coupling effect
of dipoles and relative antennas. Some studies are focused on the
impedance computation by various modeling methods. The computed
mutual impedance can be used to reduce the radar cross section (RCS)
or synthesize the optimal radiation pattern of the conformal array [7–
14]. Also, it is useful for an interaction between the dipole particles, for
example, analyzing the array impedance [15–22]. And, an analyzing
the response of arbitrary configuration of two dipoles in reverberation
chamber is also useful [23–25].

Several studies have been reported on the mutual impedance
between parallel dipoles in echelon configurations. King [26] proposed
exact expressions, developed for mutual impedance between two
staggered parallel center-fed, infinitely thin antennas of unequal
lengths. From this derivation, other advanced analysis techniques
were introduced [27–32]. The mutual impedance is calculated by
multiplying the radiated electric fields from the transmitting dipole and
the current distribution on the receiving dipole. This method is called
the induced electromotive force (EMF) method and is wellmatched
with results from the method of moment (MoM), but is basically
limited to straight, parallel, and echelon cases [6].

In the case of coplanar-skew configurations, several studieshave
been described [33–37]. Representatively, Richmond [36] introduced
the induced EMF formulation of mutual impedance between coplanar-
skew dipoles. However, this approach is complicated because the
integral path for calculating the mutual impedance lies along the r-
directions from the origin point that is the intersection point of two
coplanar-skew dipoles. The integration then requires a different axis,
which isthe r-direction via radiated fields from the transmitting dipole,
and transformations of variables are also needed.

Furthermore, advanced nonplanar-skew cases have been stud-
ied [38–41]. Representatively, Richmond [38] also introduced an ex-
pression for the mutual impedance of nonplanar-skew dipoles. The
proposed configuration for analysis is similar to the coplanar-skew case
However, the origin point for the r-direction, which is an integral path,
is at (x, y, z) = (0, d, 0). Then, the relative electric field direction for
the integration has to be properly changed. Therefore, the geometrical
structure is also complicated and the proposed formula needs transfor-
mations of variables as well.

This paper proposes an effective analysis method of mutual
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impedance between two arbitrarily located and slanted dipoles. This
paper characterizes an exact, simple and intuitive analysis using
the effective length vector (ELV) concept; their mutual impedance
expression and the exact analytic solution. The proposed formula
and their closed-form expressions, which is the exact analytic solution,
are verified by numerical solution using HFSS and show well-matched
results. Several configurations are examined and compared, including
cases of varying distance, height slant angle, and even for nonplanar
cases, utilizing the proposed method and numerical results by HFSS.
Section 2 presents details of the proposed analysis method; Section 3
provides the expressions of the closedform followed by several examples
in Section 4; and Section 5 gives conclusions.

2. MUTUAL IMPEDANCE ANALYSIS

An expression of the mutual impedance for two parallel dipoles in
echelon was already introduced [26]. For new expressions of coplanar
or nonplanar skew configuration, the proposed modified induced EMF
method introduces the concept of the ELV and its application and
formulations.

Figure 1. Geometry of two arbitrarily located and slanted dipoles in
coplanar.
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2.1. Modified Induced EMF Method Using Effective Length
Vector

Figure 1 shows the geometry of two arbitrarily located and slanted
dipoles in coplanar. Mutual impedance is calculated by multiplying
the radiated E-fields from antenna 1 and the current distribution
on antenna 2 by the induced EMF method. The radiated E-fields
from the transmitting dipole lying on the z-axis for the Cartesian
coordinate exist only along the z- and y-axes. Antenna 2, which is a
receiving dipole, is slanted by an arbitrary angle α on the same plane
with antenna 1, which is the transmitting dipole. Antenna 2 can be
considered to consist of two effective lengths by orthogonal projections,
which are on the z′- and y′-axes with a basis of the feed point of
antenna 2 as the center. Thus, mutual impedance can be calculated
by integration along these effective lengths and their sum. At this
time, the selection of an integral path is also important. The dipole
antenna has two poles which are plus and minus. The induced potential
developed at the terminal of the dipole is calculated by integrating from
the minus end to the plus end of the dipole. Therefore, this integral
path direction can be defined as a vector concept.

Figure 2 shows the integral paths of effective length for slant angles
at each quadrant. In the case of Figure 2(a), the plus pole direction is
for the second quadrant. Then, the integral paths of effective lengths
are plus direction for the z′-axis and minus direction for the y′-axis
effective length. In this way, each integral path would be properly
changed according to the slant angle α. The defined effective lengths
for z- and y-axes are given by

l2ez = l2 · cos (α) (1a)
l2ey = −l2 · sin (α) (1b)

 
(a) (b) (c) (d)

Figure 2. Integral paths of effective lengths for slant angle α at each
quadrant: (a), (b), (c), (d) are for 1, 2, 3, 4 quadrant.
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Figure 3. Changes of effective length in accordance with slant angle
α.

where l2 represents the length of antenna 2, α is the slant angle of
antenna 2 on the yz-plane. Figure 3 indicates the changes of effective
length in accordance with slant angle α for the same quadrant. From
this ELV concept, we can define the integral path lengths and directions
for any slanted angles.

2.2. Coplanar-skew Dipoles

According to the ELV concept, exact and efficient calculation of
the mutual impedance is possible without changing the relative axes
for integration and transformations of variables. Then, the mutual
impedance can be expressed by the sum of the integrals of y- and z-
axes, and is given according to the modified induced EMF method
as

Z21=
−1

I1iI2ezi

∫ l2ez
2

− l2ez
2

Ez(z)·I2ez(z) dz+
−1

I1iI2eyi

∫ l2ey
2

− l2ey
2

Ey(y)·I2ey(y)dy (2)

where I1i, I2ezi and I2eyi are the currents at each input terminal of the
antennas. Ez and Ey are the radiated electric fields from antenna 1 to
the receiving dipole, which is lying on the z-axis. The total radiated
electric fields from antenna 1 are given by
Ex(x)=0 (3a)

Ez(z)=−j
ηI1

4π

[
e−jkR1(z)

R1 (z)
+

e−jkR2(z)
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2

)
e−jkr(z)

r (z)

]
(3b)
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ηI1

4πy

[(
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2

)
e−jkR1(y)

R1 (y)
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2

)
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]
(3c)

where η is intrinsic impedance, k the wave number of medium, and
l1 the length of antenna 1. R1, R2 and r are lengths from the end
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of the positive, negative poles and center of dipole, respectively, to
the observation point. Among these three electric fields, z- and y-
oriented electric fields are concerned with mutual impedance and the
x- oriented electric field is zero. I2ez and I2ey are the sinusoidal current
distributions for each effective length by the modified induced EMF
method and are defined by

I2ez(z)=I2 sin
[
k

(
− |z−h|+ l2ez

2

)]
, for h− l2ez

2
≤z≤h+

l2ez

2
(4a)

I2ey(y)=I2 sin
[
k

(
− |y−d|+ l2ey

2

)]
, for d− l2ey

2
≤y≤d+

l2ey

2
(4b)

where I2 is the current maximum, h is the height and d is the distance
between the center of feed points of antenna 1 and 2. Finally, the
mutual impedance of the coplanar-skew dipoles can be written by
substituting the relations (3), (4) into (2) and following the formula is
given as

Z21 = Z21z+Z21y

=
−30
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(5)

The geometry with respect to z- and y-axes of Figure 1 reveals that

rz (z) =
√

d2 + z2, ry (y) =
√

h2 + y2

R1z (z) =
√

d2 + (z − l1/2)2, R1y (y) =
√

(h− l1/2)2 + y2

R2z (z) =
√

d2 + (z + l1/2)2, R2y (y) =
√

(h + l1/2)2 + y2

(6)

Therefore, Equation (5) includes the characteristics for arbitrarily
located and slanted coplanar dipoles using two effective length vectors
and their sum of integrations.
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Figure 4. Geometry of two arbitrarily located and slanted dipoles in
nonplanar.Antenna 2 consists of three effective length vectors.

2.3. Nonplanar-skew Dipoles

Figure 4 describes the geometry of two arbitrarily located and slanted
nonplanar dipoles. The nonplanar slant angle is defined as β which is
the angle between the ELV for y′z′-plane and antenna 2. Then, the
effective lengths of each x′-, y′- and z′-axis are equal to

l2ex = −l2 · sin (β) (7a)
l2ey = −l2 · sin (α) · cos (β) (7b)
l2ez = l2 · cos (α) · cos (β) (7c)

Antenna 2 is defined on the local coordinate system and consists of
three ELVs for x′-, y′- and z′-axes. The expression can be written as

~l2 = ~l2ex +~l2ey +~l2ez (8)

This is the vector sum of components of each axis.
Nevertheless, the component for x′-axis does not need to be

considered since a result of the integration along the x-direction will
be zero. Figure 5 shows the cancellation of electric field of the effective
length in the x-direction. The ELV for the x′-axis consists of x- and
y-components of electric fields from antenna 1 at each point of the
effective length. Then, each x-direction electric field of each point is
zero from (3a). And, the y-direction electric fields of each point of the
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Figure 5. Cancellation of electric fields of the effective length to x-
direction.

(a) (b) (c) (d)

Figure 6. Changes of effective length and integral path in accordance
with slant angle β and α = 30◦: (a), (b), (c), (d) are for β = 0◦, 45◦,
135◦, 180◦ angles and their effective lengths are l2, l2/

√
2, l2/

√
2, l2,

respectively.

effective length are canceled when we consider the effective length is
symmetric and divided into two parts from the center of the vector
length. The vector direction is then only the opposite. Thus the x-
and y-directed fields cancel from antenna 1 along the effective length
in the x′-direction. The explanation can be written as

Ex′′ = Ex′′′ = 0 (9a)
−Ey′′ + Ey′′′ = 0 (9b)

Therefore, in case of two nonplanar slanted dipoles by the angle β, the
mutual impedance can be defined as (5) which has to be considered
by changing the effective lengths for the z′ and y′-axes, except for the
x′-direction component.

When the angle β is varied with fixed angle α, the changes of
effective length and integral path are as indicated in Figure 6. In
accordance with slant angle β, the effective length for integration is
reduced or increased by varying the angle, and the integral paths are
also changed.
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3. EXACT ANALYTIC SOLUTION OF THE PROPOSED
FORMULA

Now, the mutual impedance for arbitrarily located and slanted
dipoles is related to just two integrals for z- and y-axes. Each
integral path is concerned with effective lengths and vector directions.
Equation (5) can be evaluated by mechanical integration. However,
to make arithmetical computations be possible the integration is done
mathematically, so that a convenient form is available for calculations.
To obtain the closed-form expression of the mutual impedance
Equation (5), the following subchapters include the processes of solving
the integral Z21 = Z21z + Z21y.

3.1. Closed-form Expression for Integration Z21z

King solved the mutual impedance of two unequal length parallel
dipoles in echelon. For the proposed mutual impedance Z21z for z-
direction, the effective antenna length for z′-axis is changed by the slant
angle α of antenna 2. Thus, the method from King can be properly
employed for the proposed z-direction mutual impedance Z21z.
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(10)

The formula can be evaluated to the closed form expression [26]
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and successively reduced to simply,
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where δt is the Kronecker’s delta function and

qn,t = h + n
l2ez

2
+ t

l1
2

(12)

3.2. Closed-form Expression for Integration Z21y

For the proposed mutual impedance Z21y for the y-direction, the
integration process is similar to the mutual impedance Z21z for the
z-direction. But, the y-direction radiated field from antenna 1, Ey

of (3c), has the variable y in the denominator. Thus, the integration
for the Z21y also includes the variable y in their denominator. The
Z21y can be developed to
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For a comfortable evaluation of the equation, the relative current
distributions of the integration path is divided into two parts which
are the lower and upper sides of the dipole from the feed point of
antenna 2.

For the first cosine term of Equation (13), the Z ′21y,cos,
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which is the cosine integral term and can be derived by the Euler’s
formula except for the constant. The Z21y,cos is developed by the
sum and difference identities of the trigonometric functions. For
convenience, let hy = h − l1/2. Then, by changing in the variables
of

u = k
(√

h2
y + y2 − y

)
(15a)
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(√
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)
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And from this relation, the variable y with u is derived as
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k

2u
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=
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Similarly for the variable v, Equation (14) simply reduces to
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The integration to be solved is shortly reduced. Then, the reduced
integration can be expressed by the partial fraction decomposition.
That is given as

∫ u2
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y

du =
1
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The equation is more simply divided into two parts and expressed with
the sine and cosine integral functions using equation∫
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where w = b = 1, x = u and a = ±khy [42]. In the manner described,
Equation (13) can be derived as the closed-form expression with the
sine and cosine integral functions and successively reduced to simply,
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where
pm,t = d + m

l2ey

2
+ t
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2

(21)

Equations (11) and (20) are exactly and simply expressed formulas
with the sine and cosine integral functions. Finally, the Equation (5)
is derived as the closed form expressions, which is the exact analytic
solution, by the sum of Equations (11) and (20).

4. VERIFICATION AND ANALYSIS

Section 2 presents the mutual impedance formulas for the two
arbitrarily located and slanted dipoles. For the verification of the
proposed formula, several configurations of the cases are performed.
The dimensions of dipoles used for the HFSS simulation are shown in
Table 1.

The designed antennas 1, 2 are assumed to be identical and 50 Ω
matched half-wavelength thin dipoles. The cases are for the varying
distance, angle and height for the coplanar, and even the nonplanar
configurations, to ensure the reliability of the proposed formulas.

Table 1. Dimensions of dipoles for the HFSS simulation.

parameter radius port length
50-ohm matched

half-length of dipole
dimension 0.5× 10−3λ 0.2× 10−2λ 0.227λ
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4.1. Coplanar-skew: Varying Distance

The comparisons of mutual impedances calculated by the proposed
method, and simulated by HFSS, are indicated in Figure 7. We assume
that the distance d is varying from 0 to 2λ with h = 0.3λ and fixed angle
α. The proposed method is well matched with the HFSS simulation
results. In particular, when the angle α = 90◦ in Figure 7(b), the
result shows good agreement. The calculated result only depends on
the effects of integration along the y-axis direction. The contribution
of y-axis is reliable according to the proposed method for calculating
the mutual impedance of dipoles.

(a) (b)

Figure 7. Mutual impedances of the calculated by the proposed
method and the simulated by the HFSS. For the cases of varying
distance d = 0− 2λ and h = 0.3λ and (a) α = 30◦, (b) α = 90◦.

 

Figure 8. Mutual impedances
of the calculated by the proposed
method and the simulated by the
HFSS. For the case of varying
height (h) and d = 1.2λ, α = 45◦.

 

Figure 9. Mutual impedances
of the calculated by the proposed
method and the simulated by the
HFSS. For the case of varying
angle α and h = 0.3λ, d = 0.8λ
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4.2. Coplanar-skew: Varying Height

In the case of varying height from 0 to 2λ between the center points
of two dipoles, Figure 8 shows the comparison of mutual impedances
calculated by the proposed method and simulated by HFSS, with
d = 1.2λ, α = 45◦ and the results are almost the same.

4.3. Coplanar-skew: Varying Angle

Figure 9 shows mutual impedances for the case of varying angle α
from 0◦ to 360◦ on the yz-plane with h = 0.3λ, d = 0.8λ. The effective
length and their directions of the integration path to be calculated are
changed according to the angle α variation. The results are also well
matched.

4.4. Nonplanar-skew

Figure 10 shows the comparisons of mutual impedances calculated by
the proposed method and simulated by HFSS in the cases of h = 0.3λ,
α = 45◦, d = 1.2λ, varying angle β and h = 0.3λ, α = 45◦, β = 45◦,
and varying distance d with respect to Figures 10(a), (b), respectively.
For the case of varying β according to the dimensions of Figure 10(a),
the result shows good agreements. At the β = 90◦ and 270◦,
particularly, the real and imaginary values are zeros because the two
dipoles are located perpendicularly to each other. Thus, the radiated
polarized fields are orthogonal and the mutual impedance becomes
zero. Figure 10(b) shows the mutual impedance for the varying

 

(a) (b)

Figure 10. Mutual impedances of the calculated by the proposed
method and the simulated by the HFSS. For the cases of h = 0.3λ,
α = 45◦ and (a) varying angle β, d = 1.2λ and (b) varying distance
(d), β = 45◦.
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distance d with the fixed β for the nonplanar configuration. The
results indicate the proposed method and concept for the nonplanar
case shows good agreement with the numerical solution.

4.5. Closed-form Solution

Figure 11 depicts the mutual impedance for the integral form and the
closed form when h = 0.3λ, α = 45◦, β = 0◦ and d = 0–2λ. The closed
form solution is well matched to the integral form solution (5) which is
solved by the numerical integration. However, the closed form solution
is the exact analytic solution of the proposed formula. The specific
values of the certain distances are shown in Table 2.

There are some differences from the results in Table 2. It is clear
that the closed form solution is the exact solution of the proposed
method. The proposed integral form can be easily used to calculate
the mutual impedance. But, the closed form can also be used for
needs of the exact solution. Therefore, the developed formulas prove
trustworthy and credible and even useful.

Figure 11. Mutual impedances of the integral form and the closed
form by the proposed method when h = 0.3λ, α = 45◦, β = 0◦ and
d = 0–2λ.

Table 2. Comparisons of the closed-form and integral form solution.

distance R21 X21

0.42λ
integral −10.4280380401191 −21.3703524834806
closed −10.8004417091625 −21.3704155486934

1.22λ
integral 9.8781082328936 −2.26338823892638
closed 10.2342456680168 −2.35063493055845
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5. CONCLUSION

In this work, the effective analysis method of mutual impedance
between two arbitrarily located and slanted dipoles has been developed.
The proposed modified induced EMF method uses the concept of
the effective length vector (ELV), their integral expressions and the
closed-form solution even the simply reduced final form. The proposed
method characterizes an exact, simple and intuitive analysis. In
addition, the proposed method is demonstrated to be reliable by
various verifications. The proposed method thus provided a reliable
and useful solution for analysis of the mutual coupling between dipoles.
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