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a b s t r a c t

In this paper, we propose a new state feedback controller using dynamic gain for input-delayed systems
with high-order nonlinearity terms in both feedforward and non-feedforward forms. The controller
design is based on a reduction method to remove the input delay and a gain scaling technique
involving appropriate powers of high-order nonlinearity. As a result,more generalized systems containing
feedforward andnonfeedforward termswith an input delay are regulatedwhen the proposedpower order
condition of the nonlinear function is satisfied. An example is given to show the generality of our result
over existing results.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Time-delay systems have received much attention with regard
to stabilization or regulation issues (Choi & Lim, 2006, 2010a,b;
Fang & Lin, 2006; Mazenc, Mondié, & Niculescu, 2003; Yue, 2004;
Zhang, 2006, 2009). The stabilization or regulation problems of
time-delay nonlinear systems with uncertain nonlinearity and a
delay in the input have been the subject of several independent
studies, recently. Regarding input-delayed systems, there has been
much research on the stabilization or regulation of a chain of
integrators where there is a delay in the input. In Fang and
Lin (2006), a state feedback stabilizing controller based on a
forwarding techniquewas proposed for a knowndelay in the input.
When a delay in the input is constant but unknown, an output
feedback control scheme in which a low-gain parameter is tuned
online was proposed by Choi and Lim (2006). When the input
delay is time-varying, a dynamic gain approach was developed by
Choi and Lim (2010a). In addition, some low-gain feedback laws
were established by Zhou, Duan, and Li (2009, 2011). Under input
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saturation, some bounded control approaches were established by
Fang and Lin (2006), Teel (1993) and Zhou, Duan, and Li (2008).
When a chain of integrator systems has a perturbed nonlinearity
under an input-matching condition, it has been shown that the
system stability is strongly affected by the suggested four types of
nonlinearity in Choi and Lim (2010a).

Meanwhile, the stabilization or regulation problems of the
feedforward systems have been researched and many related
studies in either state or output feedback forms have been
published in recent years (Chen & Huang, 2009; Jankovic, 2009;
Karafyllis, 2006; Krishnamurthy & Khorrami, 2007; Krstic, 2002,
2010; Ye, 2003, 2005; Ye & Unbehauen, 2004). It is of note
that a chain of integrator systems with a delayed input can be
viewed as a special class of feedforward systems (see Choi & Lim,
2006, 2010a). Global stabilization under the condition that the
nonlinearity satisfies a certain feedforward condition is solved
in Zhang (2006, 2009) when there is a delay in the input. In
Zhang (2006), feedforward nonlinear systems characterized by a
linear growth condition are handled. In Zhang (2009), an input-
delayed chain of power integrators with high order feedforward
nonlinearity is considered. However, when the order of the power
integrator is one, the condition of nonlinearity is same as the one
in Zhang (2006). However, in most of these studies, the systems
considered and control methods are naturally limited to a certain
class of feedforward systems only. Thus, if the systems contain
some additional ‘non-feedforward’ terms, most of the existing
results become non-applicable. Even though, in Krishnamurthy
and Khorrami (2007), the authors developed a dynamic-gain state
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feedback controller which allows some non-feedforward and non-
triangular terms in the nonlinearity, the problem of the time-delay
in the input was not considered.

In this paper, we develop a new regulating state feedback con-
troller with an adaptive dynamic gain inspired by Choi and Lim
(2010a) and Krishnamurthy and Khorrami (2007). More specif-
ically, the controller design is mainly based on the reduction
method to remove the input delay and a gain scaling technique in-
volving appropriate powers of high-order nonlinearity. Regarding
the system nonlinearity, we propose a new condition which be-
comes quite extensible via a nonlinear function under the power
order condition. With the proposed controller, we show that (i) a
class of nonlinear systems that have both feedforward and non-
feedforward nonlinear terms are regulated with a delay in the
input; (ii) the feedforward and non-feedforward terms are not lim-
ited to linear growth conditions, but they include some high-order
terms; (iii) the proposed controller has an adaptive gain such that
the growth rate of the nonlinearity does not need to be known.
Moreover, the proposed controller is continuous unlike the discon-
tinuous switching-type controller in Krishnamurthy and Khorrami
(2007). With these new conditions and our proposed controller,
the global regulation problem of time-delayed nonlinear systems
which has not been treated by any of the aforementioned existing
work is solved. An example is given for illustration.

2. Problem formulation

Weconsider the global regulation problemby state feedback for
the following class of nonlinear systems with a delay in the input

ẋ = Ax + Bu(t − τ) + δ(t, x, u) (1)

where x ∈ Rn is the state, u ∈ R is the input of the system,
and τ ∈ [0, ∞) is the finite delay time. The initial condition is
given as u(θ) = ν(θ), θ ∈ [−τ , 0], ν(θ) is a continuous function,
and the origin is the unique equilibrium point of the zero input
system of (1). The matrices (A, B) are a Brunovsky canonical pair
(A = [aij], i = 1, . . . , n, j = 1, . . . , n with aij = 1 if i =

1, . . . , n − 1, j = i + 1 and aij = 0 if j ≠ i + 1 and B =

[0, . . . , 0, 1]T ) and the nonlinearity is an n × 1 vector such that
δ(t, x, u) = [δ1(t, x, u), . . . , δn(t, x, u)]T .

Notations: Throughout the paper, ∥xt∥ = sup−τ≤θ≤0 ∥x(t +θ)∥
denotes the supnormwherewe let xt ∈ C([−τ , 0], Rn)be defined
by xt(θ) = x(t + θ), θ ∈ [−τ , 0], Analogously, we mean that
zt(θ) = z(t + θ) and ut(θ) = u(t + θ), θ ∈ [−τ , 0]. Also,
∥x∥ denotes the Euclidean norm and other norms are denoted by
subscripts.

Define a matrix Eγ (t) = diag[ 1
γ (t)n−1 , . . . ,

1
γ (t) , 1], γ (t) ≥ 1.

Then, the nonlinear functions δi(t, x, u) : R × Rn
× R → R, i =

1, . . . , n are C1 and satisfy the following feedforward and non-
feedforward conditions.

Assumption 1. There exist unknown constants L1 ≥ 0, L2 ≥ 0 and
a nonnegative function φ(x, u, γ (t)) such that

∥Eγ (t)δ(t, x, u)∥1 ≤ (L1 + L2φ(x, u, γ (t)))

×


n−2
i=1

|xi+2|

γ (t)n−i
+

|u|
γ (t)


(2)

for all x ∈ Rn, u ∈ R, and γ (t) ∈ R.

Assumption 2. (a) There exist functions φi(x, u, γ (t)) such that

φ(x, u, γ (t)) ≤

m
i=1

φi(x, u, γ (t)),

φi(x, u, γ (t)) =

n
j=1

|xj|a(i,j) |u|µiγ (t)νi (3)
for all x ∈ Rn and u ∈ R where a(i,j), µi ≥ 0,
m

i=1

n
j=1 a(i,j)

+ µi


> 0

, and νi is an any real number for i = 1, . . . ,m and

j = 1, . . . , n.
(b) The following inequality (power order condition) holds

νi +

n
j=1

(n − j)a(i,j) − µi < 1, i = 1, . . . ,m. (4)

Roughly speaking, L1 represents the linear growth rate and L2
represents the growth rate of high-order terms. Consider the
following linear growth feedforward condition (Koo, Choi, & Lim,
2010)

|δi(t, x, u)| ≤ L̄(|xi+2| + · · · + |xn| + |u|), i = 1, . . . , n − 2 (5)

with |δn−1(t, x, u)| ≤ |u|, |δn(t, x, u)| = 0, L̄ ≥ 0. It is easy
to see that if (5) holds, then the condition (2) always hold with
L1 = L̄n(n − 1) and L2 = 0, but not vice versa. Thus, the extension
to high-order terms and non-feedforward terms are obtained via
a φ(γ (t), x, u). We illustrate the extension concept via a function
φ(x, u, γ (t)) in the following example.

Example A. Let n = 2, δ1(t, x, u) = x1x2u2 and δ2(t, x, u) =

x1u3. In this case, it clearly contains both feedforward and non-
feedforward terms. Applying Assumption 1, we obtain

∥Eγ (t)δ(t, x, u)∥1 ≤ γ (t)−1
|x1| |x2| |u|2 + |x1| |u|3

≤ (|x1| |x2| |u| + γ (t)|x1| |u|2)γ (t)−1
|u|. (6)

Then, we have φ(x, u, γ (t)) = |x1| |x2| |u| + γ (t)|x1| |u|2 from
(6). By Assumption 2(a), we can obtain that φ1(x, u, γ (t)) =

|x1| |x2| |u| and φ2(x, u, γ (t)) = γ (t)|x1| |u|2. Then, Assump-
tion 2(b) is satisfied by taking a(1,1) = 1, a(1,2) = 1, µ1 = 1, ν1 =

0, a(2,1) = 1, a(2,2) = 0, µ2 = 2, and ν2 = 1.

We note that in order to check Assumptions 1 and 2, we need
to go through some algebraic manipulations as shown in the above
example. In Remark 1, we provide a more direct form for easy and
quick checking. Notably, the direct form in Remark 1 represents
only a subset of conditions from Assumptions 1 and 2, but it is still
useful when the nonlinearity is in this form.

Remark 1 (Direct Form). (i) The nonlinear functions δi(t, x, u)
satisfy the following form

|δi(t, x, u)| ≤


L̄1i + L̄2i

n
j=1

|xj|aij |u|bi


×


n−2
j=i

|xj+2| + |u|


, i = 1, . . . , n − 2 (7)

with |δn−1(t, x, u)| ≤

L̄1n−1 + L̄2n−1

n
j=1 |xj|an−1j |u|bn−1


|u| and

|δn(t, x, u)| ≤ L̄2n
n

j=1 |xj|anj |u|bn

|u|,

n
i=1

n
j=1 aij + bi


>

0

where unknown constants L̄1i ≥ 0, L̄2i ≥ 0, i = 1, . . . , n − 1,

and L̄2n ≥ 0.
(ii) The following inequalities (power order conditions) hold

n
j=1

(n − j)aij − bi < 1, i = 1, . . . , n − 1

n
j=1

(n − j)anj − bn < 0. (8)

Here, we show that this direct form indeed satisfies Assumptions 1
and 2. Applying Assumption 1, it is easy to obtain that
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∥Eγ (t)δ(t, x, u)∥1

≤


L1 + L2


n−1
i=1

n
j=1

|xj|aij |u|bi +
n

j=1

|xj|anj |u|bnγ (t)



×


n−2
i=1

|xi+2|

γ (t)n−i
+

|u|
γ (t)


(9)

where L1 = maxi=1,...,n−1{L̄1i}, and L2 = maxi=1,...,n{L̄2i}. From
Assumption 2(a), we obtain φi(t, x, γ (t)) =

n
j=1 |xj|aij |u|bi , i =

1, . . . , n − 1, and φn(t, x, γ (t)) =
n

j=1 |xj|anj |u|bnγ (t). Then, we
have a(i,j) = aij, µi = bi, and νi = 0, i = 1, . . . , n − 1, a(n,j) =

anj, µn = bn, and νn = 1, j = 1, . . . , n. Thus, we can see
that (8) satisfies Assumption 2(b). Using the direct form (i) and
(ii) in Remark 1, we can easily see that Example A satisfies the
proposed condition. Taking a11 = 1, a12 = 1, and b1 = 1 from
|δ1(t, x, u)| ≤ |x1| |x2| |u(t)|2 and a21 = 1, a22 = 0, and b2 = 2
from |δ2(t, x, u)| ≤ |x1| |u(t)|3 by (7), we can show that the power
order condition (8) holds.

Finally, to show that this Direct Form is a subset of Assump-
tions 1 and 2, we give a simple example:

Let n = 2, δ1(t, x, u) = x21u
3

+ x32u
4 and δ2(t, x, u) = x31x

5
2u

5.
Since the form of δ1(t, x, u) is not satisfied with (7), this case
violates Direct Form. However, applying Assumption 1, we obtain

∥Eγ (t)δ(t, x, u)∥1

≤ γ (t)−1(|x1|2|u|3 + |x2|3|u|4) + |x1|3|x2|5|u|5

≤ (|x1|2|u|2 + |x2|3|u|3 + γ (t)|x1|3|x2|5|u|4)

× γ (t)−1
|u|. (10)

Then, we have φ(x, u, γ (t)) = |x1|2|u|2 + |x2|3|u|3 + γ (t)|x1|3
|x2|5|u|4 from (10). By Assumption 2(a), we can obtain that
φ1(x, u, γ (t)) = |x1|2|u|2, φ2(x, u, γ (t)) = |x2|3|u|3 and φ3(x, u,
γ (t)) = γ (t)|x1|3|x2|5|u|4. Then, by taking a(1,1) = 2, a(1,2) =

0, µ1 = 2, ν1 = 0, a(2,1) = 0, a(2,2) = 3, µ2 = 3, ν2 = 0, a(3,1) =

3, a(3,2) = 5, µ3 = 4, and ν3 = 1, Assumption 2(b) is satisfied.
Then, it is obvious that Direct Form of Remark 1 is a subset of
Assumptions 1 and 2.

3. Main result

To solve our control problem, we introduce an adaptive con-
troller with a dynamic gain as follows.

Controller:

u = K(γ (t))

x1, . . . , xn−1, xn +

 t

t−τ

u(s)ds
T

(11)

where K(γ (t)) = [k1/γ (t)n, . . . , kn/γ (t)]. Note that u is well
defined and continuous for some suitably defined initial condition
u(θ) = ν(θ), θ ∈ [−τ , 0]. The following are explanations:
From (11), it is easy to see that at t = 0, we have u(0) =

K(γ (0))x(0) +
kn

γ (0)

 0
−τ

ν(θ)dθ . Then, we have
 0
−τ

ν(θ)dθ =

γ (0)
kn

(u(0) − K(γ (0))x(0)) =
γ (0)
kn

(ν(0) − K(γ (0))x(0)). Thus, any

continuous function ν(θ) that satisfies
 0
−τ

ν(θ)dθ =
γ (0)
kn

(ν(0) −

K(γ (0))x(0)) is valid (Choi & Lim, 2010a).
Dynamic gain:

γ̇ (t) = wγ (t)α+c−1
m
j=1


n−1
i=1

|xi|
γ (t)(n−i)

+

xn +

 t

t−τ

u(s)ds

βj
+ wγ (t)α+c−1
m
j=1


n−1
i=1

|xi|
γ (t)(n−i)

+

xn +

 t

t−τ

u(s)ds

βj+2

+ γ (t)α+c−1


n−1
i=1

|xi|
γ (t)(n−i)

+

xn +

 t

t−τ

u(s)ds

2

(12)

with γ (0) = 1 where

w =


0, if L2 = 0
1, if L2 ≠ 0 (13)

and a positive constant 0 < c < 1 −

νi +

n
j=1(n − j)a(i,j) − µi


for all i = 1, . . . ,m, α = maxi=1,...,m{νi +

n
j=1(n − j)a(i,j) − µi},

and βi =
n

j=1 a(i,j) + µi, i = 1, . . . ,m.
Note that the positive constant c always exists because of

Assumption 2(b).
The dynamic gain (12) is continuous and differentiable and

tuned online through an unknown growth rate of the nonlinearity.
Note that Assumption 1 implies that the norm bound structure of
nonlinearity is known. Thus, if the nonlinearity contains only linear
growth terms, we trivially have φ(x, u, γ (t)) = 0, which means
we can set L2 = 0. If L2 = 0, the dynamic gain (12) is virtually
the same as the dynamic gain of Koo et al. (2010) (a linear growth
rate version). If L2 ≠ 0, the terms in the first and second lines
of (12) are designed to adaptively cancel the effect of the high-
order nonlinearity. The parameters α, βi, and c are chosen from
the powers of the high-order nonlinearity.

Here, we address some mathematical notations and setups for
Theorem 1 and its proof. Let AK(γ (t)) = A + BK(γ (t)). Then, we
define K = K(1) and AK = AK(1). If AK is Hurwitz, from Choi and
Lim (2006), we can obtain a Lyapunov equation of AT

K(γ (t))PK(γ (t)) +

PK(γ (t))AK(γ (t)) = −γ (t)−1E2
γ (t) with PK(γ (t)) = Eγ (t)PKEγ (t) from

AT
KPK + PKAK = −I where I denotes an n × n identity matrix.

Lemma 1. For the constants η ≥ 0, ε > 0, and 0 < θ < 1, the
following inequality holds

 t
0 ηe−εsθ ds < +∞ on t ∈ [0, +∞).

Proof. The proof is in the Appendix. �

Lemma 2. Under Assumptions 1 and 2, the dynamic controller (11) –
(12) is applied to the system (1). Then, all states of the closed-loop
system (1) are globally regulated if dynamic gain γ (t) is bounded for
t ∈ [0, +∞).

Proof. The proof is in the Appendix. �

Theorem 1. Under Assumptions 1 and 2, select K such that AK is
Hurwitz. Then, the dynamic controller (11)–(12) globally regulates
the closed-loop system (1). Also, the dynamic gain γ (t) is bounded
for t ∈ [0, +∞).

Proof. We divide the proof into two parts for easy reading.
Part 1: (The closed-loop system and the norm-bound of the deriva-
tive of the Lyapunov equation.)

Consider the stability preserving reduction-type change of vari-
ables used in Choi and Lim (2010a) given by

[z1, . . . , zn−1, zn]T =


x1, . . . , xn−1, xn +

 t

t−τ

u(s)ds
T

. (14)

Then, via (14), the system (1) is transformed into

ż = Az + Bu − B1

 t

t−τ

u(s)ds + δ̄(t, z, ut) (15)
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where B1 = [0, . . . , 1, 0]T and δ̄(t, z, ut) = δ(t, x, u) where x is
replaced by z and the input u in the time interval [t − τ , t] using
(14). With (14), the controller (11) is represented by

u = K(γ (t))z. (16)

With the controller (16), we have the closed-loop system

ż = AK(γ (t))z − B1

 t

t−τ

K(γ (s))z(s)ds + δ̄(t, z, ut). (17)

There exists PK = PT
K > 0 such that

AT
KPK + PKAK = −I, π1I ≤ PKD + DPK ≤ π2I (18)

where D = diag[ 2n−1
2 , . . . , 2(n−i)+1

2 , . . . , 1
2 ], i = 1, . . . , n, π1, π2

> 0. With this, we set a Lyapunov function as V (z) =

γ (t)−1zTPK(γ (t))z. Since γ (t) is nondecreasing (see (12)), it is ob-
vious that γ (t) ≥ 1 for all t . Note that we have

γ (t)−1λ1∥Eγ (t)z∥2
≤ V (z) ≤ γ (t)−1λ2∥Eγ (t)z∥2 (19)

where λ1 = λmin(PK ) and λ2 = λmax(PK ), which denotes the min-
imal and maximal eigenvalues of PK .

Along the trajectory of (17), we obtain

V̇ (z) = −γ (t)−2
∥Eγ (t)z∥2

+ 2γ (t)−1zTPK(γ (t))δ̄(t, z, ut)

− 2γ (t)−1zTPK(γ (t))B1

 t

t−τ

u(s)ds

− γ̇ (t)γ (t)−2zTEγ (t)(PK D̄ + D̄PK )Eγ (t)z

− γ̇ (t)γ (t)−2zTPK(γ (t))z (20)

where D̄ = diag[n − 1, . . . , 1, 0].
Noting that K(γ (t))z = γ (t)−1KEγ (t)z, we can equivalently ex-

press u as u = γ (t)−1KEγ (t)z. Then, we have t

t−τ

u(s)ds
 ≤ τ sup

−τ≤θ≤0
γ (t + θ)−1 sup

−τ≤θ≤0
|KEγ (t+θ)z(t + θ)|

= τγ −1
t ∥K∥ ∥Eγt zt∥. (21)

From (21), Eγ (t)B1
 t
t−τ

u(s)ds ≤ γ (t)−1
 t

t−τ
u(s)ds

 ≤ γ (t)−1

γ −1
t τ∥K∥ ∥Eγt zt∥. Note that zTEγ (t)(PK D̄+ D̄PK )Eγ (t)z + zTPK(γ (t))z

= zTEγ (t)(PKD + DPK )Eγ (t)z. Substituting these inequalities into
(20) and using (18),

V̇ (z) ≤ −γ (t)−2
∥Eγ (t)z∥2

− π1γ̇ (t)γ (t)−2
∥Eγ (t)z∥2

+ 2γ (t)−1
∥PK∥ ∥Eγ (t)z∥ ∥Eγ (t)δ̄(t, z, ut)∥1

+ 2γ (t)−2γ −1
t τ∥K∥ ∥PK∥ ∥Eγ (t)z∥ ∥Eγt zt∥. (22)

Using (13), (21), and Assumption 1, ∥Eγ (t)δ̄(t, z, ut)∥1 of (22) is de-
rived as

∥Eγ (t)δ̄(t, z, ut)∥1 = ∥Eγ (t)δ(t, x, u)∥1

≤ (L1 + L2φ(x, u, γ (t)))γ (t)−2

×


n−2
i=1

|xi+2|

γ (t)n−i−2
+ γ (t)|u|


≤ (L1 + L2φ̄(z, ut , γ (t)))γ (t)−2√n

×


∥Eγ (t)z∥ +

 t

t−τ

u(s)ds
+ ∥K∥ ∥Eγ (t)z∥


≤ L(1 + wφ̄(z, ut , γ (t)))γ (t)−2(∥Eγt zt∥ + ∥Eγ (t)z∥) (23)

where L = (L1 + L2)
√
n(1 + ∥K∥ + τ∥K∥) and φ̄(z, ut , γ (t)) =

φ(x, u, γ (t)).
Using |xi| ≤ γ (t)n−i
∥Eγ (t)x∥1, we have, for i = 1, . . . ,m,

n
j=1

|xj|a(i,j) ≤ γ (t)
n

j=1(n−j)a(i,j)

×


∥Eγ (t)z∥1 +

 t

t−τ

u(s)ds


n
j=1 a(i,j)

. (24)

By Assumption 2(a) and (24), the upper bound of the term φ̄(z, ut ,
γ (t)) is obtained as

φ̄(z, ut , γ (t)) = φ(x, u, γ (t))

≤

m
i=1

n
j=1

|xj|a(i,j) |u|µiγ (t)νi

≤

m
i=1

γ (t)qi


√
n∥Eγ (t)z∥ +

 t

t−τ

u(s)ds
ri

× γ (t)−µi∥K∥
µi∥Eγ (t)z∥µi

≤

m
i=1

biγ (t)qi−µi

∥Eγ (t)z∥ + ∥Eγt zt∥

ri
∥Eγ (t)z∥µi (25)

where qi = νi +
n

j=1(n − j)a(i,j), ri =
n

j=1 a(i,j), and bi =

n
ri
2 (1 + τ)ri∥K∥

µi , i = 1, . . . ,m.
Now, we apply the Razumikhin theorem (Choi & Lim, 2010a;

Hale & Verduyn Lunel, 1993) to (22)–(25).We set a function p(s) =

hs, h > 1 such p(s) > s for s > 0. Then, by using p(s), we can set
V (z(t + θ)) < p(V (z(t))) = hV (z(t)) if θ ∈ [−τ , 0], which leads
to λ1γ

−1
t ∥Eγt zt∥

2 < hλ2γ (t)−1
∥Eγ (t)z(t)∥2 using (19). Thus, using

γ (t)−1 < γ −1
t and (γ −1

t )2 < γ −1
t , we can assure that there exists

h1, h2 > 1 such that

∥Eγt zt∥ < h1∥Eγ (t)z(t)∥,

γ −1
t ∥Eγt zt∥ < h2γ (t)−

1
2 ∥Eγ (t)z(t)∥. (26)

From (22)–(26), we have

V̇ (z) ≤ −γ (t)−2
∥Eγ (t)z∥2

− π1γ̇ (t)γ (t)−2
∥Eγ (t)z∥2

+ γ (t)−3σ


γ (t)

1
2 + w

m
i=1

b̄iγ (t)qi−µi∥Eγ (t)z∥ri+µi


× ∥Eγ (t)z∥2 (27)

where σ = 2∥PK∥((1 + h1)L + τh2∥K∥) and b̄i = bi(1 + h1)
ri ,

i = 1, . . . ,m.
From (12), it is clear that wγ (t)α+c−1m

i=1 ∥Eγ (t)z∥βi ≤ γ̇ (t).
Substituting (12) into (27) and using that

m
i=1 b̄iγ (t)qi−µi

∥Eγ (t)z∥ri+µi ≤ mb̄γ (t)α
m

i=1 ∥Eγ (t)z∥βi , b̄ = maxi∈[1,m]{b̄i}, we
obtain

V̇ (z) ≤ −
1
2
γ (t)−2

∥Eγ (t)z∥2
−

1
2
γ (t)−3(γ (t)

− 2σγ (t)
1
2 )∥Eγ (t)z∥2

× wπ1γ (t)−3+α

γ (t)c − π−1

1 mσ b̄


×

m
i=1

∥Eγ (t)z∥βi+2. (28)

It is clear that the right-hand side of (28) is negative if γ (t) ≥

max{
√
2σ + 1, (π−1

1 mσ b̄+1)1/c}. Ifwe consider a casewhereγ (t)
converges to a value less thanmax{2σ +1, (π−1

1 mσ b̄+1)1/c}, then
global regulation follows trivially by Lemma 2. Note that Lemma 2
is proved without using the Razumikhin theorem. Thus, we only
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need to consider a case that γ (t) ≥ max{
√
2σ + 1, (π−1

1 mσ b̄ +

1)1/c}.

Part 2: (Boundedness of γ (t) and z and the system regulation.)
The closed-loop system (17) has a unique solution (z(t), γ (t))

on the maximally extended interval [0, Tf ) for some Tf ∈ (0, ∞].
We show that the γ (t) and z are bounded on [0, Tf ). We first show
that γ (t) cannot escape at t = Tf . To prove that, we suppose that
limt→Tf γ (t) = +∞. Since γ (t) is nondecreasing, there exists a
finite time t∗ ∈ (0, Tf ), such that

γ (t) ≥ max
√

2σ + 1, (π−1
1 mσ b̄ + 1)1/c


(29)

for t ∈ [t∗, Tf ). From (28) and (29), it follows that

V̇ (z) ≤ −
1
2
γ (t)−2

∥Eγ (t)z∥2. (30)

From (19) and (30), we obtain, for t ∈ [t∗, Tf )

∥Eγ (t)z∥ ≤


λ2

λ1
∥Eγ (t∗)z(t∗)∥e

−
1

4λ2

 t
t∗ γ (s)−1ds

. (31)

Note that, from (12),

γ (t)ρ − γ (t∗)ρ = ρ

 t

t∗
γ̇ (s)γ (s)1−α−cds

= ρ

 t

t∗
w

m
i=1


∥Eγ (s)z(s)∥

βi
1 + ∥Eγ (s)z(s)∥

βi+2
1


ds

+ ρ

 t

t∗
∥Eγ (s)z(s)∥2

1ds (32)

where ρ = 2 − α − c > 1 because of 0 < c < 1 − α. From (31),

we have ∥Eγ (t)z∥1 ≤
√
n∥Eγ (t)z∥ ≤


nλ2
λ1

∥Eγ (t∗)z(t∗)∥. Using this
and (32), we have

γ (t) ≤

ρ1(t − t∗) + γ (t∗)ρ

 1
ρ (33)

where ρ1 = wρ
m

i=1((
nλ2
λ1

)βi/2∥Eγ (t∗)z(t∗)∥βi + (
nλ2
λ1

)(βi+2)/2

∥Eγ (t∗)z(t∗)∥βi+2) + ρ(
nλ2
λ1

)∥Eγ (t∗)z(t∗)∥2. Then, from (33), we
obtain t

t∗
γ (s)−1ds ≥ ρ2


ρ1(t − t∗) + γ (t∗)ρ

1− 1
ρ − γ (t∗)ρ−1


(34)

where ρ2 = ρ−1
1 (1 − 1/ρ)−1 > 0 because of ρ > 1.

Using (31), (34), and Lemma 1, we obtain t

t∗
w

m
i=1


∥Eγ (s)z(s)∥

βi
1 + ∥Eγ (s)z(s)∥

βi+2
1


ds

+

 t

t∗
∥Eγ (s)z(s)∥2

1ds

≤

 t

t∗
ρ1e

−
ρ3ρ2
4λ2

((ρ1(s−t∗)+γ (t∗))
1− 1

ρ −γ (t∗)ρ−1)ds < +∞ (35)

where ρ3 = mini∈[1,m]{βi, 2}. From (32) and (35), we have

+ ∞ = γ (Tf )ρ − γ (t∗)ρ

≤ ρ

 Tf

t∗
w

m
i=1


∥Eγ (s)z(s)∥

βi
1 + ∥Eγ (s)z(s)∥

βi+2
1


ds

+ ρ

 Tf

t∗
∥Eγ (s)z(s)∥2

1ds
≤ ρn
ρ4+2

2

 Tf

t∗
w

m
i=1


∥Eγ (s)z(s)∥βi + ∥Eγ (s)z(s)∥βi+2 ds

+ ρn
ρ4+2

2

 Tf

t∗
∥Eγ (s)z(s)∥2ds < +∞ (36)

where ρ4 = maxi=1,...,m{βi}. Then, (36) yields a contradiction.
Thus, the dynamic gain γ (t) is well defined and bounded on [0, Tf ).

Next, we show that z is well defined and bounded on the inter-
val [0, Tf ). From (28), we have

V (z) − V (z(0)) ≤ −

 t

0
γ (Tf )−3(γ (Tf ) − σ)∥Eγ (s)z(s)∥2ds

−

 t

0
wπ1γ (Tf )−3+α


γ (Tf )c − π−1

1 mσ b̄


×

m
i=1

∥Eγ (s)z(s)∥βi+2ds. (37)

The boundedness of γ (t) and (32) implies that
 t
0

m
i=1 ∥Eγ (s)

z(s)∥βi+2ds < ∞ and
 t
0 ∥Eγ (s)z(s)∥2ds < ∞ on [0, Tf ). Using

these inequalities and noting that λ1
γ (Tf )

∥Eγ (t)z∥2
≤ V (z), from (37),

we obtain ∥Eγ (t)z∥2 < +∞ on [0, Tf ). This, with the boundedness
of γ (t), implies that z is well defined and bounded on the interval
[0, Tf ). In summary, we have shown that γ (t) and ∥z∥ are well de-
fined and all bounded on the maximally extended interval [0, Tf ).

Finally, we show the global regulation of system (1) when there
exists a finite time t∗ such that γ (t) ≥ max{

√
2σ + 1, (π−1

1 mσ b̄+
1)1/c} for t > Tf . Letting Tf = +∞, we obtain (30) for t ∈ [t∗, ∞).
Thus, we reach that

V̇ (z) ≤ −
1
2
γ (t)−2

∥Eγ (t)z∥2 (38)

for t ∈ [t∗, +∞). In view of (38) and the Razumikhin theorem
(Choi & Lim, 2010a; Hale & Verduyn Lunel, 1993), ∥Eγ (t)z∥ → 0
as t → ∞. This yields ∥z∥ → 0 as t → ∞ by boundedness of
γ (t). Since (14) is a stability preserving transformation for a finite
τ (Choi & Lim, 2010b), we have |x1| + · · · + |xn| → 0 as t → +∞

as well. Therefore, the global regulation is achieved. �

Remark 2. For practical implementation of the distributed con-
troller (11) with dynamic gain (12), an approximation of the in-
tegral term using a quadrature formula can be applied (Michiels,
Mondie, Roose, & Dambrine, 2004). The approximated controller is
presented as

u = K(γ (t))


x1, . . . , xn−1, xn +

n
j=1

dj,1u(t − θj,1)

T

(39)

γ̇ (t) = wγ (t)α+c−1

×

m
j=1


n−1
i=1

|xi|
γ (t)(n−i)

+

xn +

n
l=1

dl,2u(t − θl,2)


βj

+ wγ (t)α+c−1

×

m
j=1


n−1
i=1

|xi|
γ (t)(n−i)

+

xn +

n
l=1

dl,3u(t − θl,3)


βj+2

+ γ (t)α+c−1

×


n−1
i=1

|xi|
γ (t)(n−i)

+

xn +

n
l=1

dl,4u(t − θl,4)


2

(40)

where dj,h > 0 is a coefficient of the quadrature formula and
θj,h ∈ [0, τ ] for j = 1, . . . , n and h = 1, . . . , 4. See Michiels et al.
(2004) for further discussion.
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Remark 3. The proposed conditions in Assumptions 1 and 2 may
have some room for robustness in the sense that we may only
need to know that the order of the nonlinearities belong to certain
ranges in checking the power order condition. However, if the
order of the nonlinearities is unknown completely, then further
research should be followed to solve such a problem.

4. Illustrative example

Comparison example: We reconsider Example A

ẋ1 = x2 + η1(t)x1x2u2

ẋ2 = u(t − τ) + η2(t)x1u3 (41)

where τ = 1 and η1(t) and η2(t) are known to be finite.
Due to the nonlinearity structure and an input-delay, the

methods of Chen and Huang (2009), Choi and Lim (2006), Choi and
Lim (2010a), Fang and Lin (2006), Krishnamurthy and Khorrami
(2007), Krstic (2002), Mazenc et al. (2003), Ye (2003), Ye (2005),
Ye and Unbehauen (2004), Yue (2004) and Zhang (2006, 2009)
are not applicable. We can set the controller parameters as K =

[−2.25, −3], α = 0, β1 = β2 = 3, c = 0.01. For the
initial function ν(θ), we can set ν(θ) = c̄θ + ν(0) where c̄ =

2
τ2


ν(0)τ −

γ (0)
k2

(ν(0) − K(γ (0))x(0))

.

Application example: We consider a cart–pole system with small
length/strong gravity effects (Olfari-Saber, 2001)

ẋ1 = x2

ẋ2 = x3 + κ
x3x24

(1 + x23)
3
2

ẋ3 = x4
ẋ4 = u(t − τ). (42)

As addressed in Olfari-Saber (2001), this is an underactuated
system. New features are there is an additional delay in the input
and the parameter κ does not need to be known with our control
scheme. According to the viewpoint about the upper bound of
the nonlinearity, we can design and set the parameters of our
controller differently. Regarding the bound of nonlinearity, we

consider two choices: (i) x3x24

(1+x23)
3
2

≤ |x3|
1
2 |x4|2 and (ii) x3x24

(1+x23)
3
2

≤

|x4|2. For the choice (i), applying Assumptions 1 and 2(a), we have
φ(x, u, γ (t)) = φ1(x, u, γ (t)) = |x3|

1
2 |x4|. Then, by taking µ1 =

ν1 = a(1,1) = a(1,2) = 0, a(1,3) = 0.5, a(1,4) = 1, Assumption 2(b)
is satisfied. For the choice (ii), applying Assumptions 1 and 2(a),
we have φ(x, u, γ (t)) = φ1(x, u, γ (t)) = |x4|. Then, by taking
µ1 = ν1 = a(1,1) = a(1,2) = a(1,3) = 0, a(1,4) = 1,
Assumption 2(b) is satisfied. We set the controller parameters
as K = [−0.0256, −0.2560, −0.9600, −1.6], α = 0.5, β1 =

1.5, c = 0.01 for the choice (i), and α = 0, β1 = 1, c = 0.01
for the choice (ii). For simulation, we set κ = 0.2 and τ = 0.1.
The simulation results are shown in Fig. 1 with the initial states
x1(0) = 0.2002, x2(0) = x4(0) = 0, x3(0) = 0.1003. From the
simulation results, the overshoot of the choice (i) is smaller than
that of the choice (ii). Thus, we can see that not only the proposed
method is applicable to input-delayed practical systems, but also
there is a flexibility in designing a controller by utilizing the order
of nonlinearities.

5. Conclusions

We have presented a state feedback controller for a class of
nonlinear systems with uncertain nonlinearity and a delay in
the input. The newly proposed condition is quite extensible via
a nonlinear function containing the full states and the input.
Fig. 1. The responses for a cart–pole system.

As a result, not only nonlinear feedforward terms but also some
nonlinear non-feedforward terms are included in the system.
Moreover, the included feedforward and non-feedforward terms
are not limited to linear growth conditions, but contain some
nontrivial high-order terms. The proposed control scheme has an
adaptive function which was designed so that the growth rate
of nonlinearity does not need to be known. The principle of our
controller design is based on a gain scaling technique involving
appropriate powers of the high-order nonlinearity. In short, we
solve the global regulation problem of nonlinear systems that have
feedforward and non-feedforward nonlinear terms with unknown
growth rates while there is a delay in the input. Through the
examples, we show the improved and generalized features of our
result over existing ones.

Appendix

Proof of Lemma 1. Let sθ = k. Then, we have
 t
0 ηe−εsθ ds = tθ

0
η

θ
k

1−θ
θ e−εkdk. Let ω be the minimum integer such that ω ≥

1−θ
θ

. Note that k
1−θ
θ ≤ 1 + kω for k ≥ 0 and


kωe−εkdk = e−εkω

j=0(−1)j ω!kω−j

(ω−j)!(−ε)j+1 (Zwillinger, 2003). With these inequali-

ties, we obtain
 tθ

0
η

θ
k

1−θ
θ e−εkdk ≤

 tθ

0
η

θ
(1 + kω)e−εkdk =

−
η

εθ
e−εk

tθ
k=0

+
 tθ

0
m1
θ
kωe−εkdk = −

η

εθ
e−εk

tθ
k=0

+
η

θ
e−εkω

j=0
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(−1)j ω!kω−j

(ω−j)!(−ε)j+1 |
tθ
k=0. Then, it is obvious that

 t
0 ηe−εsθ ds <

+∞. �

Proof of Lemma 2. Let zi = xi, i = 1, . . . , n − 1, and zn =

xn +
 t
t−τ

u(s)ds. The system (1) is transformed into ż = Az +

Bu − B1
 t
t−τ

u(s)ds + δ̄(t, z, ut) where B1 = [0, . . . , 1, 0]T and
δ̄(t, z, ut) = δ(t, x, u) where x is replaced by z and the input u in
the time interval [t −τ , t] and the controller (11) is represented as
u = K(γ (t))z. From (12), we have

γ (t)ρ − γ (t∗)ρ = ρ

 t

0
γ̇ (s)γ (s)1−α−cds (43)

where ρ = 2 − α − c > 1. Substituting (12) into the right-
hand side of (43) and using the boundedness of γ (t), we have t
0 ∥Eγ (t)z(s)∥2

1ds < +∞ and ∥z∥ < +∞ for t ∈ [0, +∞). Thus,
there is no finite escape phenomenon.

Since |zn| =

xn +
 t
t−τ

u(s)ds
 < +∞ on t ∈ [0, +∞) from

the boundedness of γ (t) and ∥Eγ (t)z∥2 on t ∈ [0, +∞), we have t
t−τ

u(s)ds
 < +∞ for t ∈ [0, +∞). Using the boundedness of

∥Eγ (t)z∥ and
 t

t−τ
u(s)ds

 < +∞ for t ∈ [0, +∞), we haved(Eγ (t)z)
dt

 ≤ γ (t)−1
∥AK∥ ∥Eγ (t)z∥ + ∥Eγ (t)δ̄(t, z, ut)∥1

+ γ (t)−1
 t

t−τ

u(s)ds


+ γ̇ (t)γ (t)−1
∥D̄∥ ∥Eγ (t)z∥ < +∞. (44)

Then, we obtain that ∥Eγ (t)z∥ < +∞,
 t
0 ∥Eγ (s)z(s)∥2ds < +∞,

and
 d(Eγ (t)z)

dt

 < +∞ on [0, +∞). This yields z → 0 as t → +∞

by Lemma 7 (Fontes, 2001) and boundedness of γ (t). From x1 =

zi, i = 1, . . . , n − 1 and |xn| ≤ |z| + τ |ut |, for a finite τ , we have
|x1| + · · · + |xn| → 0 as t → +∞ as well. Therefore, the global
regulation is achieved. �
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